Atom-Economical Syntheses of Dihydropyrroles Using Flavin-Iodine-Catalyzed Aerobic Multi-Step and -Component Reactions

Aki Takeda, Marina Oka, and Hiroki Iida*

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan

ABSTRACT: Herein, we report facile, atom-economical syntheses of multi-substituted 2,3-dihydropyrroles using flavin-iodine-catalyzed aerobic oxidative multi-step transformations of chalcones with *β*-enamine ketones or 1,3-dicarbonyl compounds and amines. Exploiting coupled flavin-iodine catalysis, the multi-step reaction, including C–C and C–N bond formation, is promoted only by the consumption of O_2 (1 atm), thus allowing aerobic oxidative synthesis that generates green H₂O as the only waste.

Dihydropyrroles are a vital class of five-membered N-containing heterocyclic moieties that occur in numerous biologically active and natural products, such as bohemamine¹ and spirotryprostatin B (Fig. 1).^{2,3} Various methods of synthesizing multi-substituted 2,3-dihydropyrroles, which generally involve cycloaddition⁴ and metal-mediated reactions⁵, have been developed.6 This is because of their importance not only in medicinal chemistry, but also as useful synthetic intermediates in producing diverse *N*-heterocyclic compounds using highly functionalized pyrrolidines and pyrroles.⁷ The development of a novel approach to enable atom- and step-economical synthesis using readily accessible starting materials is required. In 2015, Li et al. reported the oxidative syntheses of 2,3-dihydropyrroles, which are promoted by the oxidative tandem reaction between chalcones and β -enamine ketones using stoichiometric amounts of I_2 and K_2CO_3 (Scheme 1A).⁸ Changing the stoichiometric synthesis method to an eco-friendly catalytic process that proceeds under gentle oxidative conditions may lead to the most facile and straightforward routes to access multi-substituted 2,3-dihydropyrroles among the synthetic methods reported to date. Furthermore, we anticipated that the catalytic system is favored when using three-component reactions that afford readily accessible chalcones, 1,3-dicarbonyl compounds, and amines. The application to the multi-component reactions that provide high yields, atom/step economy, and shorter reaction times is recognized as a useful approach for developing ecofriendly processes.⁹

 $C-X$ (X = C, O, N, S...) bond formation via catalytic crossdehydrogenative coupling (CDC) between the C–H and X–H bonds of substrates is a key, attractive strategy to enable stepand atom-economical syntheses because pre-activation of the substrates in CDC is unnecessary.10 Although oxidative CDC requires stoichiometric amounts of oxidants, catalytic aerobic CDC, with O_2 as the terminal oxidant, is an ideal green method. The use of $O₂$ exhibits apparent economic and environmental

Figure 1. Biologically active dihydropyrroles.

Scheme 1. Synthetic strategy in preparing pentasubstituted 2,3 dihydropyrroles **3** via the (A) previously reported stoichiometric reactions of **1** and **2**, and (B) flavin-iodine-catalyzed aerobic two-component reactions of **1** and **2** or three-component reactions of **1**, **4**, and **5**.

B) This work: catalytic two- or three-component reaction using O₂

advantages, such as sustainable abundance, safety, cost-effectiveness, atom economy, and minimal pollution, 11 and catalytic aerobic CDC generates green H_2O as the only waste.¹² Recently, our group developed a metal-free dual catalytic system, using a biomimetic flavin organocatalyst^{13,14} and an iodine catalyst, for use in aerobic oxidative transformations.¹⁵ The flavin-iodine catalytic system was applied in aerobic CDC to form C–S16 and C-N bonds¹⁷, enabling the atom-economical syntheses of imidazo $[1,2$ -a]pyridines^{17b} and imidazoles.^{17c} Herein, as an attractive application of the flavin-iodine catalytic system, we report the first catalytic syntheses of pentasubstituted 2,3-dihydropyrroles 3 using chalcones 1 and β -enamine ketones 2 (Scheme 1B). This dual catalytic system is further applied in three-component syntheses, thus providing the first three-component reactions of readily accessible **1**, 1,3-dicarbonyl compounds **4**, and amines **5**. In these systems, multiple flavin- and iodine-catalyzed processes, including aerobic CDC in ring-closing C–N bond formation, lead to atom-economical O_2 -mediated synthesis.

