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ON LOCAL WELL-POSEDNESS FOR 𝐻 𝑠-CRITICAL NONLINEAR
SCHRÖDINGER EQUATIONS

KOSUKE TABATA AND TAKESHI WADA

ABSTRACT. This paper concerns the Cauchy problem for the nonlinear Schrödinger equation
with power nonlinearity. Time local well-posedness in 𝐻𝑠(ℝ𝑁 ) is proved in the case where
the nonlinear term is critical from the scaling point of view, and has limited regularity so that
the nonlinear term does not belong to 𝐶𝑠(ℝ2;ℝ2).

1. INTRODUCTION

In this paper we consider the following Cauchy problem for the nonlinear Schrödinger
equation with power nonlinearity:

𝑖𝜕𝑡𝑢 + Δ𝑢 = 𝑓 (𝑢) ≡ 𝜆|𝑢|𝛼𝑢, 𝑢(0) = 𝜑, (1.1)

where 𝑢 is a complex-valued function defined on the spacetime ℝ1+𝑁 with 𝑁 ≥ 3, Δ is the
Laplace operator onℝ𝑁 , 𝜆 ∈ ℂ, and 𝛼 > 0. We introduce the free propagator𝑈 (𝑡) = exp(𝑖𝑡Δ)
and convert (1.1) into at least formally equivalent integral equation

𝑢(𝑡) = Φ(𝑢)(𝑡) ≡ 𝑈 (𝑡)𝜑 − 𝑖 ∫
𝑡

0
𝑈 (𝑡 − 𝜏)𝑓 (𝑢(𝜏)) 𝑑𝜏. (1.2)

We need the Sobolev space 𝐻 𝑠(ℝ𝑁 ) and the Besov space 𝐵𝑠
𝑟,2(ℝ

𝑁 ), where 𝑠 ∈ ℝ and 1 <
𝑟 < ∞. We are interested in the well-posedness of (1.1) in 𝐻 𝑠(ℝ𝑁 ). From the scaling point
of view, the critical exponent for 𝛼 in 𝐻 𝑠(ℝ𝑁 ) is

𝛼 = 𝛼∗(𝑠) ≡ 4
𝑁 − 2𝑠

.

Roughly speaking, (1.1) is expected to be time locally well-posed in 𝐻 𝑠(ℝ𝑁 ) if 𝛼 ≤ 𝛼∗(𝑠)
(𝛼 < ∞ if 𝑠 ≥ 𝑁∕2). We mainly study the critical case, so throughout the paper we always
assume 0 < 𝑠 < 𝑁∕2.

There is a large amount of work on the well-posedness of (1.1). To describe the preceding
results precisely, we should distinguish the cases (i) 𝛼 > 𝑠−1 and (ii) 𝛼 ≤ 𝑠−1. We note that
the complex-valued function 𝑓 (𝑧) belongs to the class 𝐶𝛼+1(ℝ2;ℝ2), which is understood as
𝐶𝛼,1(ℝ2;ℝ2) if 𝛼 is an integer. Therefore, if 𝛼 > 𝑠−1, then the nonlinear term 𝑓 (𝑢) is 𝑠-times
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2 K. TABATA AND T. WADA

differentiable in 𝑥, so that we can directly multiply (1 − Δ)𝑠∕2 by the equation and estimate
𝑢 in 𝐶([0, 𝑇 ];𝐻 𝑠(ℝ𝑁 )) or Bochner type spaces 𝐿𝑞(0, 𝑇 ;𝐵𝑠

𝑟,2(ℝ
𝑁 )). On the other hand, if

𝛼 ≤ 𝑠−1, then 𝑓 (𝑢) is not smooth enough to be estimated in Sobolev/Besov spaces of order 𝑠.
To overcome this difficulty, we should reduce the total number of derivatives by evaluating
𝜕𝑡𝑢 instead of Δ𝑢, since one time derivative is homogeneous to two space derivatives for the
Schrödinger equation. Once we obtain the estimate of 𝜕𝑡𝑢, then using the equation itself we
can recover spatial regularity.

We first summarize the previous results concerning the case (i) 𝛼 > 𝑠 − 1. It is known
that if 𝑠 − 1 < 𝛼 ≤ 𝛼∗(𝑠), then (1.1) is time locally well-posed in 𝐻 𝑠(ℝ𝑁 ). See Ginibre–
Velo [9, 10], Tsutsumi [22] and Kato [11, 12] for subcritical cases 𝛼 < 𝛼∗(𝑠) with 𝑠 = 0, 1;
for the case 𝑠 − 1 < 𝛼 ≤ 𝛼∗(𝑠) with 0 ≤ 𝑠 < 𝑁∕2, where the critical case is included, see
Cazenave–Weissler [5] and Kato [13]. Precisely speaking, more strict condition 𝛼 > [𝑠] is
assumed in [5, 13], but if we use a nonlinear estimate derived by Ginibre–Ozawa–Velo [8],
we can bring down the lower bound to 𝛼 > 𝑠 − 1.

