ON POSITIVELY GRADED UNIQUE FACTORIZATION RINGS AND UNIQUE FACTORIZATION MODULES

Submitted to fulfill one of the requirements for obtaining a Ph.D. degree in Mathematics

IWAN ERNANTO

CONTENTS

TITLE PAGE i
ABSTRACT iii
I Introduction 1
1.1. Background 1
1.2. Limitation of Problems 3
1.3. Formulation of Problems 3
1.4. Research Method 3
II Preliminaries 4
2.1. Graded Rings and Graded Modules 4
2.2. Positively Graded Rings which are Maximal Orders 5
2.3. Positively Graded Rings which are Generalized Dedekind Rings 11
III Positively Graded Rings which are Unique Factorization Rings 14
3.1. Unique Factorization Rings 14
IV Module over a Unique Factorization Domain 18
4.1. Unique Factorization Modules 18
4.2. Strongly Graded Modules which are Unique Factorization Modules 22
4.3. Positively Graded Modules which are Unique Factorization Modules 31
V Generalized Dedekind Modules and Further Work 39
5.1. Generalized Dedekind Modules 39
5.2. Further Work 41

ABSTRACT
 ON POSITIVELY GRADED UNIQUE FACTORIZATION RINGS AND UNIQUE FACTORIZATION MODULES

By

IWAN ERNANTO

Let R be a prime ring that is Noetherian, and let Q be its quotient ring. Consider a (fractional) ideal A in Q. Define the left R-ideal $(R: A)_{l}=\{q \in Q \mid$ $q A \subseteq R\}$, and the right R-ideal $(R: A)_{r}=\{q \in Q \mid A q \subseteq R\}$. We define a v-operation: $A_{v}=\left(R:(R: A)_{r}\right)_{l} \supseteq A$ and if $A=A_{v}$ then A is called a right v-ideal. Similarly, ${ }_{v} A=\left(R:(R: A)_{l}\right)_{r}$ and A is called a left v-ideal if $A={ }_{v} A$. If ${ }_{v} A=A=A_{v}$, then A is just called a v-ideal in Q. Further,define left order $O_{l}(A)=\{q \in Q \mid q A \subseteq A\}$ and right order $O_{r}(A)=\{q \in Q \mid A q \subseteq A\}$ of A. In 1991, Abbasi et.al. defined a unique factorization ring (UFR for short) by using v ideal, that is, a ring R is called a UFR if any prime ideal P with $P=P_{v}$ or $P={ }_{v} P$ is principal, that is, $P=p R=R p$ for some $p \in P$.

Let $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$ be a positively graded ring which is a sub-ring of the strongly graded ring $S=\oplus_{n \in \mathbb{Z}} R_{n}$, where R_{0} is a Noetherian prime ring. In this dissertation, it is demonstrated that R qualifies as a unique factorization ring if and only if R_{0} is a \mathbb{Z}_{0}-invariant unique factorization ring, and R_{1} is a principal (R_{0}, R_{0}) bi-module. We give examples of \mathbb{Z}_{0}-invariant unique factorization rings which are not unique factorization rings.

Let M be a torsion-free module over an integral domain D with its quotient field K. In 2022, Nurwigantara et al. introduced the concept of a completely integrally closed module (CICM for short) for investigating arithmetic module theory. A module M is designated as a CICM if, for every non-zero submodule N of $M, O_{K}(N)=\{k \in K \mid k N \subseteq N\}=D$. Conversely, Wijayanti et al. introduced the notion of a v-submodule. In this context, a fractional submodule N in $K M$ is termed a v-submodule if it satisfies $N=N_{v}$, where $N_{v}=\left(N^{-}\right)^{+}$. Here, $N^{-}=\{k \in K \mid k N \subseteq N\}$, and $\mathfrak{n}^{+}=\{m \in K M \mid \mathfrak{n} m \subseteq M\}$ for a fractional M ideal \mathfrak{n} in K. Further, in 2022, Wahyuni et.al. defined a unique factorization module (UFM for short) by a submodule approach. A module M is called a UFM if M is completely integrally closed, every v-submodule of M is principal, and M satisfies the ascending chain condition on v-submodules of M. In this dissertation, we prove that if D is a unique factorization domain and M is a completely integrally closed module with the ascending chain condition on v-submodules, then M is a unique
factorization module (UFM) if and only if every prime v-submodule P of M is principal, that is, $P=p M$ for some $p \in D$.

Let $M=\oplus_{n \in \mathbb{Z}} M_{n}$ be a strongly graded module over a strongly graded ring $D=\oplus_{n \in \mathbb{Z}} D_{n}$ and $L=\oplus_{n \in \mathbb{Z} O} M_{n}$ be a positively graded module over a positively graded domain $R=\oplus_{n \in \mathbb{Z} 0} D_{n}$. In this dissertation, we investigated whether the properties found in UFR can be developed in UFM. Some results that can be obtained include: if M_{0} is a UFM over D_{0} and D is a UFD, then M is a UFM over D. Moreover, we provide a necessary and sufficient condition for a positively graded module L to be a UFM over a positively graded R.

This dissertation is organized as follows. In Chapter \mathbb{I}, we provide the historical research of this research. In Chapter Π, we provide some preliminaries regarding graded rings and graded modules. In Chapter III, we provide some results regarding to UFRs. In Chapter IV, we provide some results regarding to UFMs, particularly related to strongly graded modules and positively graded modules. In Chapter V, we end this dissertation with some results on the generalized Dedekind module and future research plans.

Keywords: positively graded ring, positively graded module, unique factorization ring, unique factorization module, generalized Dedekind module.

CHAPTER I

Introduction

1.1. Background

This dissertation represents an extension of the work presented in [27] and [41]. Consider a Noetherian prime ring R with its quotient ring Q. For a (fractional) ideal A in Q, we define the left R-ideal $(R: A)_{l}=\{q \in Q \mid q A \subseteq R\}$ and the right R-ideal $(R: A)_{r}=\{q \in Q \mid A q \subseteq R\}$. Introducing a v-operation, we define $A_{v}=\left(R:(R: A)_{r}\right)_{l} \supseteq A$, where A is termed a right v-ideal if $A=A_{v}$. Similarly, ${ }_{v} A=\left(R:(R: A)_{l}\right)_{r}$ defines a left v-ideal for A if $A={ }_{v} A$. When ${ }_{v} A=A=A_{v}$, A is simply referred to as a v-ideal in Q. Furthermore, left and right orders of A are denoted by $O_{l}(A)=\{q \in Q \mid q A \subseteq A\}$ and $O_{r}(A)=\{q \in Q \mid A q \subseteq A\}$, respectively. In [15], a unique factorization ring (UFR) is defined using v-ideals, where a ring R is classified as a UFR if every prime ideal P with $P=P_{v}$ or $P={ }_{v} P$ is principal, i.e., $P=p R=R p$ for some $p \in P$.

Let $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$ be a positively graded ring, which is a sub-ring of the strongly graded ring $S=\oplus_{n \in \mathbb{Z}} R_{n}$, where R_{0} is a Noetherian prime ring. In [27], the authors established a necessary and sufficient condition for R to qualify as a maximal order, denoted by $O_{l}(A)=R=O_{r}(A)$ for any non-zero ideal A of R. Here, $O_{l}(A)=\{q \in Q \mid q A \subseteq A\}$ and $O_{r}(A)=\{q \in Q \mid A q \subseteq A\}$, where Q represents the quotient field of R. Additionally, in [28], the authors provided insights into the structure of v-invertible ideals of R. In this dissertation, particularly in Chapter III, we prove that R attains the status of a unique factorization ring (in the sense of [15]) if and only if R_{0} is a \mathbb{Z}_{0}-invariant unique factorization ring and R_{1} is a principal $\left(R_{0}, R_{0}\right)$ bi-module.

Let M be a finitely generated torsion-free module over an integrally closed domain D with its quotient field K. The module M is naturally embedded in $K M$, a finite-dimensional vector space over K. In [28], the authors introduced key con-
cepts and notation for the study of arithmetic module theory. Consider a fractional D-ideal \mathfrak{a} in K and a fractional D-submodule N in $K M$ (refer to [28] for the definition of fractional D-submodules). They defined $\mathfrak{a}^{+}=\left\{m^{\prime} \in K M \mid \mathfrak{a} m^{\prime} \subseteq M\right\}$ as a fractional D-submodule, and $N^{-}=\{k \in K \mid k N \subseteq M\}$ as a fractional ideal. Additionally, $N_{v}=\left(N^{-}\right)^{+} \supseteq N$ is defined. A submodule N is called a $v-$ submodule if $N_{v}=N$. If $M \supseteq N$, then N is referred to as an integral submodule of M. The domain D is called a generalized Dedekind domain (G-Dedekind domain) if every v-ideal of D is invertible, and D satisfies the ascending chain condition on v-ideals ([12] and [36]).

Moreover, in [41], the authors introduced the concept of a unique factorization module (UFM) using a submodule approach. A module M is designated as a UFM if it is completely integrally closed (CIC), meaning that $O_{K}(N)=\{k \in$ $K \mid k N \subseteq N\}=D$ for every non-zero submodule N of M, where K is the quotient field of D. Additionally, every v-submodule of M must be principal, and M must adhere to the ascending chain condition on v-submodules. In this dissertation, specifically in Chapter IV, we establish that if D is a unique factorization domain (UFD) and M is a CIC module satisfying the ascending chain condition on v-submodules, then M qualifies as a UFM if and only if every prime v-submodule P of M is principal, denoted as $P=p M$ for some $p \in R$.

Consider $M=\oplus_{n \in \mathbb{Z}} M_{n}$, a strongly graded module over the strongly graded ring $D=\oplus_{n \in \mathbb{Z}} D_{n}$, and $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$, a positively graded module over the positively graded domain $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$. In this dissertation, we explore the extension of properties observed in unique factorization rings (UFRs) to unique factorization modules (UFMs). Some notable results include the following: if M_{0} is a UFM over D_{0} and D is a unique factorization domain (UFD), then M qualifies as a UFM over D. Additionally, we establish a necessary and sufficient condition for a positively graded module L to be a UFM over a positively graded ring R.

1.2. Limitation of Problems

Note that in the definition of positively graded rings, we always assume that R_{0} is a Noetherian prime ring. Furthermore, in the definition of strongly and positively graded module, we assume that M_{0} is a finitely generated torsion-free module.

1.3. Formulation of Problems

Based on the background and limitations above, the problems can be formulated as follows:
(1) to find the characterizations of positively graded rings regarding unique factorization rings;
(2) to find the characterizations of strongly graded modules regarding unique factorization modules;
(3) to find the characterizations of positively graded modules regarding unique factorization modules;

1.4. Research Method

The first thing done in the method is the basic properties of multiplicative ideal theory about fractional ideals, including invertible ideals and v-invertible ideals. Then, the properties of completely integrally closed domains, Dedekind domains, G-Dedekind domains, and maximal order are studied. Then, the theoretical study is continued by learning the basic properties of fractional submodules, completely integrally closed modules, and unique factorization modules. Next, we study strongly and positively graded ring types of \mathbb{Z}, regarding maximal order, generalized Dedekind rings, and unique factorization rings. After that, we study the unique factorization module from the point of view of the submodule. After that, we generalized the result in positively graded rings to the positively graded module.

CHAPTER II

Preliminaries

2.1. Graded Rings and Graded Modules

Definition 2.1.1 Let R be a ring, and G be a commutative group. A ring R is called a G-graded ring, or simply a graded ring, if it can be expressed as $R=\oplus_{g \in G} R_{g}$, where each R_{g} is an additive subgroup of R, and the product $R_{g} R_{h}$ is contained in $R_{g h}$ for all $g, h \in G$. Furthermore, if $R_{g} R_{h}=R_{g h}$ holds for all $g, h \in G$, then the ring R is specifically referred to as a strongly graded ring.

The set $R^{h}=\cup_{g \in G} R_{g}$ is denoted as the set of all homogeneous elements of A. Each additive subgroup R_{g} is referred to as the g-component of R, and the non-zero elements belonging to R_{g} are called homogeneous elements of degree g.

Proposition 2.1.2 Let $R=\oplus_{g \in G} R_{g}$ be a graded ring type G. Then
(1) 1_{R} is a homogenous of degree e, where e is the identity element of G;
(2) R_{e} is a subring of R;
(3) Ecah R_{g} is a R_{e}-bimodule; item For an invertible element $r \in R_{g}$, its inverse, r^{-1} is a homogenous of degree g^{-1}, that is $r^{-1} \in R_{g^{-1}}$ where g^{-1} is the inverse of g.

Definition 2.1.3 Let $R=\oplus_{g \in G} R_{g}$ be a G-graded ring. A subring S of R is called a graded subring if $S=\oplus_{g \in G} S_{g}$ where $S_{g}=S \cap R_{g}$. Moreover, an ideal I of R is called a graded ideal if $I=\oplus_{g \in G} I_{g}$ where $I_{g}=I \cap R_{g}$.
Example 2.1.4 Let $G=\left(\mathbb{Z}_{2},+\right)$ and $R=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{Z}\right\}$. Suppose that $R_{\overline{0}}=\left\{\left.\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right] \right\rvert\, a, d \in \mathbb{Z}\right\}$ and $R_{\overline{1}}=\left\{\left.\left[\begin{array}{ll}0 & b \\ c & 0\end{array}\right] \right\rvert\, b, c \in \mathbb{Z}\right\}$. Then R is
a \mathbb{Z}_{2}-graded ring. Moreover, if $S=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \right\rvert\, a, b, d \in \mathbb{Z}\right\}$ then S is a graded subring of R with $S_{\overline{0}}=\left\{\left.\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right] \right\rvert\, a, d \in \mathbb{Z}\right\}$ and $S_{\overline{1}}=\left\{\left.\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right] \right\rvert\, b \in \mathbb{Z}\right\}$.

Example 2.1.5 Let $G=\left(\mathbb{Z}_{2},+\right)$ and $S=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right] \right\rvert\, a, b, d \in \mathbb{Z}\right\}$. From Example 2.1.4. it is known that S is a \mathbb{Z}_{2}-graded ring. Let $I=\left\{\left.\left[\begin{array}{ll}0 & b \\ 0 & d\end{array}\right] \right\rvert\, b, d \in \mathbb{Z}\right\}$. Then I is a graded ideal of S with $I_{\overline{0}}=\left\{\left.\left[\begin{array}{ll}0 & 0 \\ 0 & d\end{array}\right] \right\rvert\, d \in \mathbb{Z}\right\}$ and $I_{\overline{1}}=\left\{\left.\left[\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right] \right\rvert\, b \in \mathbb{Z}\right\}$.

Definition 2.1.6 Consider a graded ring R and an R-module M. We define M as a graded R-module if there exists a family of additive subgroups $\left\{M_{g}\right\}_{g \in G}$ of M such that M can be expressed as the direct sum $\oplus_{g \in G} M_{g}$, that is, $M=\oplus_{g \in G} M_{g}$ and $R_{g} M_{h} \subseteq M_{g h}$ holds for all $g, h \in G$. Additionally, a module M is called a strongly graded module if $R_{g} M_{h}=M_{g h}$ for all $g, h \in G$.

Definition 2.1.7 Consider a graded R-module $M=\oplus_{g \in G} M_{g}$ and let N be a submodule of M. A submodule N is referred to as a graded (or homogeneous) submodule of M if it can be expressed as $N=\oplus_{g \in G} N_{g}$, where $N_{g}=N \cap M_{g}$.

In the rest of this dissertation, we always consider the commutative group G as a group of integers \mathbb{Z} and we just consider the strongly graded ring and module type of \mathbb{Z}.