We investigated the effects of various flavins, *e.g.* neutral riboflavins **6**, 5-ethyl isoalloxaziniums **7**, 1,10-ethylene-bridged alloxaziniums **8**, and 5-ethyl alloxaziniums **9**, on the CDC reactions of $1a$ and $2a$ (1.2 equiv) under O_2 (1 atm, balloon) in CH₃CN at 60 °C, with I₂ as the co-catalyst (Table 1). The flaviniodine-catalyzed system was successful, and the desired product

Table 1. Effects of flavin catalysts on the aerobic oxidative reaction between **1a** and **2a**.

^a Conditions: **1a** (0.13 M), **2a** (1.2 equiv), flavin (10 mol%), I_2 (10 mol%), and CH₃CN under O₂ (1 atm, balloon) at 60 °C for 18 h. b Yield determined via 1H nuclear magnetic resonance (NMR) spectroscopy, with 1,3,5-trimethoxybenzene as the internal standard. ^c **1a** (0.50 M), **2a** (2 equiv), and **9b·TfO** (3 mol%) for 30 h.

3a was produced via the aerobic oxidative tandem reactions (entries 1–9). Among the flavin catalysts evaluated, the use of electron-deficient 8-trifluoromethyl-substituted alloxazinium salt **9b·TfO**¹⁸ (TfO = triflate) resulted in the optimal yield (entry 9). Further optimization of the reaction conditions revealed that **3a** was obtained in an 86 % yield when 3 mol% **9b·TfO** and 2 equiv of **2a** were used in CH₃CN (entry 10). Under the present condition, the further dehydrogenative oxidation of 2,3-dihydropyrroles to pyrroles hardly occurred. Although investigation of the solvent effect revealed that 1,2-dichloroethane (DCE) accelerated this reaction in comparison to that in $CH₃CN$ (Table S1), we used non-halogenated CH₃CN as the solvent in the two-component reaction.¹⁹

 After optimizing the reaction conditions, we studied the substrate scope and limitations of the two-component reactions between **1** and **2** (Scheme 2). **1** bearing electron-donating or -withdrawing substituents, such as methoxy, nitro, methyl, and chloro groups, efficiently reacted with **2** to generate the desired products $3a-3f$ in moderate to good yields. Even when R^4 of 1 was a methyl group, the reaction proceeded and yielded the product **3d** in 46% yield. Dihydropyrrole formation also proceeded using thiophenyl and furyl propenones, producing the desired products **3g** and **3h** in 67 and 66% yields, respectively. The use of **2** bearing an *N*-methoxyphenyl or a butyl group at the N-position furnished the corresponding 2,3-dihydropyrrole **3i** or **3j** in a 65% or 44% yield, respectively. Conversely, when

Scheme 2. Substrate scope of dihydropyrrole synthesis via the flavin-iodine-catalyzed oxidative reaction of 1 and 2. ^aConditions: **1** (0.50 M), **2** (1.0 M), **9b·TfO** (3 mol%), I_2 (10 mol%), and CH₃CN under O₂ (1 atm, balloon) at 60 °C for 30 h. bI_2 (20 mol%) was used. c In 1,2-DCE. ^d **1** (1.0 M) and **2** (0.50 M). ^e At

Scheme 3. Control experiments.

the ester functionality was changed to an acyl unit, the yield of **3k** decreased to 14%.

Following the assessment of the scope and limitations of the two-component reaction, we conducted control experiments to elucidate the reaction mechanism of the flavin-iodine catalytic system. The reaction of **1a** with **2a** did not proceed efficiently in the absence of flavin, I₂, or O₂ (Scheme 3A). Notably, **3a** was catalytically synthesized when atmospheric air was used instead of O2. The addition of the radical scavenger 2,6-di-*tert*-butyl-4 hydroxytoluene (BHT, 1.0 equiv) did not influence the yield of **3a**, suggesting that no radical process occurred in this reaction.