We next consider the case (ii) 𝛼 ≤ 𝑠 − 1. Let 𝛼∗(𝑠) ≡ max{0; (𝑠 − 2)∕2; 𝑠 − 3}. We
have 𝛼∗(𝑠) < 𝑠 − 1 for 𝑠 > 1. It is known that if 𝛼∗(𝑠) < 𝛼 < 𝛼∗(𝑠) with 1 < 𝑠 < 𝑁∕2,
namely if the nonlinear term is subcritical, then (1.1) is time locally well-posed in 𝐻 𝑠(ℝ𝑁 );
see Tsutsumi [21], Kato [11, 12] and Cazenave–Weissler [5] for 𝑠 = 2, and Pecher [17],
Fang–Han [7], Uchizono–Wada [23, 24], and Wada [25] for 1 < 𝑠 < 𝑁∕2. Unlike the
case (i), the well-posedness for the critical case has not been well-studied. If 𝑠 = 2 and
𝛼 = 𝛼∗(2) = 4∕(𝑁 − 4) with 𝑁 ≥ 8, Cazenave–Fang–Han [4] showed that (1.1) is time
locally well-posed in 𝐻2(ℝ𝑁 ). Nakamura–Wada [15, 16] showed that if 1 < 𝑠 < 4 and
𝛼∗(𝑠) < 𝛼 = 𝛼∗(𝑠), then (1.1) is time globally well-posed in 𝐻 𝑠(ℝ𝑁 ) for small data (the case
𝑠 = 2 had been solved in [5]). Nevertheless, to the best of our knowledge, there is no prior
work except [4] concerning the critical case without restriction on the size of data.

This paper aims to prove the time local well-posedness for large data under the condition
that 𝛼 = 𝛼∗(𝑠) ≤ 𝑠 − 1. To state the main result in this paper, we set

𝛼0(𝑠) =

⎧⎪⎪⎨⎪⎪⎩

1, 2 < 𝑠 ≤ 3,

𝑠 − 2, 3 < 𝑠 ≤ 4,

2, 4 < 𝑠 ≤ 5,

𝑠 − 3, 5 < 𝑠.

Clearly, 𝛼∗(𝑠) < 𝛼0(𝑠) < 𝑠 − 1 for 2 < 𝑠 < 5, and 𝛼∗(𝑠) = 𝛼0(𝑠) for 𝑠 ≥ 5. We shall prove the
following:

Theorem 1.1. Let 2 < 𝑠 < 𝑁∕2 and let 𝛼0(𝑠) < 𝛼 = 𝛼∗(𝑠). For any 𝜑 ∈ 𝐻 𝑠(ℝ𝑁 ), there
exists 𝑇 > 0 such that the following hold:

(i) The equation (1.2) has a unique solution 𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )), where 𝐼 = [0, 𝑇 ]. Fur-
thermore, 𝑢 ∈ 𝐿𝑞(𝐼 ;𝐵𝑠

𝑟,2(ℝ
𝑁 )) for any admissible pair (𝑞, 𝑟).
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(ii) Let {𝜑𝑘}∞𝑘=1 ⊂ 𝐻
𝑠(ℝ𝑁 ) satisfy 𝜑𝑘 → 𝜑 in𝐻 𝑠(ℝ𝑁 ). Then, for sufficiently large 𝑘, (1.2)

with 𝜑 replaced with 𝜑𝑘 has a unique solution 𝑢𝑘 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )). Furthermore, 𝑢𝑘 → 𝑢 in
𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )).

There exists a number 𝑠 satisfying 2 < 𝑠 < 𝑁∕2 and 𝛼∗(𝑠) ≤ 𝑠 − 1 only when 𝑁 ≥ 8. In
this case, Theorem 1.1 gives a new result. On the other hand, if 5 ≤ 𝑁 ≤ 7, the result above
has already been shown in [5, 6], including continuous dependence with respect to the data.

This paper is organized as follows. In §2, we first give notation used in this paper. Next
we summarize linear and nonlinear estimates used in the proof of Theorem 1.1. In §3, we
give the proof of Theorem 1.1, which is done by a series of propositions. We divide the
proof into the case 𝑠 − 2 < 𝛼 ≤ 𝑠 − 1 (Propositions 3.1 and 3.2), and the case 𝑠 − 3 < 𝛼 ≤
𝑠 − 2 (Propositions 3.3 and 3.4), since in the latter case we need the second derivative 𝜕2𝑡 𝑢.
In the critical case, it is difficult to show that the nonlinear term 𝑓 (𝑢) is sufficiently small
in 𝐿𝑞(𝐼 ;𝐵𝑠−2

𝑟,2 ) so that the contraction mapping principle works. To this end, we estimate
𝑓 (𝑢) − 𝑈 (𝑡)𝜑 instead, by the use of Lemmas 2.3 and 2.4.

