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Motiv ated b y the study of Poly akov lines in gauge theories, Hanada and Watanabe recently 

presented a conjectured formula for the distribution of eigenphases of Haar-distributed 

random SU( N ) matrices ( β = 2), supported by explicit examples at small N and by nu- 
merical samplings at larger N . In this letter, I spell out a concise proof of their formula, 
and present its orthogonal and symplectic counterparts, i.e. the eigenphase distributions 
of Haar-random unimodular symmetric ( β = 1) and selfdual ( β = 4) unitary matrices 
parametrizing SU( N )/SO( N ) and SU(2 N )/Sp(2 N ), respecti v ely. 
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1. For ew ord and motivation. This letter is inspired by a conjectured formula (117) in Ref. [ 1 ],
presented without a proof. A major goal of that paper is to quantify the partial deconfine-
ment of lattice gauge theories at finite temperature in terms of the statistical distribution of the
eigenphases of the Polyakov line P ( � n ) = U 0 (0 , � n ) U 0 (1 , � n ) · · ·U 0 (L t − 1 , � n ) , treated as random
SU( N ) matrices. From the gauge-theory point of view, it is crucial to consider a simple group
SU( N ) rather than semisimple U( N ), because, obviously, the running of the coupling constant
for each simple or Abelian factor of a gauge group is different. This naturally led the authors
of Ref. [ 1 ] to conjecture the eigenphase distribution of Haar-distributed random SU( N ) matri-
ces, i.e. the circular unitary ensemble (CUE) with a unimodular constraint det U = 1 . Their
formula is based upon explicit examples at N = 2, 3 and numerical samplings at larger N [ 2 ]. 

In the study of so-called fixed-trace random matrix ensembles [ 3 ], typically, the sum of the
squared eigenvalues tr H 

2 = 

∑ N 

j=1 λ
2 
j of random N × N Hermitian matrices H is constrained

to a specific value. Although this type, or the more generic type ( tr V (H ) = const . [ 4 ]), of 
constraint respects the U( N ) invariance of the unconstrained ensemble, additional interactions
among multiple eigenvalues induced by the tr ace constr aint destroy the determinantal property
of their correlation functions. Due to this difficulty, one often had to be content with either
a macroscopic large- N limit by the Coulomb-gas method [ 4 ] or asymptotic uni v ersality at
N � 1 [ 5 ], while subtleties in the local correlations of eigenvalues still remain
elusi v e. 

In this letter, I make my tiny contribution to the field of constrained random matrices,
namely a proof of the aforementioned conjecture on the density of the eigenphases of Haar-
random SU( N ) matrices. My proof encompasses Dyson’s threefold way [ 6 ] all at once, as it
automatically provides the densities of the eigenphases of Haar-random symmetric SU( N )
©The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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matrices ( U = U 

T ) parametrizing the quotient SU( N )/SO( N ) and selfdual SU(2 N ) matrices
( U = U 

D := J U 

T J 

−1 , J = iσ2 ⊗ I N 

) parametrizing the quotient SU(2 N )/Sp(2 N ), i.e. the circu-
lar orthogonal and symplectic ensembles (COE, CSE) with unimodular constraints. It would 

be my pleasure for this letter to serve as a useful appendix to Ref. [ 1 ]. 
2. Theorem and proof 

. Theorem 

Let { e iθ1 , . . . , e iθN−1 , e iθN (= e −i(θ1 + ···+ θN−1 ) ) } be the set of N eigenphases of either SU( N ) matri-
ces ( β = 2), symmetric SU( N ) matrices ( β = 1), or selfdual SU(2 N ) matrices ( β = 4) that are
Haar-distributed. Then the probability density of these eigenphases is gi v en by 

1 

ρβ,N 

(θ ) = 

N 

2 π
×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 − (−1) N 

2 

N 

cos Nθ (β = 2) 

1 − (−1) N 

√ 

π (N − 1)! 
2 

N−1 	(N/ 2 + 3 / 2)	(N/ 2 + 1) 
cos Nθ (β = 1) 

1 − (−1) N 

(2 N )!! 
(2 N − 1)!! N 

cos Nθ + 

2 

(2 N − 1) N 

cos 2 Nθ (β = 4) 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. (1) 

Proof. The normalized joint distributions of N eigenphases { e iθ1 , . . . , e iθN } of Haar-
distributed U( N ) matrices ( β = 2), symmetric U( N ) matrices ( β = 1), and selfdual U(2 N ) ma-
trices ( β = 4) [denoted as C βE( N ), respecti v ely] are well known to be [ 7 ] 

d μC βE(N ) (θ1 , . . . , θN 

) = 

1 

C β,N 

N ∏ 

j=1 

d θ j 

2 π
· | 
N 

( � θ ) | β, C β,N 

= 

	(βN/ 2 + 1) 
	(β/ 2 + 1) N 

. (2) 