 The flavin-iodine-catalyzed system provided an efficient two-component synthesis of **3**, but **2** should be prepared via the dehydrogenative condensation of **4** and **5** prior to use. As the pre-functionalization of **2** should be reduced using this catalytic system, we attempted three-component syntheses of **3** via multi-step reactions using the readily accessible starting materials **1**, **4**, and **5**. The three-component reaction of **1a**, **4a**, and **5a** successfully produced **3a** in an 81% yield within 12 h when DCE was used as the solvent (Scheme 4). The reaction was successfully scaled up to gram-scale, resulting in **3a** with 76% yield. Gratifyingly, the substrate scope of the three-component reaction was almost equivalent to that of the two-component reaction with **2** as the starting material. Via reactions between **1**, **4**, and **5**, diverse pentasubstituted 2,3-dihydropyrroles could be readily prepared. Compounds **1**, **4**, and **5** were amenable to these dihydropyrrole syntheses, generating products **3b**, **3l**, **3m**, **3h**, **3i**, and **3n** in 67–81% yields. However, the three-component reaction using butyl amine or 1-phenyl-1,3-butanedione hardly gave the desired products **3j**, **3o**, or **3p**.

Based on the experimental results and reported literature⁸, we propose the mechanism of this flavin-iodine-catalyzed threecomponent reaction (Scheme 5). β -Enamine ketone 2 is initially formed via dehydrative condensation between **4** and **5** (Scheme 5A). I₂ acts as a good halogen bond catalyst in Michael addition at the carbonyl oxygen of **1**. ²⁰ In this system, **1** is activated via the formation of **1•I2** that undergoes Michael addition with **2**, affording intermediate **10**. The C–H bond of **10** is activated via electrophilic substitution with I_2 to yield the iodo adduct **11**, which undergoes intramolecular nucleophilic

substitution. This might be one of the examples where in-situ umpolung of carbonyl compounds is generated by the flavincatalyzed system.²¹ Thus, the I₂-mediated intramolecular CDC of **10** produces the desired 2,3-dihydropyrrole **3**, along with HI. The flavin catalyst \mathbf{F} l may regenerate I_2 via aerobic oxidation of the *in situ*-generated HI (Scheme 5B). In the flavin catalytic cycle, HI oxidation is efficiently promoted by the reaction not only with **FI** but also the flavin hydroperoxide **Fl**_{OOH}, which is formed by the reaction of O_2 and Fl_{red} that is formed from Fl^{15} Therefore, flavin-iodine catalysis enables the atom-economical syntheses of **3** via two- or three-component reactions that consume only O_2 and generate green H_2O as the only waste. Flavin catalysis contributes to the regeneration of I_2 from I^- , but it notably consumes the H^+ generated by the intramolecular CDC of **10**. Due to flavin catalysis, this reaction system does not require the addition of a stoichiometric amount of base to trap H⁺. Remarkably, the three-component reaction of **1a**, **4a**, and **5a** hardly occurred under the reaction conditions using stoichiometric amounts of I_2 and K_2CO_3 (Scheme 3B), whereas the stoichiometric reaction between **1a** and **2a** afforded **3a** in a 50 % yield under these conditions (Scheme 3C). This clearly revealed the advantage of this flavin-iodine catalytic system, with the successful facile three-component syntheses of **3** using readily available **1**, **4**, and **5**.

Scheme 4. Facile three-component syntheses of **3** via the flaviniodine-catalyzed oxidative reactions of **1**, **4**, and **5**. a Conditions: **1** (0.75 M), **4** (0.50 M), **5** (0.50 M), **9b·TfO** (3 mol%), I_2 (10 mol%), and DCE under O_2 (1 atm, balloon) at 60 °C for 12 h.
^b Determined via ¹H NMR spectroscopy, using 1,3,5-trimethoxybenzene as the internal standard. ^c Gram-scale reaction using 1.0 g of **1a**. d **1** (1.0 M). e For 18 h.

Scheme 5. Plausible mechanisms of the (A) aerobic oxidative three-component reactions of **1**, **4**, and **5** catalyzed by flavin and iodine and (B) flavin catalysis.

 We demonstrated the first atom-economical catalytic syntheses of pentasubstituted **3** using **1** and **2**. Furthermore, we performed facile three-component syntheses of **3** using readily available **1**, **4**, and **5** for the first time. In the multi-step synthesis, coupled flavin-iodine catalysis efficiently promoted the aerobic intramolecular CDC of intermediate **10** to form the new C–N bond of **3**. Therefore, it enables atom-economical multi-step transformations under metal-free conditions, consuming only O_2 and generating only H_2O as a by-product. Our findings demonstrated that the coupled redox organocatalysis system enhances the electron transfer from the substrates to O_2 , which is an interesting and powerful tool for the design of eco-friendly synthesis protocols using aerobic oxidative multi-step processes.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental procedures and characterization data for known and new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

* E-mail: iida@riko.shimane-u.ac.jp **Notes** There are no conflicts to declare.