2. PRELIMINARIES

We begin this section with giving notation used in this paper. For 1 ≤ 𝑟 ≤ ∞, we set
𝑟′ = 𝑟∕(𝑟−1). We denote by𝐿𝑟(ℝ𝑁 ) the usual Lebesgue spaces. Let 𝑠 ∈ ℝ and 1 ≤ 𝑟, 𝑚 ≤ ∞.
We define the Sobolev space 𝐻 𝑠(ℝ𝑁 ) by

𝐻 𝑠(ℝ𝑁 ) = {𝑢 ∈ S ′(ℝ𝑁 ) ∶ ‖𝑢‖𝐻𝑠 ≡ ‖(1 − Δ)𝑠∕2𝑢‖𝐿2 <∞}.

We also define the Besov space 𝐵𝑠
𝑟,𝑚(ℝ

𝑁 ). For this purpose, we need Littlewood–Paley de-
composition. Let 𝜒 ∈ 𝐶∞

0 (ℝ𝑁 ) be a spherically symmetric function satisfying 0 ≤ 𝜒(𝜉) ≤ 1
with 𝜒(𝜉) = 1 for |𝜉| ≤ 1, and with 𝜒(𝜉) = 0 for |𝜉| ≥ 2. We set 𝜂𝑘(𝜉) = 𝜒(𝜉∕2𝑘)−𝜒(𝜉∕2𝑘−1).
Then we have supp 𝜂𝑘 ⊂ {𝜉 ∶ 2𝑘−1 ≤ |𝜉| ≤ 2𝑘+1}, and 𝜒(𝜉) +

∑∞
𝑘=1 𝜂𝑘(𝜉) = 1 for all 𝜉 ∈ ℝ𝑁 .

We set

𝐵𝑠
𝑟,𝑚(ℝ

𝑁 ) = {𝑢 ∈ S ′(ℝ𝑁 ) ∶ ‖𝑢‖𝐵𝑠𝑟,𝑚 <∞},

where

‖𝑢‖𝐵𝑠𝑟,𝑚 ≡ ‖𝜒(𝐷)𝑢‖𝐿𝑟 + ( ∞∑
𝑘=1

2𝑠𝑘𝑚‖𝜂𝑘(𝐷)𝑢‖𝑚𝐿𝑟)1∕𝑚
,

with trivial modification if 𝑚 = ∞. Here, 𝜒(𝐷) = F−1𝜒(𝜉)F , and F denotes the Fourier
transform. In this paper, we always take𝑚 = 2, so we omit the third index and write𝐵𝑠

𝑟 (ℝ
𝑁 ) =

𝐵𝑠
𝑟,2(ℝ

𝑁 ) for short. If 𝑟 = 2, then 𝐵𝑠
2(ℝ

𝑁 ) = 𝐻 𝑠(ℝ𝑁 ). For the detail, see [1,2,19,20]. For an
interval 𝐼 ⊂ ℝ and a Banach space𝑋, we denote by 𝐶𝑘(𝐼 ;𝑋) the space of 𝐶𝑘-functions from
𝐼 to 𝑋, and by 𝐿𝑞(𝐼 ;𝑋) the space of measurable functions 𝑢 from 𝐼 to 𝑋 with ‖𝑢‖𝐿𝑞(𝑋) ≡‖𝑢‖𝐿𝑞(𝐼 ;𝑋) < ∞. Similarly, we denote by 𝑊 𝑘,𝑞(𝐼 ;𝑋) the space of functions 𝑢 from 𝐼 to 𝑋
which are weakly differentiable up to 𝑘-times with ‖𝑢‖𝑊 𝑘,𝑞(𝑋) ≡ max0≤𝑗≤𝑘 ‖𝜕𝑗𝑡 𝑢‖𝐿𝑞(𝑋) <∞.
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We next prepare several indices that are used throughout the paper. Let 𝛼 = 𝛼∗(𝑠). We set

𝛾 = 𝛼 + 2, 𝜌 = 𝛼 + 2
1 + 𝛼𝑠∕𝑁

, 1
𝜌∗

= 1
2
− 1
𝑁
, (2.1)

1
𝜇
= 1

2
− 𝑠
𝑁
, 1

𝜈
= 1
𝜌
− 𝑠
𝑁

= 𝑁 − 2𝑠
𝑁(𝛼 + 2)

. (2.2)

Since 𝑁 ≥ 3, 𝛼 > 0 and 0 < 𝑠 < 𝑁∕2, we see 2 < 𝛾, 𝜌, 𝜌∗, 𝜇, 𝜈 < ∞. These exponents are
defined so that 1∕𝜌′ = 𝛼∕𝜈 + 1∕𝜌 and that 2∕𝛾 = 𝑁∕2 −𝑁∕𝜌 = 2∕(𝛼 + 2); namely (𝛾, 𝜌) is
an admissible pair defined below. The pair (2, 𝜌∗) is also an admissible pair, which is called
the endpoint. Furthermore, for 𝑗 = 1, 2 with 𝑠 − 2𝑗 > 0, we also set