2.2. Positively Graded Rings which are Maximal Orders

Consider $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$, a positively graded ring which is a subring of the strongly graded ring $S=\oplus_{n \in \mathbb{Z}} R_{n}$. In this context, R_{0} represents a prime Goldie ring, and it comes with its quotient ring Q_{0}.

We initiate this section with the subsequent proposition.

Proposition 2.2.1 (Proposition 2.1 of [27]) The ring R is Noetherian if and only if R_{0} is Noetherian.

In this section, it is assumed that the positively graded ring R is Noetherian, along with its quotient ring Q, unless explicitly mentioned otherwise. The subsequent lemma is derived analogously to the case of strongly graded rings (refer to Corollary 1.2 of [21]).

Lemma 2.2.2 (Lemma 2.1 of [28]) Let \mathcal{C}_{0} denote the set of all regular elements in R_{0}. The following statements hold:
(1) \mathcal{C}_{0} forms an Ore set of R, and $Q_{0}^{g}=\oplus_{n \in \mathbb{Z}_{0}} Q_{0} R_{n}$ represents the graded quotient ring of R at \mathcal{C}_{0}, where $Q_{0} R_{n}=R_{n} Q_{0}$ for any $n \in \mathbb{Z}_{0}$.
(2) $Q_{0}^{g}=Q_{0}[X, \sigma]$, identified as a skew polynomial ring, where X stands as a regular element in R_{1} with $X Q_{0}=R_{1} Q_{0}=Q_{0} R_{1}=Q_{0} X$. The automorphism σ operates on R_{0}, and Q_{0}^{g} is characterized as a principal ideal ring.

Definition 2.2.3 (Definition 2.1 of [27])
(1) Let A_{0} be an $\left(R_{0}, R_{0}\right)$-bimodule of Q_{0}. Then A_{0} is called \mathbb{Z}_{0}-invariant if $R_{n} A_{0}=$ $A_{0} R_{n}$ holds for every $n \in \mathbb{Z}_{0}$.
(2) An ideal A of R is called a \mathbb{Z}_{0}-invariant if the condition $R_{n} A=A R_{n}$ holds for all $n \in \mathbb{Z}_{0}$.

Lemma 2.2.4 (Lemma 2.2 of [27]) Let A_{0} be a \mathbb{Z}_{0}-invariant R_{0}-ideal in Q_{0}. Then $A=A_{0} R$ forms an R-ideal in Q. If A_{0} is an ideal of R_{0}, the converse also holds.

Consider a prime Goldie ring R with its quotient ring Q. For a (fractional) right (left) R-ideal $I(J)$, define $(R: I)_{l}=\{q \in Q \mid q I \subseteq R\}$ as a left R-ideal in Q, and $(R: J)_{r}=\{q \in Q \mid J q \subseteq R\}$ as a right R-ideal in Q. Introduce a v-operation: $I_{v}=\left(R:(R: I)_{l}\right)_{r} \supseteq I$, and label I as a right v-ideal if $I=I_{v}$. Similarly, ${ }_{v} J=\left(R:(R: J)_{r}\right)_{l}$, and J is termed a left v-ideal if $J={ }_{v} J$. For an R-ideal A in Q, designate A as a v-ideal if ${ }_{v} A=A=A_{v}$. Additionally, define
$O_{l}(A)=\{q \in Q \mid q A \subseteq A\}$ as a left order of A, and $O_{r}(A)=\{q \in Q \mid A q \subseteq A\}$ as a right order of A.

Definition 2.2.5 (Definition 2.2 of [27]) Let R be a prime Goldie ring with its quotient ring Q. A v-ideal A in Q is labelled as v-invertible if it fulfills the condition ${ }_{v}\left((R: A)_{l} A\right)=R=\left(A(R: A)_{r}\right)_{v}$.

Lemma 2.2.6 (Lemma 2.3 of [27]) Let R be a prime Goldie ring with its quotient ring Q and A be an R-ideal in Q.
(1) When $O_{l}(A)=R=O_{r}(A)$, it follows that $(R: A)_{l}=A^{-1}=(R: A)_{r}$, where $A^{-1}=\{q \in Q \mid A q A \subseteq A\}$, and A^{-1} is an R-ideal in Q.
(2) If A is v-invertible, then both $O_{l}(A)=R$ and $O_{r}(A)=R$ hold.

Proof. By the proof of Lemma 2.3 of [27], we have the following:
(1) Let $q \in(R: A)_{l}$. This implies $q \in Q$ and satisfies $q A \subseteq R$. As A is an R-ideal, we have $A q A \subseteq A$, implying $q \in A^{-1}$. Thus, $(R: A)_{l} \subseteq A^{-1}$. Conversely, assume $q \in A^{-1}$, meaning $A q A \subseteq A$ and implying $q A \subseteq O_{r}(A)=$ R. Therefore, $q \in(R: A)_{l}$. Similarly, $A^{-1}=(R: A)_{l}$, and it is evident that A^{-1} is also an R-ideal in Q.
(2) It is clear that $R \subseteq O_{l}(A)$. For $q \in O_{l}(A)$, which implies $q A \subseteq A$, we find $q \in q R=q\left(A(R: A)_{r}\right)_{v}=\left(q A(R: A)_{r}\right)_{v} \subseteq\left(A(R: A)_{r}\right)_{v} \subseteq R$. Therefore, $O_{l}(A)=R$. Similarly, $O_{r}(A)=R$.

Next, we will describe all prime ideals of R.
Proposition 2.2.7 (Proposition 2.2 of [27]) Let P be a prime ideal of R such that $P_{0}=P \cap R_{0} \neq(0)$ and is \mathbb{Z}_{0}-invariant. Then
(1) $P_{1}=P_{0} R$ is a prime ideal.
(2) If P_{1} is v-invertible and $P=P_{v}$, then $P=P_{1}$.

Lemma 2.2.8 (Lemma 2.4 of [27]) Let P be a prime ideal of R. Then
(1) If $P \nsupseteq R_{1}$, then P and $P_{0}=P \cap R_{0}$ are both \mathbb{Z}_{0}-invariant.
(2) If P contains R_{1} and $P=P_{v}$, then $P=\oplus_{n \geq 1} R_{n}$ and is an invertible ideal.

Lemma 2.2.9 (Lemma 2.5 of [27]) Let I_{0} be a right R_{0}-ideal in Q_{0} and J_{0} be a left R_{0}-ideal in Q_{0}. Then
(1) $\left(R: I_{0} R\right)_{l}=R\left(R_{0}: I_{0}\right)_{l}$ and $\left(R: R J_{0}\right)_{r}=\left(R_{0}: J_{0}\right)_{r} R$.
(2) $\left(I_{0} R\right)_{v}=\left(I_{0}\right)_{v} R$ and $_{v}\left(R J_{0}\right)=R\left(v J_{0}\right)$.
(3) Let A_{0} be a \mathbb{Z}_{0}-invariant R_{0}-ideal in Q_{0}. Then $O_{l}\left(A_{0} R\right)=R O_{l}\left(A_{0}\right)$ and $O_{r}\left(A_{0} R\right)=O_{r}\left(A_{0}\right) R$.

Proof. By the proof of Lemma 2.5 of [27], we have the following:
(1) Clearly, $R\left(R_{0}: I_{0}\right)_{l} \subseteq\left(R: I_{0} R\right)_{l}$. Let $q \in\left(R: I_{0} R\right)_{l}$, that is, $q I_{0} R \subseteq R$ and $q I_{0} Q_{0}^{g} \subseteq Q_{0}^{g}$. Therefore $q \in Q_{0}^{g}$ since $I_{0} Q_{0}^{g}=Q_{0}^{g}$. Express $q=q_{n}+\cdots+q_{0}$, where $q_{i} \in Q_{0} R_{i}=R_{i} Q_{0}$. Then $R \supseteq q I_{0}$ implies $q_{i} I_{0} \subseteq R_{i}$ and $R_{-i} q_{i} I_{0} \subseteq R_{0}$, that is, $R_{-i} q_{i} \subseteq\left(R_{0}: I_{0}\right)_{l}$. Thus $q_{i} \in R_{i}\left(R_{0}: I_{0}\right)_{l} \subseteq R\left(R_{0}: I_{0}\right)_{l}$. Hence $\left(R: I_{0} R\right)_{l}=R\left(R_{0}: I_{0}\right)_{l}$. Similarly we have $\left(R: R J_{0}\right)_{r}=\left(R_{0}: J_{0}\right)_{r} R$.
(2) By (1) we have

$$
\begin{aligned}
\left(I_{0} R\right)_{v} & =\left(R:\left(R: I_{0} R\right)_{l}\right)_{r}=\left(R: R\left(R_{0}: I_{0}\right)_{l}\right)_{r} \\
& =\left(R_{0}:\left(R_{0}: I_{0}\right)_{l}\right)_{r} R=\left(I_{0}\right)_{v} R .
\end{aligned}
$$

$\operatorname{Similarly}_{v}\left(R J_{0}\right)=R\left({ }_{v} J_{0}\right)$.
(3) The proof follows a similar approach as the proof of (1).

Definition 2.2.10 (Definition 2.3 of [27]) R_{0} is called a \mathbb{Z}_{0}-invariant maximal order in Q_{0} if $O_{l}\left(A_{0}\right)=R_{0}=O_{r}\left(A_{0}\right)$ holds for every \mathbb{Z}_{0}-invariant ideal A_{0} of R_{0}.

Lemma 2.2.11 Let A_{0} and B_{0} be \mathbb{Z}_{0}-invariant R_{0}-ideals in Q_{0}. Then
(1) $\left(R_{0}: A_{0}\right)_{l},\left(R_{0}: A_{0}\right)_{r}, O_{l}\left(A_{0}\right)$ and $O_{r}\left(A_{0}\right)$ are all \mathbb{Z}_{0}-invariant.
(2) $A_{0} B_{0}$ and $A_{0} \cap B_{0}$ are \mathbb{Z}_{0}-invariant R_{0}-ideals in Q_{0}.
(3) Assume taht R_{0} is a \mathbb{Z}_{0}-invariant maximal order in Q_{0}. Then, for any $\mathbb{Z}_{0}{ }^{-}$ invariant R_{0}-ideal A_{0} in Q_{0}, it holds that $O_{l}\left(A_{0}\right)=R_{0}=O_{r}\left(A_{0}\right)$.

Proof.

(1) We prove that $\left(R_{0}: A_{0}\right)_{l}$ is a \mathbb{Z}_{0}-invariant and $\left(R_{0}: A_{0}\right)_{r}, O_{l}\left(A_{0}\right)$ and $O_{r}\left(A_{0}\right)$ can be proved in similar way. Let $q \in\left(R_{0}: A_{0}\right)_{l}$, that is $q \in Q_{0}$ and it satisfies $q A_{0} \subseteq R_{0}$. Since A_{0} is a \mathbb{Z}_{0}-invariant, then $R_{-n} q R_{n} A_{0}=R_{-n} q A_{0} R_{n} \subseteq$ $R_{-n} R_{0} R_{n}=R_{0}$ and implies $R_{-n} q R_{n} \subseteq\left(R_{0}: A_{0}\right)_{l}$ for all n. Hence $\left(R_{0}: A_{0}\right)_{l}$ is a \mathbb{Z}_{0}-invariant.
(2) Clearly that $A_{0} B_{0}$ is a \mathbb{Z}_{0}-invariant. To prove $A_{0} \cap B_{0}$ is a \mathbb{Z}_{0}-invariant, let $q \in$ $A_{0} \cap B_{0}$. Then $R_{-n} q R_{n} \subseteq R_{-n} A_{0} R_{n}=A_{0}$ and $R_{-n} q R_{n} \subseteq R_{-n} B_{0} R_{n}=B_{0}$ which implies $R_{-n} q R_{n} \subseteq A_{0} \cap B_{0}$ and so $R_{-n}\left(A_{0} \cap B_{0}\right) R_{n} \subseteq A_{0} \cap B_{0}$ for all $n \in \mathbb{Z}_{0}$. Hence $A_{0} \cap B_{0}$ is a \mathbb{Z}_{0}-invariant.
(3) Assume A_{0} is a \mathbb{Z}_{0}-invariant R_{0}-ideal in Q_{0}. There exists an element $c_{0} \in \mathcal{C}_{0}$ such that $c_{0} A_{0} \subseteq R_{0}$. Consequently, $C_{0}=\left(R_{0}: A_{0}\right)_{l} \cap R_{0}$ forms a non-zero \mathbb{Z}_{0}-invariant ideal of R_{0} by using properties (1) and (2) with $C_{0} A_{0} \subseteq R_{0}$. This implies $R_{0}=O_{r}\left(C_{0} A_{0}\right) \supseteq O_{r}\left(A_{0}\right) \supseteq R_{0}$, leading to $R_{0}=O_{r}\left(A_{0}\right)$. Similarly, $R_{0}=O_{l}\left(A_{0}\right)$.

Proposition 2.2.12 (Proposition 2.3 of [27]) Suppose R_{0} is a \mathbb{Z}_{0}-invariant maximal order in Q_{0}. Then:
(1) For any \mathbb{Z}_{0}-invariant v-ideal A_{0} in Q_{0}, it is true that $\left(A_{0}\right)_{v}={ }_{v}\left(A_{0}\right)$.
(2) The set $D\left(R_{0}\right)$ of all \mathbb{Z}_{0}-invariant v-ideals in Q_{0} is a commutative group under the multiplication "०": $A_{0} \circ B_{0}=\left(A_{0} B_{0}\right)_{v}$, where $A_{0}, B_{0} \in D\left(R_{0}\right)$ and the
generators are maximal \mathbb{Z}_{0}-invariant v-ideals of R_{0} (ideals maximal amongst the \mathbb{Z}_{0}-invariant v-ideals).

Lemma 2.2.13 (Lemma 2.7 of [27]) Assume that R_{0} is a \mathbb{Z}_{0}-invariant maximal order in Q_{0}, and let A be an ideal of R such that $A=A_{v}$ and $A_{0}=A \cap R_{0} \neq(0)$. Consequently, $A=A_{0} R$, and A_{0} is identified as a \mathbb{Z}_{0}-invariant v-invertible ideal. Specifically, A is v-invertible.

Lemma 2.2.14 (Lemma 2.8 of [27]) Assume R_{0} is a \mathbb{Z}_{0}-invariant maximal order in Q_{0}, and consider an ideal A of R such that $A=A_{v}$ and $A \cap R_{0}=(0)$. Then, A is v-invertible.

The following theorem is the necessary and sufficient condition for positively graded ring R to be a maximal order.

Theorem 2.2.15 (Theorem 2.1 of [27]) Let R_{0} be a Noetherian prime ring, and $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$ be a positively graded ring. The ring R is a maximal order in Q if and only if R_{0} is a \mathbb{Z}_{0}-invariant maximal order in Q_{0}.

Proof. By the proof in Theorem 2.1 of [27], the following results are obtained.
Assume R is a maximal order. Consider A_{0} as a \mathbb{Z}_{0}-invariant ideal of R_{0}, and let $A=A_{0} R$. By Proposition 2.1.1 of [20] and Lemma 2.2.9, it is deduced that $R=O_{l}(A)=R O_{l}\left(A_{0}\right)$, implying $R_{0}=O_{l}\left(A_{0}\right)$. Similarly, $R_{0}=O_{r}\left(A_{0}\right)$. Consequently, R_{0} is identified as a \mathbb{Z}_{0}-invariant maximal order.