ACKNOWLEDGMENT

This work was partially supported by Japan Society for the Promotion of Science/Ministry of Education, Culture, Sports, Science, and Technology KAKENHI (Grant-in-Aid for Scientific Research (C), No. 19K05617) and Japan Science and Technology Agency Support for Pioneering Research Initiated by the Next Generation (No. JPMJSP2155).

REFERENCES

(1) Bugni, T. S.; Woolery, M.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Bohemamines from a Marine-Derived Streptomyces sp. *J. Nat. Prod.* **2006**, *69*, 1626-1628.

(2) Cui, C.-B.; Kakeya, H.; Osada, H. Spirotryprostatin B, a Novel Mammalian Cell Cycle Inhibitor Produced by Aspergillus fumigatus. *J. Antibiot.*, **1996**, *49*, 832-835.

(3) (a) Cantín, Á.; Moya, P.; Miranda, M. A.; Primo, J.; Primo-Yúfera, E. Synthesis and Biological Evaluation of New Analogues of the Active Fungal Metabolites N-(2-Methyl-3-oxodecanoyl)-2-pyrroline and N-(2-Methyl-3-oxodec-8-enoyl)-2-pyrroline (II). *J. Agric. Food Chem.*, **2000**, *48*, 3682-3688. (*b*) Magedov, I. V.; Luchetti, G.; Evdokimov, N. M.; Manpadi, M.; Steelant, W. F.; Van Slambrouck, S.; Tongwa, P.; Antipin, M. Y.; Kornienko, A. Novel three-component synthesis and antiproliferative properties of diversely functionalized pyrrolines. *Bioorg. Med. Chem. Lett.*, **2008**, *18*, 1392-1396. (c) Ye, Z. J.; Shi, L. N.; Shao, X. S.; Xu, X. Y.; Xu, Z. P.; Li, Z. Pyrrole- and Dihydropyrrole-Fused Neonicotinoids: Design, Synthesis, and Insecticidal Evaluation. *J. Agric. Food Chem.*, **2013**, *61*, 312-319.

(4) (a) Guo, C.; Xue, M. X.; Zhu, M. K.; Gong, L. Z. Organocatalytic asymmetric formal 3+2 cycloaddition reaction of isocyanoesters to nitroolefins leading to highly optically active dihydropyrroles. *Angew. Chem., Int. Ed.*, **2008**, *47*, 3414-3417. (*b*) Wender, P. A.; Strand, D. Cyclocarboamination of Alkynes with Aziridines: Synthesis of 2,3-Dihydropyrroles by a Catalyzed Formal 3+2 Cycloaddition. *J. Am. Chem. Soc.*, **2009**, *131*, 7528-7529. (*c*) Tian, J. J.; Zhou, R.; Sun, H. Y.; Song, H. B.; He, Z. J. Phosphine-Catalyzed 4+1 Annuiation between alpha,beta-Unsaturated Imines and Allylic Carbonates: Synthesis of 2- Pyrroilines. *J. Org. Chem.*, **2011**, *76*, 2374-2378. (d) Feng, J. J.; Lin, T. Y.; Zhu, C. Z.; Wang, H. M.; Wu, H. H.; Zhang, J. L., The Divergent Synthesis of Nitrogen Heterocycles by Rhodium(I)-Catalyzed Intermolecular Cycloadditions of Vinyl Aziridines and Alkynes. *J. Am. Chem. Soc.* **2016,** *138*, 2178-2181. (e) Wang, G. Q.; Chen, R. X.; Wu, M. H.; Sun, S. F.; Luo, X.; Chen, Z.; Guo, H. B.; Chong, C.; Xing, Y. L., Efficient one-pot synthesis of 1,3-dihydro-2H-pyrrol-2-one derivatives via aza-oxyallylic cations. *Tetrahedron Lett.* **2017**, *58*, 847-850.