1
𝜌𝑗

= 1
𝜌
−

2𝑗
𝑁
, 1

𝜌∗𝑗
= 1

2
−

(2𝑗 + 1)
𝑁

, 1
𝜅𝑗

= 1
2
−

2𝑗
𝑁
. (2.3)

provided that the right-hand sides are positive. It follows from the Sobolev embedding theo-
rem [2, Theorem 6.5.1] that

𝐻 𝑠(ℝ𝑁 ) ⊂ 𝐵𝑠−2𝑗
𝜅𝑗

(ℝ𝑁 ) ⊂ 𝐿𝜇(ℝ𝑁 ) and 𝐵𝑠
𝜌(ℝ

𝑁 ) ⊂ 𝐵𝑠−2𝑗
𝜌𝑗

(ℝ𝑁 ) ⊂ 𝐿𝜈(ℝ𝑁 ).

Definition 2.1. Let 𝑁 ≥ 3. A pair of numbers (𝑞, 𝑟) is said to be admissible if (𝑞, 𝑟) ∈
[2,∞] × [2, 2𝑁∕(𝑁 − 2)] and if 2∕𝑞 = 𝑁∕2 −𝑁∕𝑟.

Lemma 2.1. Let 𝑠 ∈ ℝ. Let (𝑞, 𝑟) and (𝑞0, 𝑟0) be two admissible pairs. For 𝜑 ∈ 𝐻 𝑠(ℝ𝑁 ) and
𝑓 ∈ 𝐿𝑞′0(ℝ;𝐵𝑠

𝑟′0
(ℝ𝑁 )), we set

𝑢(𝑡) = 𝑈 (𝑡)𝜑 − 𝑖 ∫
𝑡

0
𝑈 (𝑡 − 𝜏)𝑓 (𝜏) 𝑑𝜏.

Then, the following estimate holds:

‖𝑢‖𝐿𝑞(𝐵𝑠𝑟 ) ≲ ‖𝜑‖𝐻𝑠 + ‖𝑓‖
𝐿𝑞

′
0 (𝐵𝑠

𝑟′0
)
. (2.4)

Furthermore, we have 𝑢 ∈ 𝐶(ℝ;𝐻 𝑠(ℝ𝑁 )).

Proof. See [5, 14, 18, 26] □

Definition 2.2. Let 𝛼 > 0. We say that a function 𝑔 ∶ ℂ → ℂ belongs to the class 𝐴(𝛼+1) if
𝑔 ∈ 𝐶𝑚(ℝ2,ℝ2) for any nonnegative integer 𝑚 < 𝛼 + 1, if 𝑔(0) = 𝑔′(0) = ⋯ = 𝑔(𝑚)(0) = 0,
and if

|𝑔(𝑚)(𝑧1) − 𝑔(𝑚)(𝑧2)| ≤ 𝐶

{
(|𝑧1| + |𝑧2|)𝛼−𝑚|𝑧1 − 𝑧2|, 𝑚 < 𝛼,|𝑧1 − 𝑧2|𝛼+1−𝑚, 𝛼 ≤ 𝑚 < 𝛼 + 1.

Remark. (i) 𝑔(𝑧) = |𝑧|𝛼𝑧 ∈ 𝐴(𝛼 + 1) for 𝛼 > 0;
(ii) if 𝑔(𝑧) ∈ 𝐴(𝛼 + 1) with 𝛼 > 1, then 𝑔′(𝑧) ∈ 𝐴(𝛼).
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Lemma 2.2. Let 𝛼 > 0, 𝑔 ∈ 𝐴(𝛼 + 1), 0 < 𝜎 < 𝛼 + 1 and 1 < 𝑟, 𝑟0, 𝑟1, 𝑟2, 𝑟3 < ∞. Then the
following estimates hold for all 𝑢, 𝑣,𝑤 such that the norms in the right-hand sides are finite:

(i) If 1∕𝑟 = 𝛼∕𝑟0 + 1∕𝑟1, then

‖𝑔(𝑢)‖𝐵𝜎𝑟 ≤ 𝐶‖𝑢‖𝛼𝑟0‖𝑢‖𝐵𝜎𝑟1 . (2.5)

(ii) If max{1; 𝜎} < 𝛼 and 1∕𝑟 = (𝛼 − 1)∕𝑟0 + 1∕𝑟1 + 1∕𝑟2 − 𝜎∕𝑁 with 2𝑁∕(𝑁 + 2𝜎) ≤
𝑟𝑗 < 𝑁∕𝜎, 1 ≤ 𝑗 ≤ 2, then

‖𝑔′(𝑢)𝑣‖𝐵𝜎𝑟 ≲ ‖𝑢‖𝛼−1𝐿𝑟0 ‖𝑢‖𝐵𝜎𝑟1‖𝑣‖𝐵𝜎𝑟2 . (2.6)