Here 
N 

( � θ ) := 

∏ 

1 ≤ j<k≤N 

(e iθ j − e iθk ) stands for the Vander monde deter minant. Upon impos-

ing the unimodular constraint det U = 

∏ N 

j=1 e 
iθ j = 1 , the joint distribution of ( N − 1) indepen-

dent eigenphases is gi v en by 

dμβ,N 

(θ1 , . . . , θN−1 ) = 

1 

C β,N 

N−1 ∏ 

j=1 

dθ j 

2 π
· | 
N 

( � θ ) | β
∣∣∣∣
θN = − ∑ N−1 

j=1 θ j 

= 

1 

C β,N 

∫ 

θN 

N ∏ 

j=1 

dθ j 

2 π
· | 
N 

( � θ ) | β · 2 πδ
( N ∑ 

k=1 

θk ( mod 2 π ) 
)

= 

∞ ∑ 

n = −∞ 

∫ 

θN 

dμC βE(N ) (θ1 , . . . , θN 

) 
N ∏ 

k=1 

e inθk . (3) 

Here 
∫ 
θN 

denotes an integral 
∫ π
−π

over the variable θN 

, and use is made of the Fourier expansion
of the periodic delta function, δ( θ mod 2 π ) = (2 π ) −1 ∑ 

n e in θ . 
1 Excluding an exceptional case with β = 1, N = 2, for which ρ1, 2 ( θ ) = | sin θ | /2 trivially follows. 
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The probability distribution of a single eigenphase of unimodular matrices U is 

ρβ,N 

(θ ) = E [ tr δ(θ + i log U )] 

= 

∫ 

... 

∫ π

−π

dμβ,N 

( θ1 , . . . , θN−1 ) 
N ∑ 

j=1 

δ( θ − θ j ) 

∣∣∣∣∣∣
θN = − ∑ N−1 

j=1 θ j 

= 

∞ ∑ 

n = −∞ 

∫ 

... 

∫ π

−π

dμC βE(N ) (θ1 , . . . , θN 

) 
N ∏ 

k=1 

e inθk · Nδ(θ − θN 

) . (4) 

We used the permutation symmetry of θ j . After performing an integration over θN 

and a con-
stant shift of the variables θ j �→ θ j + θ ( j = 1, …, N − 1), it reads 

ρβ,N 

(θ ) = 

N 

2 π

1 

C β,N 

∞ ∑ 

n = −∞ 

e inNθ

∫ 

... 

∫ π

−π

N−1 ∏ 

j=1 

(
dθ j 

2 π
e inθ j | 1 − e iθ j | β

)
| 
N−1 ( � θ ) | β. (5) 

The integral in Eq. ( 5 ) is known as the Selberg integral [ 8 ] in Morris’s trigonometric form [ 9 ]
(see Ref. [ 10 ], p.134): ∫ 

... 

∫ π

−π

N ∏ 

j=1 

(
dθ j 

2 π
e i 

a −b 
2 θ j | 1 − e iθ j | a + b 

)
| 
N 

( � θ ) | 2 λ

= ( −1) 
a −b 

2 N 

N−1 ∏ 

j=0 

	( λ j + a + b + 1)	(λ j + λ + 1) 
	( λ j + a + 1)	(λ j + b + 1)	(λ + 1) 

. (6) 

Upon substituting N �→ N − 1, a = β/2 + n , b = β/2 − n , λ = β/2 into Eq. ( 6 ), the LHS matches
the integral in Eq. ( 5 ) and the RHS is equal to ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

N! δn, 0 + ( −1) N−1 ( N − 1)! δn, ±1 (β = 2) 

	(N/ 2 + 1) 
	(3 / 2) N 

δn, 0 + ( −1) N−1 ( N − 1)! 
	( N/ 2 + 3 / 2)	( 1 / 2) N−1 

δn, ±1 (β = 1) 

(2 N )! 
2 

N 

δn, 0 + ( −2) N−1 N!( N − 1)! δn, ±1 + 

( 2 N − 2)! 
2 

N−1 
δn, ±2 (β = 4) 

, (7) 

except for a special case β = 1, N = 2. Substitution of Eq. ( 7 ) into Eq. ( 5 ) yields the theorem in
Eq. ( 1 ). �

The theorem in Eq. ( 1 ) for β = 2 was conjectured in Eq. (117) of Ref. [ 1 ]. To the best of our
knowledge, neither a proof nor e v en a conjectur e of the theor em for β = 1 and 4 have been
spotted anywhere in the literature. The above procedure is obviousl y a pplicable for imposing a
constraint 

∑ N 

j=1 θ j = 0 on the circular β-ensemble involving | 
N 

( � θ ) | β at a generic integer β. 
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