(5) (a) Busacca, C. A.; Dong, Y. A facile synthesis of 4-aryl-2,3 dihydropyrroles. *Tetrahedron Lett.*, **1996**, *37*, 3947-3950. (b) Kinderman, S. S.; van Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. Enamide-olefin ring-closing metathesis. *Org. Lett.*, **2001**, *3*, 2045-2048. (c) Fan, J. M.; Gao, L. F.; Wang, Z. Y. Facile construction of highly functionalized 2-pyrrolines via FeCl3-catalyzed reaction of aziridines with arylalkynes. *Chem. Commun.*, **2009**, 5021-5023. (d) Zhang, G.; Zhang, Y. H.; Jiang, X. X.; Yan, W. J.; Wang, R. Highly Enantioslective Synthesis of Multisubstituted Polyfunctional Dihydropyrrole via an Organocatalytic Tandem Michael/Cyclization Sequence. *Org. Lett.*, **2011**, *13*, 3806-3809. (e) Polindara-Garcia, L. A.; Miranda, L. D. Two-Step Synthesis of 2,3-Dihydropyrroles via a Formal 5-endo Cycloisomerization of Ugi 4-CR/Propargyl Adducts. *Org. Lett.*, **2012**, *14*, 5408-5411. (f) Miura, T.; Tanaka, T.; Hiraga, K.; Stewart, S. G.; Murakami, M. Stereoselective Synthesis of 2,3-Dihydropyrroles from Terminal Alkynes, Azides, and alpha,beta-Unsaturated Aldehydes via N-Sulfonyl-1,2,3-triazoles. *J. Am. Chem. Soc.*, **2013**, *135*, 13652- 13655. (g) Shi, Z.; Suri, M.; Glorius, F. Aerobic Synthesis of Pyrroles and Dihydropyrroles from Imines: Palladium(II)-Catalyzed Intramolecular C-H Dehydrogenative Cyclization. *Angew. Chem., Int. Ed.*, **2013**, *52*, 4892-4896. (h) Martin, M. C.; Patil, D. V.; France, S. Functionalized 4-Carboxy- and 4-Keto-2,3-dihydropyrroles via Ni(II)-Catalyzed Nucleophilic Amine Ring-Opening Cyclizations of Cyclopropanes. *J. Org. Chem.*, **2014**, *79*, 3030-3039. (i) Liu, K.; Zhu, C. H.; Min, J. X.; Peng, S. Y.; Xu, G. Y.; Sun, J. T., Stereodivergent Synthesis of N- Heterocycles by Catalyst-Controlled, Activity-Directed Tandem Annulation of Diazo Compounds with Amino Alkynes. *Angew. Chem., Int. Ed.* **2015**, *54*, 12962-12967. (j) Miaskiewicz, S.; Weibel, J. M.; Pale, P.; Blanc, A., Gold(I)-Catalyzed Cyclization/Nucleophilic Substitution of 1-(N-Sulfonylazetidin-2-yl) Ynones into N-Sulfonylpyrrolin-4-ones. *Org. Lett.* **2016**, *18*, 844-847. (k) Zhu, J. N.; Chen, L. L.; Zhou, R. X.; Li, B.; Shao, Z. Y.; Zhao, S. Y. Copper-Catalyzed Oxidative Cyclization of Maleimides with Amines and Alkyne Esters: Direct Access to Fully Substituted Dihydropyrroles and Pyrrole Derivatives. *Org. Lett.*, **2017**, *19*, 6044-6047.

(6) (*a*) Medran, N. S.; La-Venia, A.; Testero, S. A., Metal-mediated synthesis of pyrrolines. *RSC Advances* **2019,** *9*, 6804-6844. (*b*) Neto, J. S. S.; Zeni, G., Transition Metal-Catalyzed and Metal-Free Cyclization Reactions of Alkynes with Nitrogen-Containing Substrates: Synthesis of Pyrrole Derivatives. *ChemCatChem* **2020,** *12*, 3335-3408.