(iii) If max{1; 𝜎} < 𝛼 − 1 and 1∕𝑟 = (𝛼 − 2)∕𝑟0 + 1∕𝑟1 + 1∕𝑟2 + 1∕𝑟3 − 2𝜎∕𝑁 with
2𝑁∕(𝑁 + 2𝜎) ≤ 𝑟𝑗 < 𝑁∕𝜎, 1 ≤ 𝑗 ≤ 3, then

‖𝑔′′(𝑢)𝑣𝑤‖𝐵𝜎𝑟 ≲ ‖𝑢‖𝛼−2𝐿𝑟0 ‖𝑢‖𝐵𝜎𝑟1‖𝑣‖𝐵𝜎𝑟2‖𝑤‖𝐵𝜎𝑟3 . (2.7)

Proof. For the proof of (2.5), see e.g. [8, Lemma 3.4]. To prove (2.6), we set 1∕𝑚𝑗 = 1∕𝑟𝑗 −
𝜎∕𝑁 , 1 ≤ 𝑗 ≤ 2. By assumption, we see 2 ≤ 𝑚𝑗 < ∞. From the Sobolev inequality, we
have the inclusions 𝐵𝜎

𝑟𝑗
⊂ 𝐿𝑚𝑗 . Let 1∕𝑚∗ = 1∕𝑟 − 1∕𝑚2 and 1∕𝑟∗ = 1∕𝑟 − 1∕𝑟2. Since

1∕𝑚∗ = (𝛼 − 1)∕𝑟0 + 1∕𝑟1 and 1∕𝑟∗ = (𝛼 − 1)∕𝑟0 + 1∕𝑚1, it follows from (2.5) together with
the Leibniz rule that

‖𝑔′(𝑢)𝑣‖𝐵𝜎𝑟 ≲ ‖𝑔′(𝑢)‖𝐵𝜎𝑚∗‖𝑣‖𝑚2
+ ‖𝑔′(𝑢)‖𝑟∗‖𝑣‖𝐵𝜎𝑟2

≲ ‖𝑢‖𝛼−1𝐿𝑟0 ‖𝑢‖𝐵𝜎𝑟1‖𝑣‖𝐿𝑚2 + ‖𝑢‖𝛼−1𝐿𝑟0 ‖𝑢‖𝐿𝑚1‖𝑣‖𝐵𝜎𝑟2 ≲ ‖𝑢‖𝛼−1𝐿𝑟0 ‖𝑢‖𝐵𝜎𝑟1‖𝑣‖𝐵𝜎𝑟2 .
Thus we have proved (2.6). We can prove (2.7) in the same way. □

Lemma 2.3. Let 1 < 𝑞 ≤ 𝑟 < ∞ and let 1 < 𝑟0, 𝑟1 < ∞ with 𝑞∕𝑟 = (𝑞 − 1)∕𝑟0 + 1∕𝑟1.
Let 𝐼 = [0, 𝑇 ] and let 𝑣 ∈ 𝐿𝑞(𝐼 ;𝐿𝑟0(ℝ𝑁 )) ∩𝑊 1,𝑞(𝐼 ;𝐿𝑟1(ℝ𝑁 )) satisfy 𝑣(0) = 0. Then the
following estimate holds:

‖𝑣‖𝑞𝐿∞(𝐿𝑟) ≲ ‖𝑣‖𝑞−1𝐿𝑞(𝐿𝑟0 )‖�̇�‖𝐿𝑞(𝐿𝑟1 ). (2.8)

Moreover, if 𝜎 ∈ ℝ, 𝑞 = 2 and 𝑣 ∈ 𝐿2(𝐼 ;𝐵𝜎
𝑟0
(ℝ𝑁 )) ∩𝑊 1,2(𝐼 ;𝐵𝜎

𝑟1
(ℝ𝑁 )) with 𝑣(0) = 0, then

the following estimate holds:

‖𝑣‖2𝐿∞(𝐵𝜎𝑟 )
≲ ‖𝑣‖𝐿2(𝐵𝜎𝑟0 )

‖�̇�‖𝐿2(𝐵𝜎𝑟1 )
. (2.9)

Proof. We have the identity 𝜕𝑡|𝑣|𝑞 = 𝑞|𝑣|𝑞−2 Re(�̄��̇�). Integrating the both sides on 𝑡 and using
𝑣(0) = 0, we obtain

|𝑣(𝑡)|𝑞 ≤ 𝑞 ∫
𝑇

0
|𝑣(𝑡)|𝑞−1|�̇�(𝑡)| 𝑑𝑡.