Conversely, assume R_{0} is a \mathbb{Z}_{0}-invariant maximal order. Consider a non-zero ideal A of R. Given $R \subseteq O_{l}(A) \subseteq O_{l}\left(A_{v}\right)$, assume $A=A_{v}$ to prove $O_{l}(A)=R$. If $A_{0}=A \cap R_{0} \neq(0)$, then $A=A_{0} R$ with A_{0} being \mathbb{Z}_{0}-invariant (as per Lemma 2.2.13). Thus, $O_{l}(A)=R O_{l}\left(A_{0}\right)=R$ using Lemma 2.2.9 and the assumption. In the case where $A_{0}=(0)$, according to Lemma 2.2.14, it is shown that A is v-invertible. Consequently, $O_{l}(A)=R$ by Lemma 2.2.6. Similarly, $O_{r}(A)=R$. Therefore, by Proposition 2.1.1 in [20], R is recognized as a maximal order.

2.3. Positively Graded Rings which are Generalized Dedekind Rings

Let $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$ be a positively graded ring, which is a subring of the strongly graded ring $S=\oplus_{n \in \mathbb{Z}} R_{n}$. In this context, R_{0} represents a prime Goldie ring with its quotient ring Q_{0}. Throughout this section, we assume that the positively graded ring R is Noetherian, along with its quotient ring Q, unless explicitly mentioned otherwise. We initiate this section with the subsequent lemma.

Lemma 2.3.1 (Lemma 3.1 of [27]) Consider the following definitions:

$$
\begin{aligned}
\text { Spec }\left(Q_{0}^{g}\right) & =\left\{P^{\prime} \mid P^{\prime} \text { is prime ideal of } Q_{0}^{g}\right\}, \\
\operatorname{Spec}_{0}(R) & =\left\{P \mid P \text { is prime ideal of } R \text { and } P \cap R_{0}=(0)\right\} .
\end{aligned}
$$

(1) A one-to-one correspondence exists between $\operatorname{Spec}\left(Q_{0}^{g}\right)$ and $\operatorname{Spec}_{0}(R)$:

$$
\begin{aligned}
& \operatorname{Spec}_{0}(R) \longrightarrow \operatorname{Spec}\left(Q_{0}^{g}\right), P \mapsto P^{\prime}=P Q_{0}^{g} \\
& \operatorname{Spec}\left(Q_{0}^{g}\right) \longrightarrow \operatorname{Spec}_{0}(R), P^{\prime} \mapsto P=P^{\prime} \cap R .
\end{aligned}
$$

In particular, each prime ideal P of R is a v-ideal.
(2) For an element $w \in Q_{0}^{g}$, it is labeled as a prime element when $w Q_{0}^{g}$ qualifies as a prime ideal in Q_{0}^{g}. Consequently,
$\operatorname{Spec}\left(Q_{0}^{g}\right)=\left\{P_{1}^{\prime}=\oplus_{n \geq 1} Q_{0} R_{n}, P^{\prime}=w Q_{0}^{g} \mid w\right.$ is a central prime element in $\left.Q_{0}^{g}\right\}$.

Assume that R is a maximal order. The set $D(R)$, encompassing all v-ideals in Q, forms an Abelian group under the multiplication operation " \circ ", defined as $A \circ B=(A B)_{v}$, for any $A, B \in D(R)$. The generators of $D(R)$ are identified as the maximal v-ideals of R (refer to Theorem 2.1.2 in [20]).

Proposition 2.3.2 (Proposition 3.1 of [27]) Suppose R is a maximal order in Q. Then, a maximal v-invertible ideal P of R can take one of the following forms:
(1) $P=P_{0} R$, where P_{0} is a maximal \mathbb{Z}_{0}-invariant v-invertible ideal of R_{0};
(2) $P_{1}=\oplus_{n \geq 1} R_{n}$; and
(3) $P=P^{\prime} \cap R$, where $P^{\prime} \in \operatorname{Spec} Q_{0}^{g}$ such that $P^{\prime}=w Q_{0}^{g}$ for some central prime element w in Q_{0}^{g}.

In particular, if $P=P^{\prime} \cap Q_{0}^{g}$ with $P^{\prime}=w Q_{0}^{g}$, then $P=w A_{0} R$, where A_{0} is a \mathbb{Z}_{0}-invariant v-invertible ideal in Q_{0}.

From Proposition 2.3.2, we derive the subsequent theorem delineating v invertible ideals in Q_{0} :

Theorem 2.3.3 (Theorem 3.1 of [27]) Suppose R_{0} is a Noetherian prime ring, and $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$ is a maximal order. Then, any v-invertible ideal can be expressed as $P_{1}^{l} w_{1}^{l_{1}} \ldots w_{k}^{l_{k}} B_{0} R$, where $P_{1}=\oplus_{n \geq 1} R_{n}, B_{0}$ is a \mathbb{Z}_{0}-invariant v-invertible ideal in Q_{0}, w_{i} are central prime elements in Q_{0}^{g}, and $l, l_{i} \in \mathbb{Z}(1 \leq i \leq k)$.

In [10], the concept of a G-Dedekind prime ring is introduced, demonstrating that if R is a G-Dedekind prime ring with the PI condition, then both the polynomial ring $R[X]$ and the Rees ring $R[X t]$ are G-Dedekind prime rings. In the absence of the PI condition, prior findings in [11] indicate that if R is a G-Dedekind prime ring, then so is $R[X]$. However, the converse has not been explored yet. It is noteworthy that both polynomial rings and Rees rings are positively graded rings.

Definition 2.3.4 (Definition 3.1 of [27])
(1) A prime Goldie ring R is referred to as a generalized Dedekind prime ring (abbreviated as G-Dedekind prime ring) if it satisfies the following conditions:
(i) R is a maximal order;
(ii) Every v-ideal in R is invertible.
(2) R_{0} is denoted as a \mathbb{Z}_{0}-invariant G-Dedekind prime ring if it satisfies the following conditions:
(i) R_{0} is a \mathbb{Z}_{0}-invariant maximal order in Q_{0};
(ii) Every \mathbb{Z}_{0}-invariant v-ideal of R_{0} is invertible.

Consider a \mathbb{Z}_{0}-invariant R_{0}-ideal, denoted as B_{0}, in the ring Q_{0}. It is straightforward to observe that B_{0} is invertible if and only if $B=B_{0} R$ is also invertible in Q. As a result, the following theorems emerge as direct consequences of Theorems 2.2.15 and 2.3.3.

Theorem 2.3.5 (Theorem 3.2 of [27]) Consider a Noetherian prime ring R_{0} and a positively graded $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$. The ring R is a G-Dedekind prime ring if and only if R_{0} is a \mathbb{Z}_{0}-invariant G-Dedekind prime ring.

Theorem 2.3.6 (Theorem 3.3 of [27]) Let R_{0} be a Noetherian prime ring, and consider the G-Dedekind prime ring $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$. For any invertible R-ideal in Q, it can be expressed as $P_{1}^{l} w_{1}^{l_{1}} \ldots w_{k}^{l_{k}} B_{0} R$, where $P_{1}=\oplus_{n \geq 1} R_{n}, B_{0}$ is a \mathbb{Z}_{0}-invariant invertible R_{0}-ideal in Q_{0}, wi are central prime elements in Q_{0}^{g}, and $l, l_{i} \in \mathbb{Z}$ with $1 \leq i \leq k$.

CHAPTER III

Positively Graded Rings which are Unique Factorization Rings

3.1. Unique Factorization Rings

Let $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$ be a positively graded ring, which is a subring of the strongly graded ring $S=\oplus_{n \in \mathbb{Z}} R_{n}$. Here, R_{0} is a Noetherian prime ring with its quotient ring Q_{0}. In this section, we initially provide alternative characterizations of unique factorization rings (UFRs) in terms of maximal orders (see Proposition 3.1.1). This characterization is instrumental in establishing the main result (Theorem 3.1.5), which asserts that a positively graded ring R is a UFR if and only if R_{0} is a \mathbb{Z}_{0}-invariant UFR, and R_{1} is a principal $\left(R_{0}, R_{0}\right)$ bi-module, denoted by the existence of $p_{1} \in R_{1}$ such that $R_{1}=p_{1} R_{0}=R_{0} p_{1}$.

In this section, let R denote a Noetherian prime ring with its quotient ring Q. It's worth recalling that R is considered a maximal order in Q if, for any nonzero ideal A of R, the conditions $O_{l}(A)=R=O_{r}(A)$ hold, as established by Proposition 2.1.1 in [20]. We commence with the subsequent proposition. .

Proposition 3.1.1 (Proposition 1 of [23]) Let R represent a Noetherian prime ring with its quotient ring Q. The following conditions are mutually equivalent:
(1) R is a unique factorization ring (UFR).
(2) R is a maximal order, and every v-ideal of R is principal.
(3) R is a maximal order, and every prime v-ideal of R is principal.

Proof. By the proof of Proposition 1 of [23] we have the following.
$(1) \Longrightarrow(2):$ Let $\mathcal{S}=\left\{A\right.$: ideal of $\left.R \mid A=A_{v}\right\}$ and P is a maximal member in \mathcal{S}. Then P is a prime ideal by ([12], Lemma 2.1) and so, by definition, $P=p R=$ $R p$ for some $p \in P$. Suppose that there is an $A \in \mathcal{S}$ such that A is not principal and we may assume that A is maximal with this property. Then there exists a prime
ideal $P \supset A$ such that $P=p R=R p$. It follows that $R=P^{-1} P \supseteq P^{-1} A \supseteq A$ and $\left(P^{-1} A\right)_{v}=P^{-1} A$ by ([12], Lemma 2.1). If $P^{-1} A=A$, then $P^{-1} A R_{P}=A R_{P}($ note that P is localizable and R_{P}, the localization of R at P, is a local Dedekind prime ring ([34], Proposition 1.7 and Proposition 1.9). So $P^{-1} \subseteq O_{l}\left(A R_{P}\right)=R_{P}$ and $R=P P^{-1} \subseteq P R_{P}$, a contradiction. Hence $P^{-1} A \supset A$ and so, by the choice of $A, P^{-1} A=b R=R b$ for some $b \in P^{-1} A$ and $A=p b R=p R b=R p b$, a contradiction. Hence if $A=A_{v}$, then A is principal. The symmetric argument shows that A is principal if ${ }_{v} A=A$. To prove that R is a maximal order, let A be an ideal of R. Then $R \subseteq O_{l}(A) \subseteq O_{l}\left(A_{v}\right)=R$ since A_{v} is principal and so $R=O_{l}(A)$. Similarly $R=O_{r}(A)$. Hence R is a maximal order and it follows from the discussions above and Lemma 2.2.6 that each v-ideal of R is principal.
$(2) \Longrightarrow(3)$: This is a special case.
(3) $\Longrightarrow(1)$: Let P be a prime ideal with $P=P_{v}$ or $P={ }_{v} P$. Then P is a v-ideal by Lemma 2.2.6. Thus P is principal and hence R is a UFR.

Remark 3.1.2 (Remark 1 of [23]) In [2], UFRs are defined as follows: every prime ideal contains a principal prime ideal. Interestingly, it is observed that UFRs in the sense of [2]] align with UFRs in the sense of [15]], but the converse is not necessarily true (refer to [15] for counter-examples).

Let \mathcal{C}_{0} denote the set of all regular elements in R_{0}. It is established that \mathcal{C}_{0} forms an Ore set of R, and the graded quotient ring of R, denoted as Q_{0}^{g}, is defined as $\oplus_{n \in \mathbb{Z}_{0}} Q_{0} R_{n}$, where $Q_{0} R_{n}=R_{n} Q_{0}$. This graded quotient ring is represented as $Q_{0}^{g}=Q_{0}[X, \sigma]$, a skew polynomial ring over Q_{0}, with σ being an automorphism of Q_{0} and X being a regular element in R_{1} (see Lemma 2.2.2).

It is worth recalling that an R_{0}-ideal A_{0} in Q_{0} is called a \mathbb{Z}_{0}-invariant if $R_{n} A_{0}=A_{0} R_{n}$ for all $n \in \mathbb{Z}_{0}$ ([27]).

Definition 3.1.3 (Definition 1 of [23]) R_{0} is called a \mathbb{Z}_{0}-invariant UFR if
(1) R_{0} is a \mathbb{Z}_{0}-invariant maximal order in Q_{0}, that is, for any \mathbb{Z}_{0}-invariant ideal A_{0} of $R_{0}, O_{l}\left(A_{0}\right)=R_{0}=O_{r}\left(A_{0}\right)$.
(2) Each \mathbb{Z}_{0}-invariant v-ideal of R_{0} is principal.

Lemma 3.1.4 (Lemma 2 of [23]) Assume that R_{0} is a \mathbb{Z}_{0}-invariant unique factorization ring (UFR). It follows that any \mathbb{Z}_{0}-invariant v-ideal in Q_{0} is necessarily a principal ideal.

Proof. By the proof of Lemma 2 of [23] we have the following.
Consider a \mathbb{Z}_{0}-invariant v-ideal A_{0} in Q_{0}. According to Proposition 2.2.12, A_{0} can be expressed as $A_{0}=\left(P_{01}^{l_{1}} \ldots P_{0 k}^{l_{k}}\right)_{v}$, where $P_{0 i}$ represents maximal $\mathbb{Z}_{0}{ }^{-}$ invariant v-ideals of R_{0}, and $l_{i} \in \mathbb{Z}$ for $1 \leq i \leq k$. Since $P_{0 i}$ are principal, it follows from ([12], Lemma 2.1 (3)) that A_{0} is also a principal ideal.

Theorem 3.1.5 (Theorem 1 of [23]]) A positively graded ring $R=\oplus_{n \in \mathbb{Z}_{0}} R_{n}$ is a unique factorization ring (UFR) if and only if:
(1) R_{0} is a \mathbb{Z}_{0}-invariant unique factorization ring (UFR).
(2) R_{1} is a principal $\left(R_{0}, R_{0}\right)$ bi-module, meaning there exists $p_{1} \in R_{1}$ such that $R_{1}=p_{1} R_{0}=R_{0} p_{1}$.