(7) (*a*) Humphrey, J. M.; Liao, Y. S.; Ali, A.; Rein, T.; Wong, Y. L.; Chen, H. J.; Courtney, A. K.; Martin, S. F. Enantioselective total syntheses of manzamine A and related alkaloids. *J. Am. Chem. Soc.*, **2002**, *124*, 8584-8592. (*b*) Stocker, B. L.; Dangerfield, E. M.; Win-Mason, A. L.; Haslett, G. W.; Timmer, M. S. M. Recent Developments in the Synthesis of Pyrrolidine-Containing Iminosugars. *Eur. J. Org. Chem.*, **2010**, *2010*, 1615-1637. (*c*) Young, I. S.; Thornton, P. D.; Thompson, Synthesis of natural products containing the pyrrolic ring. A. *Nat. Prod. Rep.*, **2010**, *27*, 1801-1839. (*d*) Biava, M.; Porretta, G. C.; Poce, G.; Battilocchio, C.; Alfonso, S.; de Logu, A.; Manetti, F.; Botta, M. Developing Pyrrole-Derived Antimycobacterial Agents: a Rational Lead Optimization Approach. *ChemMedChem*, **2011**, *6*, 593-599.

(8) Li, Y. J.; Xu, H.; Xing, M. M.; Huang, F.; Jia, J. H.; Gao, J. R. Iodine-Promoted Construction of Polysubstituted 2,3-Dihydropyrroles from Chalcones and beta-Enamine Ketones (Esters). *Org. Lett.*, **2015**, *17*, 3690-3693.

(9) (a) D'Souza, D. M.; Muller, T. J. J., Multi-component syntheses of heterocycles by transition-metal catalysis. *Chem. Soc. Rev.* **2007,** *36*, 1095-1108. (b) Toure, B. B.; Hall, D. G., Natural Product Synthesis Using Multicomponent Reaction Strategies. *Chem. Rev.* **2009**, *109*, 4439-4486. (c) John, S. E.; Gulati, S.; Shankaraiah, N., Recent advances in multi-component reactions and their mechanistic insights: a triennium review. *Org. Chem. Front.* **2021,** *8*, 4237-4287.

(10) (a) Li, C. J. Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations. *Acc. Chem. Res.*, **2009**, *42*, 335-344. (b) Matcha, K.; Antonchick, A. P. Metal-Free Cross-Dehydrogenative Coupling of Heterocycles with Aldehydes. *Angew. Chem., Int. Ed.*, **2013**, *52*, 2082-2086. (c) Louillat, M. L.; Patureau, F. W. Oxidative C-H amination reactions. *Chem. Soc. Rev.*, **2014**, *43*, 901-910. (d) Bagdi, A. K.; Rahman, M.; Bhattacherjee, D.; Zyryanov, G. V.; Ghosh, S.; Chupakhin, O. N.; Hajra, A. Visible light promoted cross-dehydrogenative coupling: a decade update. *Green Chem.*, **2020**, *22*, 6632-6681.

(11) (a) Hill, C. L. Homogeneous catalysis - Controlled green oxidation. *Nature*, **1999**, *401*, 436-437. (b) Campbell, A. N.; Stahl, S. S. Overcoming the "Oxidant Problem": Strategies to Use O_2 as the Oxidant in Organometallic C-H Oxidation Reactions Catalyzed by Pd (and Cu). *Acc. Chem. Res.*, **2012**, *45*, 851-863. (c) Bryliakov, K. P. Catalytic Asymmetric Oxygenations with the Environmentally Benign Oxidants H2O2 and O2. *Chem. Rev.*, **2017**, *117*, 11406-11459.

(12) For recent examples, see: (a) Cremer, C.; Goswami, M.; Rank, C. K.; de Bruin, B.; Patureau, F. W., Tellurium(II)/Tellurium(III)- Catalyzed Cross-Dehydrogenative C-N Bond Formation. *Angew. Chem., Int. Ed.* **2021,** *60*, 6451-6456. (b) Wang, Q. L.; Huang, H. W.; Sun, Z. Z.; Chen, Y. F.; Deng, G. J., Aerobic cross-dehydrogenative couplings of N-heteroarenes with toluene derivatives at room temperature. *Green Chem.* **2021,** *23*, 7790-7795. (c) Xu, J.; Huang, L.; He, L.; Liang, C. F.; Ouyang, Y. I.; Shen, J. B.; Jiang, M.; Li, W. M., Direct para-C-H heteroarylation of anilines with quinoxalinones by metal-free cross-dehydrogenative coupling under an aerobic atmosphere. *Green Chem.* **2021,** *23*, 6632-6638. (d) Bhakat, M.; Khatua, B.; Guin, J., Photocatalytic Aerobic Coupling of Azaarenes and Alkanes via Nontraditional Cl-center dot Generation. *Org. Lett.* **2022,** *24*, 5276-5280. (e) Xiong, G. W.; Huang, L. F.; Gong, Z.; Wang, C.; Chen, Y. F., Synthesis of beta-Keto Sulfoxides via Copper(II)-Catalyzed Aerobic Oxidation. *Adv. Synth. Catal.* **2022**, *364*, 1884-1888. (f) Beg, M. Z.; Singh, P. K.;