Therefore, it follows from the Minkowski and Hölder inequalities that

‖𝑣(𝑡)‖𝑞𝐿𝑟 ≤ 𝑞 ∫
𝑇

0
‖𝑣(𝑡)‖𝑞−1𝐿𝑟0 ‖�̇�(𝑡)‖𝐿𝑟1 𝑑𝑡 ≤ 𝑞‖𝑣‖𝑞−1𝐿𝑞(𝐿𝑟0 )‖�̇�‖𝐿𝑞(𝐿𝑟1 ). (2.10)
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Taking the supremum on 𝐼 , we obtain (2.8). We shall next prove (2.9). Recall that 𝜒 and
𝜂𝑘 are Littlewood–Paley functions. Letting 𝑞 = 2 in (2.10) and replacing 𝑣 with 𝜂𝑘(𝐷)𝑣, we
obtain ‖𝜂𝑘(𝐷)𝑣(𝑡)‖2𝐿𝑟 ≤ 2‖𝜂𝑘(𝐷)𝑣‖𝐿2(𝐿𝑟0 )‖𝜂𝑘(𝐷)�̇�‖𝐿2(𝐿𝑟1 )

for every 𝑡 ∈ 𝐼 . We also have the analogous inequality for 𝜒(𝐷)𝑣. Taking the summation
and applying the Schwarz inequality in 𝑘, we obtain the desired estimate. □

Lemma 2.4. Let 2 < 𝑠 < 𝑁∕2 and 𝛼 = 𝛼∗(𝑠). Let 1 ≤ 𝑞 ≤ ∞ and 1 < 𝑟 < 𝑁∕2. Let
1∕𝑟1 = 1∕𝑟 − 2∕𝑁 . Then the following estimates hold for all 𝑢, 𝑣,𝑤 such that the norms in
the right-hand sides are finite:

(i) If 0 < 𝜎 < 𝛼 + 1, then we have

‖𝑓 (𝑢)‖𝐿𝑞(𝐵𝜎𝑟 ) ≲ ‖𝑢‖𝛼𝐿∞(𝐿𝜇)‖𝑢‖𝐿𝑞(𝐵𝜎𝑟1 ). (2.11)

(ii) If 0 < 𝜎 ≤ 𝑠 − 2, max{1; 𝜎} < 𝛼, and 2𝑁∕(𝑁 + 2𝜎 + 4) ≤ 𝑟 < 𝑁∕(𝜎 + 2), then we
have

‖𝑓 (𝑢) − 𝑓 (𝑣)‖𝐿𝑞(𝐵𝜎𝑟 ) ≲ (‖𝑢‖𝐿∞(𝐿𝜇) ∨ ‖𝑣‖𝐿∞(𝐿𝜇))𝛼−1

× (‖𝑢‖𝐿𝑞(𝐵𝜎𝑟1 ) ∨ ‖𝑣‖𝐿𝑞(𝐵𝜎𝑟1 ))‖𝑢 − 𝑣‖𝐿∞(𝐵𝑠−2𝜅1
). (2.12)

(iii) If 𝑠 > 4, max{1; 𝑠 − 4} < 𝛼, and 2𝑁∕(𝑁 + 2𝑠) ≤ 𝑟 < 𝑁∕𝑠, then we have

‖𝑓 ′(𝑢)𝑣‖𝐿𝑞(𝐵𝑠−4𝑟 ) ≲ ‖𝑢‖𝛼−1𝐿∞(𝐿𝜇)‖𝑢‖𝐿𝑞(𝐵𝑠−2𝑟1
)‖𝑣‖𝐿∞(𝐵𝑠−4𝜅1

), (2.13)‖𝑓 (𝑢) − 𝑓 (𝑣)‖𝐿𝑞(𝐵𝑠−4𝑟 ) ≲ (‖𝑢‖𝐿∞(𝐿𝜇) ∨ ‖𝑣‖𝐿∞(𝐿𝜇))𝛼−1

× (‖𝑢‖𝐿𝑞(𝐵𝑠−2𝑟1
) ∨ ‖𝑣‖𝐿𝑞(𝐵𝑠−2𝑟1

))‖𝑢 − 𝑣‖𝐿∞(𝐵𝑠−4𝜅1
). (2.14)

(iv) If 𝑠 > 4, max{1; 𝑠−4} < 𝛼−1, and 2𝑁∕(𝑁 +2𝑠−4) ≤ 𝑟 < 𝑁∕(𝑠−2), then we have

‖{𝑓 ′(𝑢) − 𝑓 ′(𝑣)}𝑤‖𝐿𝑞(𝐵𝑠−4𝑟 ) ≲ (‖𝑢‖𝐿∞(𝐿𝜇) ∨ ‖𝑣‖𝐿∞(𝐿𝜇))𝛼−2(‖𝑢‖𝐿∞(𝐵𝑠−4𝜅2
) ∨ ‖𝑣‖𝐿∞(𝐵𝑠−4𝜅2

))

× ‖𝑢 − 𝑣‖𝐿∞(𝐵𝑠−4𝜅2
)‖𝑤‖𝐿𝑞(𝐵𝑠−4𝑟1

). (2.15)

Proof. Since 1∕𝑟 = 𝛼∕𝜇 + 1∕𝑟1, the estimate (2.11) follows from Lemma 2.2 (i). The in-
equality (2.12) is proved by Lemma 2.2 together with the mean value theorem. We write

𝑓 (𝑢) − 𝑓 (𝑣) = ∫
1

0
𝑓 ′(𝑢𝜃)(𝑢 − 𝑣) 𝑑𝜃

with 𝑢𝜃 = 𝜃𝑢 + (1 − 𝜃)𝑣. Therefore, we have

‖𝑓 (𝑢) − 𝑓 (𝑣)‖𝐿𝑞(𝐵𝜎𝑟 ) ≤ max
0≤𝜃≤1 ‖𝑓 ′(𝑢𝜃)(𝑢 − 𝑣)‖𝐿𝑞(𝐵𝜎𝑟 ).