Proof. By the proof of Theorem 1 of [23] we have the following.
$(\Rightarrow)(1)$ Suppose that R is a UFR. Then R is a maximal order in Q by Proposition 3.1.1. Thus R_{0} is a \mathbb{Z}_{0}-invariant maximal order by Theorem 2.2.15, Let A_{0} be a \mathbb{Z}_{0}-invariant v-ideal of R_{0} and let $A=A_{0} R$, which is a v-ideal of R by Lemma2.2.7 and Lemma2.2.9. So $A=x R=R x$ for some $x=x_{0}+\cdots+x_{n} \in A$ and $x_{i} \in R_{i}$. For any $a_{0} \in A_{0}, a_{0}=x r$ for some $r=r_{0}+\cdots+r_{k} \in R$ with $r_{i} \in R_{i}$ and so $a_{0}=x_{0} r_{0}+$ (the higher degree part). Thus $a_{0}=x_{0} r_{0} \in x_{0} R_{0}$ follows, that is, $A_{0} \subseteq x_{0} R_{0}$. To prove the converse inclusion, let $r_{0} \in R_{0}$. Then $A_{0} R \ni x r_{0}=\sum_{i=1}^{l} a_{i} t_{i}$ for some $a_{i} \in A_{0}$ and $t_{i}=\sum t_{i_{j}}\left(t_{i_{j}} \in R_{j}\right)$. It follows that $x_{0} r_{0}+x_{1} r_{0}+\cdots+x_{n} r_{0}=x r_{0}=\left(a_{1} t_{1_{0}}+\cdots+a_{l} t_{l_{0}}\right)+$ (the higher degree part) . Thus $x_{0} r_{0}=a_{1} t_{1_{0}}+\cdots+a_{l} t_{l_{0}} \in A_{0}$ and $x_{0} R_{0} \subseteq A_{0}$. Hence $A_{0}=x_{0} R_{0}$. Similarly $A_{0}=R_{0} x_{0}$. Therefore R_{0} is a \mathbb{Z}_{0}-invariant UFR.
(2) $P_{1}=R_{1} R=\oplus_{n \geq 1} R_{n}$ is a prime invertible ideal by Lemma 2.2.8. So P_{1} is principal, that is, $P_{1}=p R=R p$ for some $p=p_{1}+p_{2}+\cdots+p_{n}\left(p_{i} \in R_{i}\right)$. It is clear
that $p_{1} R_{0} \subseteq R_{1}$. Conversely let $r_{1} \in R_{1}$, then $r_{1}=p s$ for some $s=s_{0}+\cdots+s_{l}$, where $s_{i} \in R_{i}$ and $r_{1}=p_{1} s_{0}+$ (the higher degree part). So $r_{1}=p_{1} s_{0} \in p_{1} R_{0}$, that is, $R_{1} \subseteq p_{1} R_{0}$. Hence $R_{1}=p_{1} R_{0}$ and similarly $R_{1}=R_{0} p_{1}$.
(\Leftarrow) Suppose that R satisfies the conditions (1) and (2). Then R is a maximal order by (1) and Theorem 2.2.15. Let P be a prime v-ideal of R. If $P_{0}=P \cap R_{0} \neq$ (0), then $P=P_{0} R$ and P_{0} is a \mathbb{Z}_{0}-invariant v-ideal in R_{0} by Lemma2.2.13. So $P_{0}=$ $R_{0} p_{0}=p_{0} R_{0}$ for some $p_{0} \in P_{0}$ and $P=p_{0} R=R p_{0}$ follows. If $P_{0}=P \cap R_{0}=(0)$, then, by Proposition 2.3.2, either $P=\oplus_{n \geq 1} R_{n}=R_{1} R$ or $P=P^{\prime} \cap R$, where $P^{\prime}=w Q_{0}^{g}$ for a central prime element $w \in Q_{0}^{g}$. If $P=R_{1} R$, then P is principal by (2). In the latter case $P=w A_{0} R$, where A_{0} is a \mathbb{Z}_{0}-invariant v-ideal in Q_{0} by Theorem 2.3.5 and Theorem 2.3.6 and so A_{0} is principal by Lemma 3.1.4. Thus P is principal and hence R is a UFR by Proposition 3.1.1.

CHAPTER IV

Module over a Unique Factorization Domain

4.1. Unique Factorization Modules

Let M be a torsion-free module over an integral domain D with the field of fractions K. Consider a non-zero submodule N of $K M$, which is a fractional submodule in $K M$ if there exists a non-zero element $r \in D$ such that $r N \subseteq M$ and $K N=K M$. Similarly, for a non-zero submodule \mathfrak{a} of K, it is called a fractional M-ideal in K if there exists a non-zero element $m \in M$ such that $\mathfrak{a} m \subseteq M$.

Let $F(M)$ denote the collection of all fractional D-submodules in $K M$, and $F_{M}(D)$ be the set comprising all fractional M-ideals in K. Assume $N \in F(M)$ and $\mathfrak{a} \in F_{M}(D)$. We define $N^{-}=\{k \in K \mid k N \subseteq M\}$ and $\mathfrak{a}^{+}=\{m \in K M \mid \mathfrak{a} m \subseteq$ $M\}$. It is straightforward to observe that $N^{-} \in F_{M}(D)$ and $\mathfrak{a}^{+} \in F(M)$.

For $N \in F(M)$ and $\mathfrak{a} \in F_{M}(D)$, we define $N_{v}=\left(N^{-}\right)^{+}$and $\mathfrak{a}_{v 1}=\left(\mathfrak{a}^{+}\right)^{-}$. Consequently, $N_{v} \in F(M)$ and satisfies $N_{v} \supseteq N$. Similarly, $\mathfrak{a}_{v 1} \in F_{M}(D)$ and satisfies $\mathfrak{a}_{v 1} \supseteq \mathfrak{a}$. When $N=N_{v}$, we classify N as a fractional v-submodule in $K M$. Moreover, \mathfrak{a} is called a v_{1}-ideal if $\mathfrak{a}=\mathfrak{a}_{v 1}$.

In [41], the concept of a unique factorization module was introduced using a submodule approach. The authors provided the definition and characterization of unique factorization modules, as outlined below.

Definition 4.1.1 (Definition 2 of [41]) A torsion-free module M over an integral domain D is called a unique factorization module (UFM for short) if
(1) M is completely integrally closed (CIC for short), that is, $O_{K}(N)=\{k \in K \mid$ $k N \subseteq N\}=D$ for every non-zero submodule N of M, where K is the quotient field of D;
(2) every v-submodule N of M is principal, that is, $N=p M$ for some $p \in D$;
(3) M satisfies the ascending chain condition on v-submodules of M.

Theorem 4.1.2 (Theorem 1 of [41]) Suppose $O_{K}(M)=D$. The following conditions are equivalent:
(1) M is a unique factorization module (UFM).
(2) M is a v-multiplication module, and D is a unique factorization domain (UFD).
(3) (a) D is a UFD.
(b) For every prime element p of $D, p M$ is a maximal v-submodule.
(c) For every v-submodule N of $M, \mathfrak{n}=(N: M) \neq\{0\}$, where $(N: M)=$ $\{r \in D \mid r M \subseteq N\}$.
(4) Every v-submodule of M is principal, and D is a UFD.

Lemma 4.1.3 (Lemma 2.1 of [24]) For a finitely generated torsion-free module M over an integrally closed domain D, it holds that $O_{K}(M)=\{k \in K \mid k M \subseteq$ $M\}=D$.

Proof. Let $M=D m_{1}+\ldots+D m_{t}$, where $m_{i} \in M$ for all $i \in\{1, \ldots, t\}$. It is clear that $D \subseteq O_{K}(M)$. Let $k \in O_{K}(M)$, that is, $k \in K$ and $k M \subseteq M$. Then $k m_{i} \in M$ for all $i \in\{1, \ldots, t\}$. We write

$$
\begin{aligned}
k m_{1} & =d_{1_{1}} m_{1}+\ldots+d_{1_{t}} m_{t} \\
k m_{2} & =d_{2_{1}} m_{1}+\ldots+d_{2_{t}} m_{t} \\
\quad & \\
k m_{i} & =d_{i_{1}} m_{1}+\ldots+d_{i_{t}} m_{t} \\
\quad & \\
k m_{k} & =d_{k_{1}} m_{1}+\ldots+d_{k_{t}} m_{t}
\end{aligned}
$$

where $d_{i_{j}} \in D$ for all $i, j \in\{1, \ldots, t\}$. Then

$$
\begin{aligned}
& k\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{i} \\
\vdots \\
m_{t}
\end{array}\right]=\left[\begin{array}{ccc}
d_{1_{1}} & \ldots & d_{1_{t}} \\
d_{2_{1}} & \ldots & d_{2_{t}} \\
\vdots & \ldots & \vdots \\
d_{i_{1}} & \ldots & d_{i_{t}} \\
\vdots & \ldots & \vdots \\
d_{k_{1}} & \ldots & d_{t_{t}}
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{i} \\
\vdots \\
m_{t}
\end{array}\right] \\
& {\left[\begin{array}{ccc}
k-d_{1_{1}} & \cdots & -d_{1_{t}} \\
-d_{2_{1}} & \ldots & -d_{2_{t}} \\
\vdots & \vdots & \cdots \\
-d_{i_{1}} & \ldots & -d_{i_{t}} \\
\vdots & \cdots & \vdots \\
-d_{k_{1}} & \cdots & k-d_{t_{t}}
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
\vdots \\
m_{i} \\
\vdots \\
m_{t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\vdots \\
0
\end{array}\right] .}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{ccc}
k-d_{1_{1}} & \ldots & -d_{1_{t}} \\
-d_{2_{1}} & \ldots & -d_{2_{t}} \\
\vdots & \vdots & \cdots \\
\vdots \\
-d_{i_{1}} & \cdots & -d_{i_{t}} \\
\vdots & \ldots & \vdots \\
-d_{k_{1}} & \ldots & k-d_{t_{t}}
\end{array}\right]\right)=0 \\
& k^{t}+C_{n-1} k^{t-1}+\ldots+C_{1} k+C_{0}=0
\end{aligned}
$$

where $C_{i} \in D$ for all $i \in\{1, \ldots, t-1\}$. Then there is $f(x)=x^{n}+C_{n-1} x^{n-1}+$ $\ldots+C_{1} x+C_{0} \in D[x]$ such that $f(k)=0$. Thus $k \in D$ since D is an integrally closed domain. Hence $O_{K}(M)=D$.

Throughout this dissertation, M is a finitely generated torsion-free D-module that adheres to the ascending chain condition on v-submodules of M.

Lemma 4.1.4 (Lemma 2.4 of [26]) Let P be a maximal v-submodule of M. It fo-
llows that P is a prime submodule of M.
Proof. Let $r \in D$ and $m \in M$ such that $r m \in P$. If $m \notin P$, then $P \subset D m+P \subseteq$ $(D m+P)_{v} \subseteq M$, implying $(D m+P)_{v}=M$. Consequently, $P \supseteq(D r m+r P)_{v}=$ $(r(D m+P))_{v}=r(D m+P)_{v}=r M$. Thus, P is a prime submodule of M.

Theorem 4.1.5 (Theorem 2.5 of [26]) Assume D is a UFD and M is a completely integrally closed module that fulfills the ascending chain condition on v submodules of M. Then the module M is a unique factorization module if and only if each prime v-submodule of M is principal.

Proof. If M is a UFM, then every prime v-submodule of M is principal, as per Theorem 4.1.2. Conversely, assuming the contrary, let's suppose that M is not a UFM. Take N as a non-principal v-submodule of M with maximal satisfying this property. This is feasible since M satisfies the ascending chain condition on v submodules. Choose a maximal v-submodule P of M containing N; therefore, $P=p M$ for some non-zero $p \in D$ by Lemma 4.1.4. As $N \subset P \subset M$, we have $N \subseteq p^{-1} N \subset M$, implying $\left(p^{-1} N\right)_{v}=p^{-1} N_{v}=p^{-1} N$. Now, either $N=p^{-1} N$ or $p^{-1} N$ is principal due to the maximality of N. If $p^{-1} N$ is principal, then $p^{-1} N=$ $t M$ for some $t \in D$, leading to $N=p t M$, which is a contradiction. Therefore, $N=p^{-1} N$, implying $p^{-1} \in O_{K}(N)=D$. Consequently, $P=p M \supseteq p\left(p^{-1} M\right)=$ M, which is again a contradiction. Hence, every v-submodule N of M is principal, confirming that M is a UFM.

In a Unique Factorization Domain (UFD), the notions of a principal ideal, a v-ideal, and an invertible ideal are equivalent.

Remark 4.1.6 (Remark 2.6 of [26]) Let D be a unique factorization domain, and let A be a v-ideal of D. Then, the following statements are held:
(1) D is a unique factorization module over D.
(2) A is a unique factorization module over D.
(3) If M is a finitely generated projective module over D, then M is a unique
factorization module. Specifically, any finite direct sum of D is also a unique factorization module.

Proof.

(1) It is clear.
(2) Note that since A is a v-ideal of D and is principal, A is isomorphic to D as a D-module. Therefore, by (1), A is a Unique Factorization Module (UFM).
(3) By Theorem 3.1 of [29], it is known that M is a v-multiplication module. Consequently, by Theorem4.1.2, M is a UFM, because D is a Unique Factorization Domain (UFD).

4.2. Strongly Graded Modules which are Unique Factorization Modules

In this section, consider the strongly graded domain $D=\oplus_{n \in \mathbb{Z}} D_{n}$. According to Theorem 2.1 of [40], D is a G-Dedekind domain if and only if D_{0} is a G-Dedekind domain. Let K_{0} and K be the quotient fields of D_{0} and D respectively. Assume $M=\oplus_{n \in \mathbb{Z}} M_{n}$ is a strongly graded module over D, with M_{0} being a finitely generated torsion-free D_{0}-module. Additionally, assume that M satisfies the ascending chain condition on v-submodules of M. In this section, we aim to establish that if M_{0} is a UFM over D_{0}, then M is a UFM over D.

In a UFD, the notions of a principal ideal, a v-ideal, and an invertible ideal are equivalent. This section commences with the subsequent proposition.

Proposition 4.2.1 (Proposition 3.1 of [26]) If D_{0} is a UFD, then the strongly graded ring $D=\oplus_{n \in \mathbb{Z}} D_{n}$ is also a UFD.

Proof. Suppose D_{0} is a UFD, that is, D is a maximal order, and every prime v ideal P_{0} of D_{0} is principal (refer to Proposition 1 in [24]). According to Theorem 1 in [22], D is a maximal order. Consider a non-zero prime v-ideal P of D. If $P_{0}=P \cap D_{0} \neq(0)$, then $P=P_{0} D$ and P_{0} is a v-ideal of D_{0}. This implies
$P_{0}=p_{0} D_{0}=D_{0} p_{0}$ for some $p_{0} \in P_{0}$, and consequently, $P=p_{0} D=D p_{0}$. In the case where $P_{0}=P \cap D_{0}=(0)$, then $P=w A_{0}^{-1} B_{0} D$ for invertible ideals A_{0}, B_{0} of D_{0}. This situation implies P is principal since D_{0} is a UFD. Hence, P is principal, and consequently, D is a UFD following Proposition 1 in [23].

Remember that a module M over a CIC domain D is a UFM if and only if each prime v-submodule P of M is principal, that is, $P=p M$ for some element $p \in D$ (refer to Theorem 4.1.5,

Note that M is a finitely generated torsion-free D-module since M_{0} is a finitely generated torsion-free D_{0}-module. Furthermore, M_{0} is CIC if and only if M is CIC by Theorem 3.1 of [24].

In the rest of this section, we assume that M_{0} is a $U F M$. Then D_{0} is a UFD (see Theorem 4.1.1).

Next, we study the structure of a v-submodule P of M with $P \cap M_{0} \neq(0)$.
Lemma 4.2.2 (Lemma 5.1 of [24]) Let N_{0} be a fractional D_{0}-submodule of M_{0} with $N_{0} \subseteq M_{0}$ and $N=D N_{0}$. Then
(1) $N^{-}=D\left(N_{0}\right)^{-}$, and
(2) $N_{v}=D\left(N_{0}\right)_{v}$.

Proof. By the proof of Lemma 5.1 of [24].
(1) Note that $D\left(N_{0}\right)^{-} N=D\left(N_{0}\right)^{-} D N_{0}=D\left(N_{0}\right)^{-} N_{0} \subseteq D M_{0}=M$. Then we have $D\left(N_{0}\right)^{-} \subseteq N^{-}$.