Singh, P. P.; Srivastava, M.; Srivastava, V., Metal-free visible light mediated direct C–H amination of benzoxazole with secondary amines. *Mol. Divers.* **2023**.

(13) For reviews of flavin catalysis, see: (a) Murahashi, S. I. Synthetic Aspects of Metal-Catalyzed Oxidations of Amines and Related Reactions. *Angew. Chem., Int. Ed.*, **1995**, *34*, 2443-2465. (b) Iida, H.; Imada, Y.; Murahashi, S.-I. Biomimetic flavin-catalysed reactions for organic synthesis. *Org. Biomol. Chem.*, **2015**, *13*, 7599-7613. (c) Cibulka, R. Artificial Flavin Systems for Chemoselective and Stereoselective Oxidations. *Eur. J. Org. Chem.*, **2015**, *2015*, 915-932. (d) König, B.; Kümmel, S.; Svobodová, E.; Cibulka, R. Flavin photocatalysis. *Phys. Sci. Rev.*, **2018**, *3*, 20170168. (e) Cibulka, R.; Fraaije, M. W. eds. *Flavin-Based Catalysis*, Wiley-VCH, Weinheim, **2021**.

(14) For selected examples of flavin catalysis, see: (a) Murahashi, S.-I.; Oda, T.; Masui, Y. Flavin-catalyzed oxidation of amines and sulfur compounds with hydrogen peroxide. *J. Am. Chem. Soc.* **1989**, *111*, 5002-5003. (b) Imada, Y.; Iida, H.; Ono, S.; Murahashi, S. I. Flavin catalyzed oxidations of sulfides and amines with molecular oxygen. *J. Am. Chem. Soc.* **2003**, *125*, 2868-2869. (c) Cibulka, R.; Vasold, R.; König, B. Catalytic photooxidation of 4-methoxybenzyl alcohol with a flavin-zinc(II)-cyclen complex. *Chem.-Eur. J.*, **2004**, *10*, 6223-6231. (d) Imada, Y.; Iida, H.; Naota, T. Flavin-Catalyzed Generation of Diimide: An Environmentally Friendly Method for the Aerobic Hydrogenation of Olefins. *J. Am. Chem. Soc.*, **2005**, *127*, 14544-14545. (e) Murray, A. T.; Matton, P.; Fairhurst, N. W. G.; John, M. P.; Carbery, D. R. Biomimetic Flavin-Catalyzed Aldehyde Oxidation. *Org. Lett.* **2012**, *14*, 3656-3659. (f) Muhldorf, B.; Wolf, R. C-H Photooxygenation of Alkyl Benzenes Catalyzed by Riboflavin Tetraacetate and a Non-Heme Iron Catalyst. *Angew. Chem., Int. Ed.*, **2016**, *55*, 427-430. (g) Metternich, J. B.; Gilmour, R. One Photocatalyst, n Activation Modes Strategy for Cascade Catalysis: Emulating Coumarin Biosynthesis with (−)-Riboflavin. *J. Am. Chem. Soc.*, **2016**, *138*, 1040-1045. (h) Zelenka, J.; Cibulka, R.; Roithova, J. Flavinium Catalysed Photooxidation: Detection and Characterization of Elusive Peroxyflavinium Intermediates. *Angew. Chem., Int. Ed.*, **2019**, *58*, 15412-15420. (i) Oka, M.; Katsube, D.; Tsuji, T.; Iida, H. Phototropin-Inspired Chemoselective Synthesis of Unsymmetrical Disulfides: Aerobic Oxidative Heterocoupling of Thiols Using Flavin Photocatalysis. *Org. Lett.*, **2020**, *22*, 9244-9248. (j) Graml, A.; Neveselý, T.; Jan Kutta, R.; Cibulka, R.; König, B. Deazaflavin reductive photocatalysis involves excited semiquinone radicals. *Nat. Commun.*, **2020**, *11*, 3174. (k) Immel, J. R.; Chilamari, M.; Bloom, S. Combining flavin photocatalysis with parallel synthesis: a general platform to optimize peptides with non-proteinogenic amino acids. *Chem. Sci.*, **2021**, *12*, 10083-10091.