We set 1∕𝜇∗ = 1∕𝜇 + 𝜎∕𝑁 = 1∕𝜅1 − (𝑠 − 𝜎 − 2)∕𝑁 , so that we have the relation 1∕𝑟 =
(𝛼 − 1)∕𝜇 + 1∕𝑟1 + 1∕𝜇∗ − 𝜎∕𝑁 . By assumption, we have 2𝑁∕(𝑁 + 2𝜎) ≤ 𝑟1, 𝜇∗ < 𝑁∕𝜎.
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From the Sobolev inequality, we have the inclusion 𝐵𝑠−2
𝜅1

(ℝ𝑁 ) ⊂ 𝐵𝜎
𝜇∗(ℝ

𝑁 ). Hence, it follows
from Lemma 2.2 (ii) that

‖𝑓 ′(𝑢𝜃)(𝑢 − 𝑣)‖𝐵𝜎𝑟 ≲ ‖𝑢𝜃‖𝛼−1𝐿𝜇 ‖𝑢𝜃‖𝐵𝜎𝑟1‖𝑢 − 𝑣‖𝐵𝜎𝜇∗
≲ (‖𝑢‖𝐿𝜇 ∨ ‖𝑣‖𝐿𝜇)𝛼−1(‖𝑢‖𝐵𝜎𝑟1 ∨ ‖𝑣‖𝐵𝜎𝑟1 )‖𝑢 − 𝑣‖𝐵𝑠−2𝜅1

. (2.16)

Taking the𝐿𝑞-norm in 𝑡, we obtain (2.12). We shall next prove (2.13). Let 1∕𝑟2 = 1∕𝑟−4∕𝑁 .
From the Sobolev inequality, 𝐵𝑠−2

𝑟1
⊂ 𝐵𝑠−4

𝑟2
. We have the relation 1∕𝑟 = (𝛼 − 1)∕𝜇 + 1∕𝑟2 +

1∕𝜅1 − (𝑠 − 4)∕𝑁 . Hence, it follows from Lemma 2.2 (ii) that

‖𝑓 ′(𝑢)𝑣‖𝐵𝑠−4𝑟
≲ ‖𝑢‖𝛼−1𝐿𝜇 ‖𝑢‖𝐵𝑠−4𝑟2

‖𝑣‖𝐵𝑠−4𝜅1
≲ ‖𝑢‖𝛼−1𝐿𝜇 ‖𝑢‖𝐵𝑠−2𝑟1

‖𝑣‖𝐵𝑠−4𝜅1
.

Taking the𝐿𝑞-norm in 𝑡, we obtain (2.13). The estimate (2.14) immediately follows from (2.13)
and the mean value theorem. To prove (2.15), we write

{𝑓 ′(𝑢) − 𝑓 ′(𝑣)}𝑤 = ∫
1

0
𝑓 ′′(𝑢𝜃)(𝑢 − 𝑣)𝑤𝑑𝜃,

so that the left-hand side of (2.15) is bounded by max0≤𝜃≤1 ‖𝑓 ′′(𝑢𝜃)(𝑢 − 𝑣)𝑤‖𝐿𝑞(𝐵𝑠−4𝑟 ). Here,
𝑢𝜃 is the same as above. Since 1∕𝑟 = (𝛼 − 2)∕𝜇 + 2∕𝜅2 + 1∕𝑟1 − 2(𝑠− 4)∕𝑁 , it follows from
Lemma 2.2 (iii) that

‖𝑓 ′′(𝑢𝜃)(𝑢 − 𝑣)𝑤‖𝐵𝑠−4𝑟
≲ ‖𝑢𝜃‖𝛼−2𝐿𝜇 ‖𝑢𝜃‖𝐵𝑠−4𝜅2

‖𝑢 − 𝑣‖𝐵𝑠−4𝜅2
‖𝑤‖𝐵𝑠−4𝑟1

≲ (‖𝑢‖𝐿𝜇 ∨ ‖𝑣‖𝐿𝜇)𝛼−2(‖𝑢‖𝐵𝑠−4𝜅2
∨ ‖𝑣‖𝐵𝑠−4𝜅2

)‖𝑢 − 𝑣‖𝐵𝑠−4𝜅2
‖𝑤‖𝐵𝑠−4𝑟1

.