Conversely, let $q \in N^{-}$, that is, $q \in K$ and $q N \subseteq M$. Then $q K^{g} M=q K^{g} N=$ $K^{g} q N \subseteq K^{g} M$ and so $q \in K^{g}$. Write $q=q_{n}+q_{n-1}+$ (the lower degree parts) where $q_{i} \in K_{0} D_{i}$ for all i. Since $q N \subseteq M$, we have that $q N_{0} \subseteq M$ and $q_{i} N_{0} \subseteq$ M_{i} for all i. Then $D_{-i} q_{i} N_{0} \subseteq D_{-i} M_{i}=M_{0}$ and so $D_{-i} q_{i} \subseteq\left(N_{0}\right)^{-}$which implies that $q_{i} \in D_{i}\left(N_{0}\right)^{-}$. Hence $q=q_{n}+q_{n-1}+($ the lower degree parts $) \in$ $D\left(N_{0}\right)^{-}$.
(2) Note that $M_{0} \supseteq\left(\left(N_{0}\right)_{v}\right)^{-}\left(N_{0}\right)_{v}=\left(N_{0}\right)^{-}\left(N_{0}\right)_{v}$ by Lemma 2.4 (3) of [28]. Then $M=D M_{0} \supseteq D\left(N_{0}\right)^{-}\left(N_{0}\right)_{v}=N^{-}\left(N_{0}\right)_{v}$ which implies that $\left(N_{0}\right)_{v} \subseteq$
$\left(N^{-}\right)^{+}=N_{v}$ and so $D\left(N_{0}\right)_{v} \subseteq N_{v}$.
Conversely, let $m \in N_{v}$, that is, $m \in K M$ and $M \supseteq N^{-} m$. Then $K_{0} M \supseteq$ $K_{0} N^{-} m=K_{0} D\left(N_{0}\right)^{-} m=K_{0} D m$ and so $m \in K_{0} M$. Write $m=m_{n}+$ $m_{n-1}+$ (the lower degree parts) where $m_{i} \in K_{0} M_{i}$ for all i. Since $\left(N_{0}\right)^{-}\left(m_{n}+\right.$ $m_{n-1}+($ the lower degree parts $\left.)\right)=\left(N_{0}\right)^{-} m \subseteq D N_{0}^{-} m \subseteq M$, we have $N_{0}^{-} m_{i} \subseteq M_{i}$ and so $N_{0}^{-} D_{-i} m_{i}=D_{-i} N_{0}^{-} m_{i} \subseteq M_{0}$ for all i. Moreover $D_{-i} m_{i} \subseteq\left(N_{0}\right)_{v}$ and so $m_{i} \in D_{i}\left(N_{0}\right)_{v}$ for all i. Thus $m=m_{n}+m_{n-1}+$ (the lower degree parts) $\in D_{n}\left(N_{0}\right)_{v}+\ldots+D_{0}\left(N_{0}\right)_{v} \subseteq D\left(N_{0}\right)_{v}$. Hence $N_{v}=$ $D\left(N_{0}\right)_{v}$

Lemma 4.2.3 (Lemma 3.3 of [23]) Let P be a prime D-submodule of M with $P_{0}=$ $P \cap M_{0} \neq(0)$. Then
(1) P_{0} is a prime submodule of M_{0}, and
(2) $P^{\prime}=D P_{0}$ is a prime submodule of M.
(3) If P is a prime v-submodule, then P_{0} is a prime v-submodule of M_{0}, and $P=$ $D P_{0}$.

Proof.

(1) Suppose that $r_{0} m_{0} \in P_{0}$ and $m_{0} \notin P_{0}$ where $r_{0} \in D_{0}$ and $m_{0} \in M_{0}$. Then $m_{0} \notin P$ and $r_{0} m_{0} \in P_{0} \subseteq P$. Thus $P \supseteq r_{0} M \supseteq r_{0} M_{0}$ and $r_{0} M_{0} \subseteq P \cap M_{0}=$ P_{0}. Hence P_{0} is a prime submodule.
(2) Without lost of generality, we may assume that $r=r_{n}+r_{n-1}+\ldots+r_{0} \in D$ and $m=m_{l}+\ldots+m_{0} \in M$. Suppose that $r m \in P^{\prime}$ and $m \notin P^{\prime}$. We may assume that $m_{l} \notin P^{\prime}$ and we prove (2) by induction on $n=\operatorname{deg}(r)$. Then $D_{-l} m_{l} \nsubseteq P_{0}$ since $m_{l} \notin D_{l} P_{0}$. If $r=r_{0}$, then $r m=r_{0} m_{l}+\ldots+r_{0} m_{0} \in P^{\prime}$ and $r_{0} m_{l} \in D_{l} P_{0}=P^{\prime} \cap M_{l}$. Then $r_{0} D_{-l} m_{l}=D_{-l} r_{0} m_{l} \subseteq P_{0}$ and $D_{-l} m_{l} \nsubseteq P_{0}$. Thus by (1), $r_{0} M_{0} \subseteq P_{0}$ and $r_{0} M_{t} \subseteq D_{t} P_{0}$ for all $t \in \mathbb{Z}$, which implies that $r_{0} M \subseteq P^{\prime}$.

Since $r m=r_{n} m_{l}+\ldots+r_{0} m_{0} \in P^{\prime}=D P_{0}$, we have $r_{n} m_{l} \in D_{n+l} P_{0}$. Then $D_{-n} r_{n} D_{-l} m_{l} \subseteq P_{0}$ and $D_{-l} m_{l} \nsubseteq P_{0}$, which implies that $D_{-n} r_{n} M_{0} \subseteq P_{0}$ and so $r_{n} M_{0} \subseteq D_{n} P_{0}$. Thus $r_{n} M_{t} \subseteq D_{n+t} P_{0}$ for all $t \in \mathbb{Z}$ which implies that $r_{n} M \subseteq D P_{0}=P^{\prime}$.
In particular $r_{n} m \in P^{\prime}$ and $\left(r-r_{n}\right) m \in P^{\prime}$. By induction on $n,\left(r-r_{n}\right) M \subseteq P^{\prime}$ and $r M \subseteq P^{\prime}$. Hence P^{\prime} is a prime submodule of M.
(3) Let $P^{\prime}=D P_{0} \subseteq M$. Consider that $P=P_{v} \supseteq\left(P^{\prime}\right)_{v}=\left(D P_{0}\right)_{v}=D\left(P_{0}\right)_{v}$ by Lemma4.2.2. Thus $P_{0}=P \cap M_{0} \supseteq D\left(P_{0}\right)_{v} \cap M_{0}=\left(P_{0}\right)_{v}$. Hence $P_{0}=\left(P_{0}\right)_{v}$ and so P_{0} is a prime v-submodule by (1).
Note that $P^{\prime}=D P_{0}=D p_{0} M_{0}$ for some non-zero $p_{0} \in D_{0}$ because M_{0} is a UFM. Since $D p_{0}$ is an invertible ideal, then $\left(P^{\prime}\right)^{-}=\left(D p_{0}\right)^{-1}=D p_{0}^{-1} \supseteq P^{-}$, which implies $D \supseteq D p_{0} P^{-}$and $P^{\prime}=D p_{0} M_{0}=D p_{0} M \supseteq D p_{0} P^{-} P$. If $P \supset P^{\prime}$ then $D p_{0} P^{-} M \subseteq P^{\prime} \subseteq D p_{0} M$ since P^{\prime} is a prime submodule by (2). Then $P^{-} M \subseteq M$ and so $P^{-}=D$ since M is a CIC. Thus $P=P_{v}=\left(P^{-}\right)^{+}=$ $(D)^{+}=M$, a contradiction. Hence $P=D P_{0}$.

In the rest of this section, we assume that M satisfies the ascending chain conditions on v-submodules of M.

Proposition 4.2.4 (Proposition 3.4 of [26]]) Let N be a v-submodule of M with $N_{0}=N \cap M_{0} \neq(0)$. Then
(1) N_{0} is a v-submodule of M_{0}, and there exists an ideal \mathfrak{n}_{0} of D_{0} such that $N_{0}=$ $\mathfrak{n}_{0} M_{0}$.
(2) $N=D \mathfrak{n}_{0} M$, and $D \mathfrak{n}_{0}=(N: M)$.

Proof. By the proof of Proposition 3.4 of [26], we have the following:
(1) By applying Theorem 4.1.2, similar to the previous lemma, it is established that N_{0} is a v-submodule of M_{0}. Moreover, $N_{0}=\mathfrak{n}_{0} M_{0}$ for some ideal \mathfrak{n}_{0} of D_{0}, as M_{0} is a UFM over D_{0}.
(2) Assume there exists a v-submodule N such that $N \neq D \mathfrak{n}_{0} M$ where \mathfrak{n}_{0} is an ideal of D_{0}. Without loss of generality, let N be maximal with this property as M satisfies the ascending chain condition on v-submodules. Thereby, a maximal v-submodule P with $P \supseteq N$ and $P=D \mathfrak{p}_{0} M$, where \mathfrak{p}_{0} is a maximal ideal of D_{0}, is obtained. It implies $M \supseteq\left(D \mathfrak{p}_{0}\right)^{-1} N \supseteq N$. If $\left(D \mathfrak{p}_{0}\right)^{-1} N=N$, then $\left(D \mathfrak{p}_{0}\right)^{-1} \subseteq D$, leading to a contradiction since M is CIC. Therefore, $\left(D \mathfrak{p}_{0}\right)^{-1} N \supset N$, and it follows from Lemma 3.2 of [28] that $\left(\left(D \mathfrak{p}_{0}\right)^{-1} N\right)_{v}=\left(D \mathfrak{p}_{0}\right)^{-1} N$. By the choice of $N,\left(D \mathfrak{p}_{0}\right)^{-1} N=D \mathfrak{t}_{0} M$ for some ideal \mathfrak{t}_{0} of D_{0}. Consequently, $N=D \mathfrak{p}_{0} \mathfrak{t}_{0} M$, resulting in a contradiction. Thus, $N=D \mathfrak{n}_{0} M$ for some ideal \mathfrak{n}_{0} of D_{0}. The last statement is easily derived since $D \mathfrak{n}_{0}$ is invertible.

Next we study the structure of a prime v-submodule P of M such that $P \cap$ $M_{0}=(0)$. Since $K^{g}=\oplus_{n \in \mathbb{Z}} K_{0} D_{n}=K_{0} D$ is a principal ideal domain by [22] and $K_{0} M$ is a finitely generated torsion-free K^{g}-module, we have that a v-submodule P_{1} of $K_{0} M$ is prime if only if $P_{1}=\mathfrak{p}_{1} K_{0} M$, where \mathfrak{p}_{1} is a maximal ideal of K^{g} such that $\mathfrak{p}_{1}=\left(P_{1}: K_{0} M\right)$ by Theorem 3.3 of [28].

Note that if D_{0} is a UFD and \mathfrak{p} is a prime v-ideal of D, then $\mathfrak{p}=\mathfrak{p}_{0} D$ for some prime v-ideal \mathfrak{p}_{0} of D_{0} or $\mathfrak{p}=\mathfrak{p}_{1} \cap D$ for some prime ideal \mathfrak{p}_{1} of $K_{0} D$ by Lemma 2.6 of [40], and moreover $\mathfrak{p}=p D$ for some $p \in D$ by Proposition 4.2.1.

The following lemma is a graded version of Lemma 4.5 of [28].

Lemma 4.2.5 (Lemma 3.5 of [26]) Let N be a D-submodule of M. Then
(1) $\left(K_{0} N: K_{0} M\right)=K_{0} \mathfrak{n}$, where $\mathfrak{n}=(N: M)$ and $K_{0} N^{-}=\left(K_{0} N\right)^{-}$.
(2) $\left(K_{0} N\right)_{v}=K_{0} N_{v}$.

Proof. By the proof of Lemma 3.5 of [26], we have the following:
(1) Let $\mathfrak{n}=(N: M)$, that is, $\mathfrak{n} M \subseteq N$. Then $K_{0} N \supseteq K_{0} \mathfrak{n} M=K_{0} \mathfrak{n} K_{0} M$ which implies that $K_{0} \mathfrak{n} \supseteq\left(K_{0} N: K_{0} M\right)$.

Conversely, assume that $r \in\left(K_{0} N: K_{0} M\right)$, that is, $r \in K_{0} D$ with $r K_{0} M \subseteq$ $K_{0} N$. We write $M=D m_{1}+\ldots+D m_{l}$ where $m_{i} \in M$ for all $i=1,2, \ldots, l$. For all $i, r m_{i} \in r M \subseteq r K_{0} M \subseteq K_{0} N$, then we can write $r m_{i}=\sum_{j=1}^{t} k_{0_{i j}} n_{i j}$ where $k_{0_{i j}} \in K_{0}$ and $n_{i j} \in N$. Then there is $s \in D_{0}$ such that $s k_{0_{i j}} \in D_{0}$ for all i, j and so $s r m_{i} \in D_{0} N=N$ for all i. Then $s r M \subseteq N$ and $s r \in(N: M)=\mathfrak{n}$ which implies that $r \in s^{-1} \mathfrak{n} \subseteq K_{0} \mathfrak{n}$. Thus $K_{0} \mathfrak{n}=\left(K_{0} N: K_{0} M\right)$. To prove $K_{0} N^{-}=\left(K_{0} N\right)^{-}$, first we consider that $K_{0} N^{-} K_{0} N=K_{0} N^{-} N \subseteq$ $K_{0} M$ and we have $K_{0} N^{-} \subseteq\left(K_{0} N\right)^{-}$. Conversely, let $x \in\left(K_{0} N\right)^{-}$, that is $x \in K$ and $x K_{0} N \subseteq K_{0} M$. Since D is a Noetherian domain, we have N is finitely generated. Then there exist $r \in D_{0}$ such that $r x N \subseteq M$ which implies that $r x \in N^{-}$and so $x \in r^{-1} N^{-} \subseteq K_{0} N^{-}$. Hence $K_{0} N^{-}=\left(K_{0} N\right)^{-}$.
(2) Let $m^{\prime} \in\left(K_{0} N\right)_{v}=\left(\left(K_{0} N\right)^{-}\right)^{+}=\left(K_{0} N^{-}\right)^{+}$, that is $K_{0} M \supseteq K_{0} N^{-} m^{\prime} \supseteq$ $N^{-} m^{\prime}$. Then there is $r \in D_{0}$ such that $N^{-} r m^{\prime}=r N^{-} m^{\prime} \subseteq M$. Thus $r m^{\prime} \in$ $\left(N^{-}\right)^{+}=N_{v}$ and so $m^{\prime} \in r^{-1} N_{v} \subseteq K_{0} N_{v}$.
Conversely, let $m^{\prime} \in K_{0} N_{v}$. We write $m^{\prime}=\sum_{i=1}^{t} k_{0_{i}} m_{i}$ where $k_{0_{i}} \in K_{0}$ and $m_{i} \in N_{v}$ for all $i=1,2, \ldots t$. Then for all $i=1,2, \ldots, t$, we have $N^{-} m_{i} \subseteq M$ and so $K_{0} N^{-} m^{\prime}=K_{0} N^{-}\left(\sum_{i=1}^{t} k_{0_{i}} m_{i}\right) \subseteq N^{-}\left(K_{0} m_{1}+\ldots+K_{0} m_{t}\right) \subseteq K_{0} M$. Then $m^{\prime} \in\left(K_{0} N^{-}\right)^{+}=\left(\left(K_{0} N\right)^{-}\right)^{+}=\left(K_{0} N\right)_{v}$. Hence $\left(K_{0} N\right)_{v}=K_{0} N_{v}$.

The subsequent lemma serves as a graded counterpart to Lemma 4.6 in [28]. The proof is provided due to the necessity of the v_{1}-operation to establish the final properties (refer to [28], [35] for comprehensive details concerning v-submodules and v_{1}-operation).

Lemma 4.2.6 (Lemma 3.6 of [(26]) Let M_{0} be a UFM over D_{0}, and let $P_{1}=\mathfrak{p}_{1} K_{0} M$ be a prime v-submodule of $K_{0} M$, where \mathfrak{p}_{1} is a maximal ideal of $K_{0} D$. Define $P=P_{1} \cap M$ and $\mathfrak{p}=\mathfrak{p}_{1} \cap D$. Then the following statements hold:
(1) P is a prime submodule of M, and $\mathfrak{p}=(P: M)$.
(2) $K_{0} P=P_{1}$, and $P \cap M_{0}=(0)$.
(3) $P=\mathfrak{p} M$, and P is a maximal v-submodule of M.

Proof. By the proof of Lemma 3.6 of [26], we have the following:
(1) Let $r \in D$ and $m \in M$ such that $r m \in P$ and $m \notin P$. Since $m \notin P_{1}$ and P_{1} is prime, we have $r M \subseteq r K_{0} M \subseteq P_{1}$ and so $r M \subseteq P$. Hence P is a prime submodule of M.