(15) Ishikawa, T.; Kimura, M.; Kumoi, T.; Iida, H. Coupled Flavin-Iodine Redox Organocatalysts: Aerobic Oxidative Transformation from N-Tosylhydrazones to 1,2,3-Thiadiazoles. *ACS Catal.*, **2017**, *7*, 4986-4989.

(16) (a) Ohkado, R.; Ishikawa, T.; Iida, H. Flavin–iodine coupled organocatalysis for the aerobic oxidative direct sulfenylation of indoles with thiols under mild conditions. *Green Chem.*, **2018**, *20*, 984-988. (b) Iida, H.; Demizu, R.; Ohkado, R. Tandem Flavin-Iodine-Catalyzed Aerobic Oxidative Sulfenylation of Imidazo 1,2-a Pyridines with Thiols. *J. Org. Chem.*, **2018**, *83*, 12291-12296. (c) Tanimoto, K.; Ohkado, R.; Iida, H. Aerobic Oxidative Sulfenylation of Pyrazolones and Pyrazoles Catalyzed by Metal-Free Flavin-Iodine Catalysis. *J. Org. Chem.*, **2019**, *84*, 14980-14986.

(17) (a) Tanimoto, K.; Okai, H.; Oka, M.; Ohkado, R.; Iida, H. Aerobic Oxidative C-H Azolation of Indoles and One-Pot Synthesis of Azolyl Thioindoles by Flavin-Iodine-Coupled Organocatalysis. *Org. Lett.*, **2021**, *23*, 2084-2088. (b) Okai, H.; Tanimoto, K.; Ohkado, R.; Iida, H. Multicomponent Synthesis of Imidazo[1,2-a]pyridines: Aerobic Oxidative Formation of C-N and C-S Bonds by Flavin-Iodine-Coupled Organocatalysis. *Org. Lett.*, **2020**, *22*, 8002-8006. (c) Takeda, A.; Okai, H.; Watabe, K.; Iida, H. Metal-Free Atom-Economical Synthesis of Tetra-Substituted Imidazoles via Flavin-Iodine Catalyzed Aerobic Cross-Dehydrogenative Coupling of Amidines and Chalcones. *J. Org. Chem.*, **2022**, *87*, 10372-10376.

(18) Mizushima, T.; Oka, M.; Imada, Y.; Iida, H. Low‐Voltage‐ Driven Electrochemical Aerobic Oxygenation with Flavin Catalysis: Chemoselective Synthesis of Sulfoxides from Sulfides. *Adv. Synth. Catal.*, **2022**, *364*, 2443-2448.

(19) These commercially available solvents were used without drying and purification.

(20) (a) Breugst, M.; Detmar, E.; von der Heiden, D. Origin of the Catalytic Effects of Molecular Iodine: A Computational Analysis. *ACS Catal.*, **2016**, *6*, 3203-3212. (b) Von Der Heiden, D.; Bozkus, S.; Klussmann, M.; Breugst, M. Reaction Mechanism of Iodine-Catalyzed Michael Additions. *J. Org. Chem.*, **2017**, *82*, 4037-4043.

(21) (a) Thapa, P.; Hazoor, S.; Chouhan, B.; Vuong, T. T.; Foss, F. W., Flavin Nitroalkane Oxidase Mimics Compatibility with NOx/TEMPO Catalysis: Aerobic Oxidization of Alcohols, Diols, and Ethers. *J. Org. Chem.* **2020,** *85*, 9096-9105. (b) Pokluda, A.; Zubova, E.; Chudoba, J.; Krupička, M.; Cibulka, R., Catalytic artificial nitroalkane oxidases–a way towards organocatalytic umpolung. *Org. Biomol. Chem.* **2023,** *21*, 2768-2774.