Since $\mathfrak{p} M \subseteq \mathfrak{p} K_{0} M=P_{1}$, we have $\mathfrak{p} M \subseteq P$, so $\mathfrak{p} \subseteq(P: M)$. Conversely let $r \in(P: M)$, that is $r \in D$ and $r M \subseteq P$. Then $r K_{0} M \subseteq K_{0} P \subseteq P_{1}$, so $r \in\left(P_{1}: K_{0} M\right)=\mathfrak{p}_{1}$. Thus $r \in \mathfrak{p}_{1} \cap D=\mathfrak{p}$. Hence $\mathfrak{p}=(P: M)$.
(2) Let $m^{\prime} \in P_{1}$ and we write $m^{\prime}=\sum_{i=1}^{n} t_{i} m_{i}$ where $t_{i} \in \mathfrak{p}_{1}$ and $m_{i}^{\prime} \in K_{0} M$. Then there are $\alpha, \beta \in D_{0}$ such that $\alpha t_{i} \in \mathfrak{p}$ and $\beta m_{i}^{\prime} \in M$ and so $\alpha \beta m^{\prime} \in \mathfrak{p} M \subseteq P$. Thus $m^{\prime} \in(\alpha \beta)^{-1} P \subseteq K_{0} P$. Hence $K_{0} P=P_{1}$.

Note that $\mathfrak{p}_{1}=\langle t\rangle=t K_{0} D$ for some prime element $t \in K_{0} D$ with $\operatorname{deg}(t) \geq 1$. If $P \cap M_{0} \neq\{0\}$ and let $0 \neq m \in P \cap M_{0}$. Then $m=t m^{\prime}$ for some $m^{\prime} \in K_{0} M$, since $K_{0} P=P_{1}=t K_{0} M$. Write $t=t_{n}+t_{n-1}+\ldots+t_{0}\left(t_{i} \in K_{0} D_{i}\right.$, with $t_{n} \neq$ $0)$ and $m^{\prime}=m_{l}+\ldots+m_{0}\left(m_{j} \in K_{0} M_{j}\right)$. Then we get $t_{n} m_{l}=0$, so $m_{l}=0$ and so on. Then we have $m=0$, a contradiction. Hence $P \cap M_{0}=\{0\}$.
(3) By Lemma 4.2.5 and (2) we have $P_{1}=\left(P_{1}\right)_{v}=\left(K_{0} P\right)_{v}=K_{0} P_{v}$, so P is a v-submodule of M. Since M is a v-Noetherian D-module there are finite elements $m_{i} \in P$ such that $P=\left(D m_{1}+\ldots+D m_{k}\right)_{v}$. Note that $K_{0} P=$ $K_{0}\left(D m_{1}+\ldots+D m_{k}\right)_{v}=\left(K_{0} D m_{1}+\ldots+K_{0} D m_{k}\right)_{v}$ by Lemma4.2.5. Further since $K_{0} P=P_{1}=K_{0} \mathfrak{p} K_{0} M=\mathfrak{p} K_{0} M$, for m_{i} there are finite $p_{i j} \in \mathfrak{p}$ and $l_{i j} \in K_{0} M$ such that $m_{i}=\sum_{j} p_{i j} l_{i j}$. Then there is a non-zero $c \in D_{0}$ with $c l_{i j} \in M$ for all $l_{i j}$ so that $c m_{i} \in \mathfrak{p} M$. Put $\mathfrak{a}=\left\{r_{0} \in D_{0} \mid r_{0} P \subseteq \mathfrak{p} M\right\}$, an ideal of D_{0} with $\mathfrak{a} P \subseteq \mathfrak{p} M$. If $\mathfrak{a}=D_{0}$, then $P=\mathfrak{p} M$ and we are done. If $\mathfrak{a} \subset D_{0}$, by Lemma 3.2 of [35], $\mathfrak{a}_{v_{1}} P \subseteq\left(\mathfrak{a}_{v_{1}} P\right)_{v}=(\mathfrak{a} P)_{v} \subseteq(\mathfrak{p} M)_{v}=$ $\mathfrak{p} M_{v}=\mathfrak{p} M$ because \mathfrak{p} is an invertible ideal. By the definition of \mathfrak{a}, we have $\mathfrak{a}_{v_{1}} \subseteq \mathfrak{a}$, which implies $\mathfrak{a}_{v_{1}}=\mathfrak{a}$, that is, \mathfrak{a} is a v_{1}-ideal of D_{0}. Since \mathfrak{a} is a v_{1}-ideal of D_{0}, then \mathfrak{a}^{+}is a v-submodule of M_{0} by Lemma 2.3 of [29],
which implies $\mathfrak{a}^{+}=r_{0} M_{0}$ for some $r_{0} \in D_{0}$ because M_{0} is a UFM. Then $\mathfrak{a}=\mathfrak{a}_{v_{1}}=\left(\mathfrak{a}^{+}\right)^{-}=\left(r_{0} M_{0}\right)^{-}=r_{0}^{-1} D_{0}$ and so \mathfrak{a} is an invertible ideal. Note that $\mathfrak{p}^{-1} \mathfrak{a} P \subseteq M$ and $K_{0} \mathfrak{p}^{-1} \mathfrak{a} P=K_{0} \mathfrak{p}^{-1} \mathfrak{p}_{1} K_{0} M=K_{0} M$, since $K_{0} D \mathfrak{p}=\mathfrak{p}_{1}$. It follows that $\mathfrak{p}^{-1} \mathfrak{a} P \cap M \neq\{0\}$ and $\left(\mathfrak{p}^{-1} \mathfrak{a} P\right)_{v}=\mathfrak{p}^{-1} \mathfrak{a} P_{v}=\mathfrak{p}^{-1} \mathfrak{a} P$ by Lemma 3.2 of [28] since $\mathfrak{p}^{-1} \mathfrak{a}$ is an invertible D-ideal in K^{g}. Then by Proposition 4.2.4, $\mathfrak{p}^{-1} \mathfrak{a} P=\mathfrak{n} D M$ for some ideal \mathfrak{n} of D_{0} and $P=\mathfrak{p a}^{-1} \mathfrak{n} D M$. It follows that $\mathfrak{p}=(P: M)=\mathfrak{p a}{ }^{-1} \mathfrak{n} D$ and that $D=\mathfrak{a}^{-1} \mathfrak{n} D$. Hence $P=\mathfrak{p} M$.
To prove that P is a maximal v-submodule of M, let N be a maximal v submodule of M containing P. Then $K_{0} N$ is a v-submodule of $K_{0} M$ containing $K_{0} P=P_{1}$ by Lemma4.2.5(2), so $K_{0} N=P_{1}$ by the assumption. Thus $P=P_{1} \cap M \supseteq N$ and $N=P$ follows. Hence P is a maximal v-submodule of M.

Lemma 4.2.7 (Lemma 3.7 [26]) Suppose M_{0} is a UFM over D_{0}, and let P be a prime v-submodule of M with $P \cap M_{0}=(0)$. Then, there exists a maximal v submodule P_{1} of $K_{0} M$ such that $P=P_{1} \cap M$.

Proof. By the proof of Lemma 3.6 of [26], we have the following:
Let $\mathfrak{p}=(P: M)$. Then \mathfrak{p} is a prime v-ideal of D, making it a non-zero minimal prime ideal. This implies that \mathfrak{p} takes one of two forms: either $\mathfrak{p}=\mathfrak{p}_{0} D$ for some prime ideal \mathfrak{p}_{0} of D_{0}, or $\mathfrak{p}=\mathfrak{p}_{1} \cap D$ for some prime ideal \mathfrak{p}_{1} of $K_{0} D$ as per Theorem 2.1 and Lemma 2.6 in [40]. In the first case, $P \supseteq \mathfrak{p}_{0} D M \supseteq \mathfrak{p}_{0} M_{0} \neq(0)$, leading to a contradiction.

Therefore, $\mathfrak{p}=\mathfrak{p}_{1} \cap D$ with $K_{0} \mathfrak{p}=\mathfrak{p}_{1}$. As $P \cap M_{0}=(0), K_{0} M \supset K_{0} P=$ $\left(K_{0} P\right)_{v}$ by Lemma 4.2.5. This implies the existence of a maximal v-submodule P_{1} of $K_{0} M$ such that $P_{1} \supseteq K_{0} P$. By Lemma4.2.5, $\left(P_{1}: K_{0} M\right) \supseteq\left(K_{0} P: K_{0} M\right)=$ $K_{0}(P: M)=K_{0} \mathfrak{p}=\mathfrak{p}_{1}$. Since $\left(P_{1}: K_{0} M\right)$ is a prime ideal of $K_{0} D$, we get $\mathfrak{p}_{1}=\left(P_{1}: K_{0} M\right)$. Consequently, $P_{1}=\mathfrak{p}_{1} K_{0} M$ and $P_{1} \cap M \supseteq P$. Through Lemma 4.2.6, we find $P_{1} \cap M=\mathfrak{p} M \subseteq P$, ultimately leading to $P=P_{1} \cap M$ and $P=\mathfrak{p} M$.

Proposition 4.2.8 (Proposition 3.8 of [26]) Let P be a prime v-submodule of M with $P \cap M_{0}=(0)$. Then, there exists a prime v-ideal \mathfrak{p} of D such that $P=\mathfrak{p} M$, where $\mathfrak{p} \cap D_{0}=(0)$.

From Lemma 4.2.3 and Proposition 4.2.8, the following theorem is obtained.

Theorem 4.2.9 (Theorem 3.9 of [26]) Let $D=\oplus_{n \in \mathbb{Z}} D_{n}$ be a strongly graded domain, and $M=\oplus_{n \in \mathbb{Z}} M_{n}$ be a strongly graded module over D. Assume that M satisfies the ascending chain condition on v-submodules of M. If M_{0} is a unique factorization module (UFM) over D_{0}, then M is also a UFM over D.

Proof. By the proof of Theorem 3.9 of [26], we have the following:
Given that D_{0} is a unique factorization domain, Proposition 4.2.1 ensures that D is also a UFD, and consequently, every prime v-ideal of D is principal. The assertion that D is a maximal order, supported by Proposition 1 of [23], implies that D_{0} is a maximal order, as established by Theorem 1 of [22]. Consequently, M is a CIC due to Theorem 3.1 of [23]. To demonstrate that M is a unique factorization module, consider a prime v-submodule P of M. Let $P_{0}=P \cap M_{0}$.

1. Consider the case where $P_{0} \neq(0)$. In this case, $P=D P_{0}$, and according to Lemma 4.2.3, P_{0} qualifies as a prime v-submodule of D_{0}. As M_{0} is a UFM, we can deduce that $P_{0}=p_{0} M_{0}$ for a certain $p_{0} \in D_{0}$, leading to $P=D P_{0}=D p_{0} M_{0}=p_{0} D M_{0}=p_{0} M$.
2. Now, consider the case where $P_{0}=(0)$. In this case, $P=\mathfrak{p} M$ for some prime v-ideal \mathfrak{p} of D with $\mathfrak{p} \cap D_{0}=\{0\}$, as per Proposition 4.2.8. Since D is a UFD, $\mathfrak{p}=p D$ for some $p \in D$, and consequently, $P=\mathfrak{p} M=p D M=p M$ for a certain $p \in D$.

Hence, every prime v-submodule of M is principal, and thus, by Theorem 4.1.5, M is a UFM.

As an application of Theorem4.2.9, we have the following examples.

Example 4.2.10 (Example 3.10 of [26]) If M is a unique factorization module over an integral domain D, then the Laurent polynomial module $M\left[x, x^{-1}\right]$ is also a UFM over the Laurent polynomial ring $D\left[x, x^{-1}\right]$.

Example 4.2.11 (Example 3.11 of [26]) Let T be any unique factorization domain, and consider two non-zero v-ideals A and B in T. Let K denote the quotient field of T. Then, define the module

$$
M=\oplus_{n \in \mathbb{Z}} A B^{n} x^{n}=\ldots+A B^{-2} x^{-2}+A B^{-1} x^{-1}+A+A B x+A B^{2} x^{2}+\ldots
$$

This module is a unique factorization module over $D=\oplus_{n \in \mathbb{Z}} B^{n} x^{n}=\ldots+$ $B^{-2} x^{-2} B^{-1} x^{-1}+T+B x+B^{2} x^{2}+\ldots$, which is a subring of $K\left[x, x^{-1}\right]$, a Laurent polynomial ring over K.

4.3. Positively Graded Modules which are Unique Factorization Modules

Let $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ be a positively graded domain, which is a subdomain of the strongly graded domain $D=\oplus_{n \in \mathbb{Z}} D_{n}$. The fact that R is Noetherian holds if and only if D_{0} is Noetherian, as stated in Proposition 2.1 of [27]. In this section, we aim to demonstrate that $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$, a positively graded module over R, is a unique factorization module (UFM) if and only if M_{0} is a UFM over D_{0}, under the condition that D_{0} is a Noetherian domain.

In the rest of this section, let $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ and $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$, where D_{0} is a Noetherian domain and M_{0} is a finitely generated torsion-free D_{0}-module.

In [23], it is established that R is a UFR if and only if D_{0} is a UFR, and D_{1} is a principal D_{0}-module. This section commences with the following proposition, which corresponds to the commutative case of Theorem 1 in [23].

Proposition 4.3.1 (Proposition 4.1 of [26]]) A positively graded domain $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ is a UFD if and only if:
(1) D_{0} is a UFD, and
(2) D_{1} is a principal D_{0}-module, meaning there exists $p_{1} \in D_{1}$ such that $D_{1}=$
$D_{0} p_{1}$.

Note that L is a finitely generated torsion-free R-module since M_{0} is a finitely generated torsion-free D_{0}-module ([24], Lemma 4.4). Additionally, M_{0} being CIC is equivalent to L being CIC, as per Theorem 4.1 of [24].

The subsequent lemma corresponds to a module version of Lemma 2.5 (2) in [28] and can be demonstrated similarly to Lemma 5.1 in [24].

Lemma 4.3.2 (Lemma 4.2 of [26]) Suppose N_{0} is a fractional D_{0}-submodule of M_{0} such that N_{0} is contained in M_{0}, and let $N=R N_{0}$. The following properties hold:
(1) $N^{-}=R\left(N_{0}\right)^{-}$,
(2) $N_{v}=R\left(N_{0}\right)_{v}$.

The subsequent lemma is an adaptation of Lemma 4.2 and Lemma 4.3 found in [28].

Lemma 4.3.3 (Lemma 4.3 of [26]) Let M_{0} be a UFM over D_{0} and P be a prime R-submodule of L with $P_{0}=P \cap M_{0} \neq(0)$. Then
(1) P_{0} is a prime submodule of M_{0}.
(2) $P^{\prime}=R P_{0}$ is a prime submodule of L.
(3) If P is a prime v-submodule, then P_{0} is a prime v-submodule of M_{0}, and $P=$ $R P_{0}$.

Proof. By the proof of Lemma 4.3 of [26], we have the following:
The proof of (1) and (2) are similar to the proof of Lemma 4.2 (1) and (2) of [29].
(3) Let $P^{\prime}=R P_{0} \subseteq L$. Note that $P=P_{v} \supseteq\left(P^{\prime}\right)_{v}=\left(R P_{0}\right)_{v}=R\left(P_{0}\right)_{v}$ by Lemma 4.3.2. Thus $P_{0}=P \cap M_{0} \supseteq R\left(P_{0}\right)_{v} \cap M_{0}=\left(P_{0}\right)_{v}$. Hence $P_{0}=\left(P_{0}\right)_{v}$, and so P_{0} is a prime v-submodule by (1). Note that $P^{\prime}=R P_{0}=R p_{0} M_{0}$ for some non-zero $p_{0} \in D_{0}$ because M_{0} is a UFM. Since $R p_{0}$ is an invertible
ideal, $\left(P^{\prime}\right)^{-}=\left(R p_{0}\right)^{-1}=R p_{0}^{-1} \supseteq P^{-}$, which implies $R \supseteq R p_{0} P^{-}$and $P^{\prime}=R p_{0} M_{0}=R p_{0} L \supseteq R p_{0} P^{-} P$. If $P \supset P^{\prime}$ then $R p_{0} P^{-} L \subseteq P^{\prime}=R p_{0} L$ since P^{\prime} is a prime submodule by Lemma (2). Then $P^{-} L \subseteq L$ and so $P^{-}=D$ because $O_{Q}(L)=D$. Thus $P=P_{v}=\left(P^{-}\right)^{+}=(D)^{+}=L$, a contradiction. Hence $P=R P_{0}$.

The following proposition is a graded version of Proposition 4.4 of [28].
Proposition 4.3.4 (Proposition 4.4 of [26]) Let M_{0} be a UFM over D_{0}, and let N be a submodule of L with $N_{0}=N \cap M_{0} \neq(0)$. Then the following conditions hold:
(1) N_{0} is a submodule of M_{0}, and N_{0} can be expressed as $\mathfrak{n}_{0} M_{0}$ for some ideal \mathfrak{n}_{0} of D_{0}.
(2) $N=R \mathfrak{n}_{0} L$, and $R \mathfrak{n}_{0}=(N: L)$.

Proof. By the proof of Proposition 4.4 of [26], we have the following:
(1) Similarly to the previous lemma, we conclude that N_{0} is a submodule of M_{0}. Moreover, it holds that $N_{0}=\mathfrak{n}_{0} M_{0}$ for some ideal \mathfrak{n}_{0} of D_{0}, as implied by Theorem4.1.2, considering the fact that M_{0} is a UFM over D_{0}.
(2) Suppose there is a v-submodule N such that $N \neq R \mathfrak{n}_{0} L$ where \mathfrak{n}_{0} is an ideal of D_{0}. We may assume that N is maximal with this property because M is Noetherian. Then there is a maximal v-submodule P with $P \supseteq N$ and $P=$ $R \mathfrak{p}_{0} L$, where \mathfrak{p}_{0} is a maximal ideal of D_{0}. It follows that $L \supseteq\left(R \mathfrak{p}_{0}\right)^{-1} N \supseteq N$. If $\left(R \mathfrak{p}_{0}\right)^{-1} N=N$, then $\left(R \mathfrak{p}_{0}\right)^{-1} \subseteq R$, a contradiction because L is a CIC. Thus $\left(R \mathfrak{p}_{0}\right)^{-1} N \supset N$ and it follows from Lemma 3.2 of [28] that $\left(\left(R \mathfrak{p}_{0}\right)^{-1} N\right)_{v}=$ $\left(R \mathfrak{p}_{0}\right)^{-1} N$. By the choice of $N,\left(R \mathfrak{p}_{0}\right)^{-1} N=R \mathfrak{t}_{0} L$ for some ideal \mathfrak{t}_{0} of D_{0}. Hence $N=R \mathfrak{p}_{0} \mathfrak{t}_{0} L$, a contradiction. Hence $N=R \mathfrak{n}_{0} L$ for some ideal \mathfrak{n}_{0} of D_{0}. The last statement easily follows since $R \mathfrak{n}_{0}$ is invertible.

Next we study the structure of a prime v-submodule P of L such that $P \cap$ $M_{0}=\{0\}$. Since $Q^{g}=\oplus_{n \in \mathbb{Z}_{0}} K_{0} D_{n}=K_{0} R$ is a principal ideal domain by Lemma 2.1 of [27] and $K_{0} L$ is a finitely generated torsion-free Q^{g}-module, we have that a v-submodule P_{1} of $K_{0} L$ is prime if only if $P_{1}=\mathfrak{p}_{1} K_{0} L$, where \mathfrak{p}_{1} is a maximal ideal of Q^{g} such that $\mathfrak{p}_{1}=\left(P_{1}: K_{0} L\right)$ by Theorem 3.3 of [28].

The following lemma is a graded version of Lemma 4.5 of [28].
Lemma 4.3.5 (Lemma 4.5 of [26]) Let N be an R-submodule of L. Then, it follows that
(1) $\left(K_{0} N: K_{0} L\right)=K_{0} \mathfrak{n}$, where $\mathfrak{n}=(N: L)$, and $K_{0} N^{-}=\left(K_{0} N\right)^{-}$.
(2) $\left(K_{0} N\right)_{v}=K_{0} N_{v}$.

Proof. By the proof of Lemma 4.5 of [26], we have the following:
(1) The proof follows a similar structure to the proof of Lemma 4.5 (1) in [28].
(2) Let $m^{\prime} \in\left(K_{0} N\right)_{v}=\left(\left(K_{0} N\right)^{-}\right)^{+}=\left(K_{0} N^{-}\right)^{+}$, that is, $K_{0} L \supseteq K_{0} N^{-} m^{\prime} \supseteq$ $N^{-} m^{\prime}$. Then, there exists $r \in D_{0}$ such that $N^{-} r m^{\prime}=r N^{-} m^{\prime} \subseteq L$. This implies $r m^{\prime} \in\left(N^{-}\right)^{+}=N_{v}$, and so $m^{\prime} \in r^{-1} N_{v} \subseteq K_{0} N_{v}$.
Conversely, let $m^{\prime} \in K_{0} N_{v}$. Write $m^{\prime}=\sum_{i=1}^{t} k_{0_{i}} m_{i}$ where $k_{0_{i}} \in K_{0}$ and $m_{i} \in N_{v}$ for all $i=1,2, \ldots t$. For each $i=1,2, \ldots, t, N^{-} m_{i} \subseteq L$, and so $K_{0} N^{-} m^{\prime}=K_{0} N^{-}\left(\sum_{i=1}^{t} k_{0_{i}} m_{i}\right) \subseteq N^{-}\left(K_{0} m_{1}+\ldots+K_{0} m_{t}\right) \subseteq K_{0} L$. Therefore, $m^{\prime} \in\left(K_{0} N^{-}\right)^{+}=\left(\left(K_{0} N\right)^{-}\right)^{+}=\left(K_{0} N\right)_{v}$. Hence, $\left(K_{0} N\right)_{v}=K_{0} N_{v}$.

The subsequent lemma corresponds to a graded adaptation of lemma 4.6 from [28]. We present the proof since the final properties necessitate the use of the v_{1}-operation (refer to [28], [29], [35] for detailed explanations on v-submodules and v_{1}-operation).

Lemma 4.3.6 (Lemma 4.6 of [26]) Let M_{0} be a UFM over D_{0}, and consider $P_{1}=$ $\mathfrak{p}_{1} K_{0} L$, a prime v-submodule of $K_{0} L$. Here, \mathfrak{p}_{1} is a maximal ideal of $K_{0} R, P=$ $P_{1} \cap L$, and $\mathfrak{p}=\mathfrak{p}_{1} \cap R$. The following statements hold:
(1) P is a prime submodule of L, and $\mathfrak{p}=(P: L)$.
(2) $K_{0} P=P_{1}$, and $P \cap M_{0}=(0)$.
(3) $P=\mathfrak{p} L$, and P is a maximal v-submodule of L.

Proof. By the proof of Lemma 4.6 of [26], we have the following:
(1) Let $r \in R$ and $m \in L$ such that $r m \in P$ and $m \notin P$. Since $m \notin P_{1}$ and P_{1} is prime, we have $r L \subseteq r K_{0} L \subseteq P_{1}$ and so $r L \subseteq P$. Hence P is a prime submodule of L.

Since $\mathfrak{p} L \subseteq \mathfrak{p} K_{0} L=P_{1}$, we have $\mathfrak{p} L \subseteq P$, so $\mathfrak{p} \subseteq(P: L)$. Conversely let $r \in(P: L)$, that is $r \in R$ and $r L \subseteq P$. Then $r K_{0} L \subseteq K_{0} P \subseteq P_{1}$, so $r \in\left(P_{1}: K_{0} L\right)=\mathfrak{p}_{1}$. Thus $r \in \mathfrak{p}_{1} \cap R=\mathfrak{p}$. Hence $\mathfrak{p}=(P: L)$.
(2) Let $m^{\prime} \in P_{1}$ and we write $m^{\prime}=\sum_{i=1}^{n} t_{i} m_{i}$ where $t_{i} \in \mathfrak{p}_{1}$ and $m_{i}^{\prime} \in K_{0} L$. Then there are $\alpha, \beta \in D_{0}$ such that $\alpha t_{i} \in \mathfrak{p}$ and $\beta m_{i}^{\prime} \in L$ and so $\alpha \beta m^{\prime} \in \mathfrak{p} L \subseteq P$. Thus $m^{\prime} \in(\alpha \beta)^{-1} P \subseteq K_{0} P$. Hence $K_{0} P=P_{1}$.
Note that $\mathfrak{p}_{1}=\langle t\rangle=t K_{0} R$ for some prime element $t \in K_{0} R$ with $\operatorname{deg}(t) \geq 1$. If $P \cap M_{0} \neq\{0\}$ and let $0 \neq m \in P \cap M_{0}$. Then $m=t m^{\prime}$ for some $m^{\prime} \in K_{0} L$, since $K_{0} P=P_{1}=t K_{0} L$. Write $t=t_{n}+t_{n-1}+\ldots+t_{0}\left(t_{i} \in K_{0} D_{i}\right.$, with $t_{n} \neq$ $0)$ and $m^{\prime}=m_{l}+\ldots+m_{0}\left(m_{j} \in K_{0} M_{j}\right)$. Then we get $t_{n} m_{l}=0$, so $m_{l}=0$ and so on. Then we have $m=0$, a contradiction. Hence $P \cap M_{0}=(0)$.
(3) The proof is similar to Lemma 4.2.6(3).

Lemma 4.3.7 (Lemma 4.7 of [26]) Let M_{0} be a UFM over D_{0} and P be a prime v-submodule of L such that $P \cap M_{0}=(0)$. Then $P=\oplus_{n \geq 1} M_{n}=D_{1} L$ or there is a maximal v-submodule P_{1} of $K_{0} L$ such that $P=P_{1} \cap L$.

Proof. By the proof of Lemma 4.7 of [26], we have the following. Let $\mathfrak{p}=(P: L)$. Then \mathfrak{p} is a prime v-ideal of R, so \mathfrak{p} is a non-zero minimal prime ideal. Thus, \mathfrak{p} is in one of the following forms: $\mathfrak{p}=\mathfrak{p}_{0} R$ for some prime ideal \mathfrak{p}_{0} of $D_{0}, \mathfrak{p}=\oplus_{n \geq 1} D_{n}$, or $\mathfrak{p}=\mathfrak{p}_{1} \cap R$ for some prime ideal \mathfrak{p}_{1} of $K_{0} R$ by Proposition 3.1 of [27].

In the first case, $P \supseteq \mathfrak{p}_{0} R L \supseteq \mathfrak{p}_{0} M_{0} \neq(0)$, leading to a contradiction.
In the second case, if $P \supseteq\left(\oplus_{n \geq 1} D_{n}\right) L=R D_{1} L=D_{1} L=\oplus_{n \geq 1} M_{n}$. If $P \supset \oplus_{n \geq 1} M_{n}$, there is a non-zero submodule T_{0} of M_{0} such that $P=T_{0}+$ $\oplus_{n \geq 1} M_{n}$. Then $P \cap M_{0} \supseteq T_{0} \neq\{0\}$, a contradiction. Hence $P=\oplus_{n \geq 1} M_{n}$.

In the last case, $\mathfrak{p}=\mathfrak{p}_{1} \cap R$ with $K_{0} \mathfrak{p}=\mathfrak{p}_{1}$. Since $P \cap M_{0}=(0), K_{0} L \supset$ $K_{0} P=\left(K_{0} P\right)_{v}$ by Lemma 4.3.5. Thus, there is a maximal v-submodule P_{1} of $K_{0} L$ such that $P_{1} \supseteq K_{0} P$. By Lemma 4.3.5, $\left(P_{1}: K_{0} L\right) \supseteq\left(K_{0} P: K_{0} L\right)=K_{0}(P:$ $L)=K_{0} \mathfrak{p}=\mathfrak{p}_{1}$. Since $\left(P_{1}: K_{0} L\right)$ is a prime ideal of $K_{0} R, \mathfrak{p}_{1}=\left(P_{1}: K_{0} L\right)$. Hence $P_{1}=\mathfrak{p}_{1} K_{0} L$ and $P_{1} \cap L \supseteq P$. By Lemma 4.3.6, $P_{1} \cap L=\mathfrak{p} L \subseteq P$, and hence $P=P_{1} \cap L$ and $P=\mathfrak{p} L$. Therefore, by the last two cases, $P=\oplus_{n \geq 1} M_{n}$ or there is a maximal v-submodule P_{1} of $K_{0} L$ such that $P=P_{1} \cap L$.

Consider the case where $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ is a Noetherian UFD. In this case, $R=D_{0}\left[p_{1}\right]$ for some element $p_{1} \in D_{1}$, as established by Theorem 1 of [23]. Consequently, $M=M_{0}\left[p_{1}\right]$, forming a polynomial module. The necessary condition of Theorem 4.3.8 has already been proven in [41]. However, we provide an alternative proof using the v_{1}-operator.

Theorem 4.3.8 (Theorem 4.8 of [26]) Assume $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ is a Noetherian UFD, and $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$ is a positively graded module over R. Then L is a UFM if and only if M_{0} is a UFM.

Proof.By the proof of Theorem 4.8 of [26], we have the following:
(\Rightarrow) Assume that $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$ is a UFM over R. As a consequence, L is CIC, implying that M_{0} inherits the CIC property according to Theorem 4.1 of [24]. Let P_{0} be a non-zero prime v-submodule of M_{0}. By Lemma 4.3.2, $P=R P_{0}$ is a v-submodule of L. Additionally, based on Lemma 4.3.3(2), $R P_{0}$ qualifies as a prime submodule of L. Consequently, since L is a UFM, $R P_{0}$ is a principal prime v-submodule. This implies $R P_{0}=r L$ for some $r \in R$. Since $(0) \neq P_{0} \subset R P_{0}=$ $r L$, it follows that $r \in D_{0}$, leading to $P_{0}=r M_{0}$. Therefore, P_{0} is a principal submodule, establishing that M_{0} is a UFM by Theorem 4.1.5.
(\Leftarrow) Suppose that M_{0} is a UFM over D_{0}. Since R is a UFD, it is evident that
R is a maximal order by Proposition 1 of [23]. This implies that D_{0} is a maximal order by Theorem 2.1 of [27], and consequently, L is CIC by Theorem 4.1 of [24]. Given that D_{0} is a UFD and D_{1} is a principal D_{0}-module, a result of R being a UFD, we aim to prove that L is a UFM. Let P be a prime v-submodule of L, and let $P_{0}=P \cap M_{0}$. According to Lemma 4.3.3(3), P_{0} is a prime v-submodule.

1. Case $P_{0} \neq(0)$: In this case, $P=R P_{0}$ by Lemma 4.3.3 (3). Since M_{0} is a UFM, $P_{0}=p_{0} M_{0}$ for some $p_{0} \in D_{0}$, leading to $P=R P_{0}=R p_{0} M_{0}=$ $p_{0} R M_{0}=p_{0} L$.
2. Case $P_{0}=(0)$: In this case, $P=\oplus_{n \geq 1} M_{n}=D_{1} L$ or $P=\mathfrak{p} L$ for some v ideal \mathfrak{p} of R by Lemma4.3.7. If $P=\oplus_{n \geq 1} M_{n}=D_{1} L$, then $P=d_{1} D_{0} L=$ $d_{1} L$ for some $d_{1} \in D_{1}$ since D_{1} is a principal D_{0}-module. If $P=\mathfrak{p} L$, then $P=\mathfrak{p} L=p R L=p L$ for some $p \in R$ since R is a UFD.

Hence, every prime v-submodule of L is principal, establishing that L is a UFM by Theorem 4.1.5.

We end this section with examples of a positively graded module which is a UFM.

Example 4.3.9 (Example 4.9 of [26]) Let $R=\oplus_{n \in \mathbb{Z}_{0}} D_{n}$ be a positively graded domain, where D_{0} is a Noetherian UFD and D_{1} is a principal D_{0}-module. Consider a positively graded module $M=R \oplus R \oplus \ldots \oplus R$ over R, and let P be a graded submodule of M such that $M=P \oplus T$ for some graded submodule T. The claim is that P is a UFM.

Proof. Observe that P is a projective module, making it a generalized Dedekind module. Additionally, according to Theorem 3.1 of [28], P is a v-multiplication module. Considering that P is a v-multiplication module and R is a UFD, we conclude that P is a UFM, as per Theorem4.1.2.

Lemma 4.3.10 (Lemma 4.10 of [26]) Let D be a domain, B be an invertible ideal of D and A be a non-zero ideal of D. Let $R=D+B x+B^{2} x^{2}+\ldots \subseteq D[x]$, where
$D[x]$ is a polynomial ring over D and $L=A+A B x+A B^{2} x^{2}+\ldots=A R$. Then L is a positively graded module over the positively graded domain R.

From Remark 4.1.6 and Lemma 4.3.10, we obtain the following example.

Example 4.3.11 (Example 4.11 of [26]) Let D be any Noetherian UFD, and let A, B be two non-zero v-ideals of D. Then $L=A+A B x+A B^{2} x^{2}+\ldots$ is a UFM over $R=D+B x+B^{2} x^{2}+\ldots$.

Proof. Consider R, a UFD as a consequence of D being a UFD and $B x$ acting as a principal D-module. Since A is a non-zero v-ideal in D by Remark 4.1.6, it is established as a UFM. Applying Theorem 4.3.8 yields the conclusion that L is a UFM over R.

CHAPTER V

Generalized Dedekind Modules and Further Work

5.1. Generalized Dedekind Modules

A very important object of study related to Krull rings and Krull modules, the generalized Dedekind ring (G-Dedekind rings for short) and the generalized Dedekind modules (G-Dedekind module) have been defined and extensively studied. They are defined as follows:

In [29], the authors say that D is a generalized Dedekind domain if it satisfies the following condition:
(i) every every v-ideal \mathfrak{a} of D is invertible, that is $(D: \mathfrak{a}) \mathfrak{a}=D$, where (D : $\mathfrak{a})=\{k \in K \mid k \mathfrak{a} \subseteq D\} ;$
(ii) D satisfies the ascending chain condition on v-ideals of D.

Furthermore, serving as an extension of the concept of a generalized Dedekind domain, the authors in [28] introduced the notion of a generalized Dedekind module.

Definition 5.1 .1 (Definition 3.1 of [28]) Consider a finitely generated torsion-free module M over an integrally closed domain D with its quotient field K. A module M is called a generalized Dedekind module (G-Dedekind module for brevity) if it satisfies the following conditions:
(i) Every v-submodule N of M is invertible, denoted as $N^{-} N=M$, where $N^{-}=\{k \in K \mid k N \subseteq M\} ;$
(ii) M satisfies the ascending chain condition on v-submodules of M.

Moreover, in [29], the authors say that M is a Krull module if it satisfies the following condition:
(i) every every v-submodule N of M is v-invertible, that is $\left(N^{-} N\right)_{v}=M$, where $N^{-}=\{k \in K \mid k N \subseteq M\} ;$
(ii) M satisfies the ascending chain condition on v-submodules of M.

Concerning these, the following result holds.

Proposition 5.1.2 (Proposition 2.9 of [25]) Consider a G-Dedekind domain D and a finitely generated torsion-free D-module M. Assuming that M is a v-multiplication module, it follows that M qualifies as a G-Dedekind module.

Proof. By the proof of Proposition 2.9 of [25] we have the following.
Let N be a v-submodule of M. Then $N=\mathfrak{n} M$ by the assumption, where $\mathfrak{n}=(N: M)$ and \mathfrak{n} is a v-ideal by [5, Lemma 2.4]. Hence N is invertible since \mathfrak{n} is invertible.

Let N_{i} be v-submodules of M such that $N_{1} \subseteq N_{2} \subseteq \cdots \subseteq N_{n} \subseteq \ldots$ and write $N_{i}=\mathfrak{n}_{i} M$ for all i, where $\mathfrak{n}_{i}=\left(N_{i}: M\right)$ which are invertible. $\mathfrak{n}_{i} M \subseteq \mathfrak{n}_{i+1} M$ implies $\mathfrak{n}_{i+1}^{-1} \mathfrak{n}_{i} M \subseteq M$ and so $\mathfrak{n}_{i+1}^{-1} \mathfrak{n}_{i} \subseteq D$ by the determinant argument, that is, $\mathfrak{n}_{i} \subseteq \mathfrak{n}_{i+1}$. Thus there is an i such that $\mathfrak{n}_{i}=\mathfrak{n}_{i+1}$ and hence $N_{i}=N_{i+1}$. Therefore M is a G-Dedekind module.

In general, if M is not a v-multiplication module, then M does not need to be a generalized Dedekind module.

Proposition 5.1.3 (Proposition 2.7 (1) of [25]) Let D be a Noetherian G-Dedekind domain and \mathfrak{a}_{i} be proper prime ideals of D such that $\mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \cdots \supset \mathfrak{a}_{n},\left(\mathfrak{a}_{n}\right)_{v}=$ D and \mathfrak{p} be a minimal prime ideal of D.

Put $M=\mathfrak{a}_{1} \oplus \mathfrak{a}_{2} \oplus \cdots \oplus \mathfrak{a}_{n}$. If $\mathfrak{a}_{n} \supset \mathfrak{p}$ then the following are hold:
(1) $\left\{P_{i} \mid 0 \leq i \leq n\right\}$ is the set of v-submodules of M containing $\mathfrak{p} M$. In particular, P_{n} is a maximal v-submodul of M.
(2) P_{i} are not v-multiplication submodules for all $i(1 \leq i \leq n)$.
(3) P_{i} are not invertible for each $i(2 \leq i \leq n)$. So M is not a G-Dedekind module

From the Proposition 5.1.3, we have the following example.

Example 5.1.4 (Example 2.8 of [25]) Lat D_{0} be a Noetherian G-Dedekind domain and \mathfrak{a}_{0} be a maximal ideal of D_{0}. Put $D=D_{0}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ which is the polynomials ring over D_{0} in indeterminate $x_{1}, x_{2}, \cdots, x_{n}, \mathfrak{a}_{1}=\mathfrak{a}_{0}+x_{1} D+\cdots+x_{n} D$, $\mathfrak{a}_{i}=\mathfrak{a}_{0}\left[x_{1}, \cdots, x_{i-1}\right]+x_{i} D+\cdots+x_{n} D$ for each $i(2 \leq i \leq n)$ and $\mathfrak{p}_{i}=x_{i} D$ for all $i(1 \leq i \leq n)$. Then
(1) \mathfrak{p}_{i} are all minimal prime ideals of D such that $\mathfrak{a}_{n} \supset \mathfrak{p}_{n}$ and $\mathfrak{a}_{i} \supset \mathfrak{p}_{i}$ and $\mathfrak{a}_{i+1} \nsupseteq$ \mathfrak{p}_{i} for each $i(1 \leq i<n)$.
(2) \mathfrak{a}_{i} are all prime ideals of D such that $\mathfrak{a}_{1} \supset \mathfrak{a}_{2} \supset \cdots \supset \mathfrak{a}_{n}$ and $\left(\mathfrak{a}_{n}\right)_{v}=D$

On the other hand, related to the generalized Dedekind module and strongly graded module we have the following theorem.

Theorem 5.1.5 (Theorem 6.1 of [24]) Let $M=\oplus_{n \in \mathbb{Z}} M_{n}$ be a strongly graded module over strongly graded domain $D=\oplus_{n \in \mathbb{Z}} D_{n}$. If M_{0} is a G-Dedekind module, then M is a G-Dedekind D-module.

5.2. Further Work

The research will continue with the following approach.

1. Investigate whether the converse of Proposition 4.2.1 holds.
2. Examine whether the converse of Theorem 4.2 .9 is applicable.
3. Investigate whether the converse of Proposition 5.1.2 holds.
4. Investigate whether the converse of Theorem 5.1.5 holds.
5. Identifying the necessary and sufficient condition under which a strongly graded module $M=\oplus_{n \in \mathbb{Z}} M_{n}$ and a positively graded module $L=\oplus_{n \in \mathbb{Z}_{0}} M_{n}$ can be classified as Krull modules.

REFERENCES

[1] A. G. Naoum, F. H. Al-Alwan, 1996, Dedekind Modules, Communications in Algebra, Vol. 24, No. 2, p. 397-412.
[2] A. W. Chatters, C. R. Hajarnavis, 1980, Rings with Chain Conditions, Research Notes in Mathematics 44, Pitman Advanced Publishing Program.
[3] B. Stenström, 1975, Rings of Quotients: An Introduction to Methods of Ring Theory, Springer-Verlag, New York.
[4] C. Nǎstǎsescu, F. van Oystaeyen, 1987, Dimensions in Ring Theory, D. Reidel Publishing Company, Dordrecht.
[5] D. Eisenbud, 1995, Commutative Algebra with a View toward Algebraic Geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, Berlin, New York.
[6] D.Eisenbud, D., J.C. Robson, 1970, Hereditary Noetherian Prime Rings, Journal of Algebra, Vol. 16.
[7] D. Eisenbud, J. C. Robson, 1970, Modules Over Dedekind Prime Rings, Journal of Algebra, Vol. 16.
[8] D. M. Larsen, P. J. McCarthy, 1971, Multiplicative Theory of Ideals, Academic Press, Inc., New York.
[9] D. S. Malik J. N. Mordeson, M. K. Sen, 1997, Fundamentals of Abstract Algebra, The McGraw-Hill Companies, Inc., New York.
[10] E. Akalan, On Generalized Dedekind Prime Rings, Journal in Algebra, Vol. 320 (2008).
[11] E. Akalan, On rings whose reflexive ideals are principal, Comm. in Algebra, 38 (2010) 3174-3180.
[12] E. Akalan, P. Aydoğdu, H. Maruabayashi, B. Saraç, A. Ueda, 2017, Projective Ideals of Skew Polynomial Rings over HNP Rings, Communications in Algebra, Vol. 45, No. 6.
[13] E. Akalan, H. Marubayashi, A. Ueda, Generalized hereditary Noetherian prime rings, Journal of Algebra and Its Applications, 17(8) (2018).
[14] G. Cauchon, Les T-anneaux et les anneaux a identites polynomials Noetheriens, These de doctorat, Universite Paris XI, 1977.
[15] G. Q. Abbasi, S. Kobayashi, H. Marubayashi, and A. Ueda, 1991, Noncommutative unique factorization rings, Comm. in Algebra, 19(1), 167-198.
[16] H. Cartan, S. Eilenberg, 1956, Homological Algebra, Princeton University Press, New Jersey.
[17] H. Marubayashi, 1976, A Characterization of Bounded Krull Prime Rings, Osaka Journal of Mathematics, Vol. 15, Osaka.
[18] H. Marubayashi, A. Ueda, 2018, Examples of Ore Extensions which are Maximal Orders whose Based Rings are not Maximal Orders.
[19] H. Marubayashi, A. , Ueda, 2018, Projective Ideals of Differential Polynomial Rings over HNP Rings.
[20] H. Marubayashi, F. van Oystaeyen, 2012, Prime Divisors and Noncommutative Valuation Theory, Springer, New York.
[21] H. Marubayashi, E. Nauwelaerts, F. Van Oystaeyen, Graded rings over arithmetical orders, Comm. in Algebra 12(6) (1984) 745-775.
[22] H. Marubayashi, S. Wahyuni, I. E. Wijayanti, I. Ernanto, 2019, Strongly Graded Rings which are Maximal Orders, Scientiae Mathematicae Japonicae, Vol. 82, No. 3.
[23] I. Ernanto, H. Marubayashi, A. Ueda, S. Wahyuni, 2021, Positively Graded Rings which are Unique Factorization Rings, Vietnam Journal of Mathematics, Vol. 49 (2021)
[24] I. Ernanto, A. Ueda, I. E. Wijayanti, Sutopo, Some remarks on strongly graded modules (2022, Submitted to J. Algebra Appl.).
[25] I. Ernanto, H. Marubayashi, I.E. Wijayanti, Some Remarks on Modules over Generalized Dedekind Domains (2022, Published online at Scientiae Mathematicae Japonicae, online edition).
[26] I. Ernanto, I.E. Wijayanti A. Ueda, Strongly Graded Modules and Positively Graded Modules which are Unique Factorization Modules (2023, Published online at International Electronic Journal of Algebra).
[27] I. E. Wijayanti, H. Marubayashi, Sutopo, 2020, Positively Graded Rings which are Maximal Orders and Generalized Dedekind Prime Rings, Journal of Algebra and Its Applications, Vol. 19, No. 8, 2050143
[28] I. E. Wijayanti, H. Marubayashi, I. Ernanto, Sutopo, 2020, Finitely Generated Torsion-free Modules over Integrally Closed Domains, Communications in Algebra, Vol. 48.
[29] I. E. Wijayanti, H. Marubayashi, I. Ernanto, Sutopo, 2022, Arithmetic Modules over Generalized Dedekind Domains, Journal of Algebra and Its Applications, Vol. 21, No. 03, 2250045.
[30] J. C. Robson, 1968, Non-commutative Dedekind Rings, Journal of Algebra, Vol. 9.
[31] J. C. McConnell, J. C. Robson, 2001, Noncommutative Noetherian Rings, Wiley, New York.
[32] M. M. Ali, 2013, Invertibility of Multiplication Modules IV, New Zealand Journal of Mathematics, Vol. 43.
[33] M. Atiyah, I. MacDonald, 1994, Introduction to Commutative Algebra, Westview Press.
[34] M. Chamarie, Anneaux de Krull non commutatifs, J. Algebra, 72 (1981) 210222.
[35] M. M. Nurwigantara, I. E. Wijayanti, H. Marubayashi, H., S. Wahyuni, Krull Modules and Completely Integrally Closed Modules, Journal of Algebra and Its Applications, Vol 21, No. 1.
[36] M. Zafrullah, 1986, On Generalized Dedekind Domains, Mathematika, Vol. 33.
[37] R. Gilmer, 1992, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, Vol. 90.
[38] R. Wisbauer, 1991, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers.
[39] S. Lang, 2002, Algebra, Springer-Verlag, New York.
[40] S. Wahyuni, H. Marubayashi, I. Ernanto, Sutopo, 2019, Strongly Graded Rings which are Generalized Dedekind Rings, Communications in Algebra, Vol. 48.
[41] S. Wahyuni, H. Marubayashi, I. Ernanto, I. P.Y. Prabhadika, On Unique Factorization Modules: A Submodule Approach, Axioms, 11 (6) (2022), 288. https://doi.org/10.3390/axioms11060288
[42] T.Y. Lam, 1999, Lectures on Modules and Rings, Springer-Verlag, New York.
[43] William A. Adkins, Steven H. Weintraub, 1992, Algebra "An Approach via Module Theory", Springer-Verlag New York, Inc., New York.
[44] Z. A. El-Bast, P.P. Smith, 1988, Multiplication Modules, Communications in Algebra, Vol. 16, No. 4.