Taking the 𝐿𝑞-norm in 𝑡, we obtain (2.15). □

Lemma 2.5. Let 2 < 𝑠 < 𝑁∕2 and 𝛼 = 𝛼∗(𝑠). Then the following estimates hold for all
𝑢, 𝑢1, 𝑢2 such that the norms in the right-hand sides are finite:

(i) If 0 < 𝜎 < min{𝛼 + 1;𝑁∕2}, then

‖𝑓 (𝑢)‖𝐿𝛾′ (𝐵𝜎
𝜌′
) ≲ ‖𝑢‖𝛼𝐿𝛾 (𝐿𝜈)‖𝑢‖𝐿𝛾 (𝐵𝜎𝜌 ), (2.17)

‖𝑓 (𝑢)‖𝐿2(𝐵𝜎𝜌∗ )
≲ (‖𝑢‖𝐿∞(𝐿𝜇)‖𝑢‖𝐿𝛾 (𝐿𝜈 ))𝛼∕2‖𝑢‖𝐿𝛾 (𝐵𝜎𝜌1 ). (2.18)

(ii) If 𝛼 > max{1; 𝑠 − 2}, then

‖𝑓 ′(𝑢)𝑢1‖𝐿𝛾′ (𝐵𝑠−2
𝜌′

) ≲ ‖𝑢‖𝛼−1𝐿𝛾 (𝐿𝜈)‖𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1
)‖𝑢1‖𝐿𝛾 (𝐵𝑠−2𝜌 ), (2.19)

‖𝑓 ′(𝑢)𝑢1‖𝐿2(𝐵𝑠−2𝜌∗ ) ≲ (‖𝑢‖𝐿∞(𝐿𝜇)‖𝑢‖𝐿𝛾 (𝐿𝜈 ))(𝛼−1)∕2
× (‖𝑢‖𝐿∞(𝐵𝑠−2𝜅1

)‖𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1
))1∕2‖𝑢1‖𝐿𝛾 (𝐵𝑠−2𝜌1

). (2.20)
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(iii) If 𝑠 > 4 and 𝛼 > max{2; 𝑠 − 3}, then‖𝑓 ′(𝑢)𝑢1‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

) ≲ ‖𝑢‖𝛼−1𝐿𝛾 (𝐿𝜈 )‖𝑢‖𝐿𝛾 (𝐵𝑠−4𝜌2
)‖𝑢1‖𝐿𝛾 (𝐵𝑠−4𝜌 ), (2.21)

‖𝑓 ′(𝑢)𝑢1‖𝐿2(𝐵𝑠−4𝜌∗ ) ≲ (‖𝑢‖𝐿∞(𝐿𝜇)‖𝑢‖𝐿𝛾 (𝐿𝜈 ))(𝛼−1)∕2
× (‖𝑢‖𝐿∞(𝐵𝑠−4𝜅2

)‖𝑢‖𝐿𝛾 (𝐵𝑠−4𝜌2
))1∕2‖𝑢1‖𝐿𝛾 (𝐵𝑠−4𝜌1

), (2.22)‖𝑓 ′(𝑢)𝑢1‖𝐿2(𝐵𝑠−4
𝜌∗1

) ≲ (‖𝑢‖𝐿∞(𝐿𝜇)‖𝑢‖𝐿𝛾 (𝐿𝜈 ))(𝛼−1)∕2
× (‖𝑢‖𝐿∞(𝐵𝑠−4𝜅2

)‖𝑢‖𝐿𝛾 (𝐵𝑠−4𝜌2
))1∕2‖𝑢1‖𝐿𝛾 (𝐵𝑠−4𝜌2

), (2.23)‖𝑓 ′′(𝑢)𝑢1𝑢2‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

) ≲ ‖𝑢‖𝛼−2𝐿𝛾 (𝐿𝜈 )‖𝑢‖𝐿𝛾 (𝐵𝑠−4𝜌2
)‖𝑢1‖𝐿𝛾 (𝐵𝑠−4𝜌1

)‖𝑢2‖𝐿𝛾 (𝐵𝑠−4𝜌1
). (2.24)

‖𝑓 ′′(𝑢)𝑢1𝑢2‖𝐿2(𝐵𝑠−4𝜌∗ ) ≲ (‖𝑢‖𝐿∞(𝐿𝜇)‖𝑢‖𝐿𝛾 (𝐿𝜈 ))(𝛼−2)∕2(‖𝑢‖𝐿∞(𝐵𝑠−4𝜅2
)‖𝑢‖𝐿𝛾 (𝐵𝑠−4𝜌2

))1∕2

× (‖𝑢1‖𝐿∞(𝐵𝑠−4𝜅2
)‖𝑢1‖𝐿𝛾 (𝐵𝑠−4𝜌2

))1∕2‖𝑢2‖𝐿𝛾 (𝐵𝑠−4𝜌1
). (2.25)

Proof. The estimates (2.17)–(2.24) follow from Lemma 2.2 together with the Hölder inequal-
ity. For the proof, we note that the indices satisfy the relations 1∕𝜌′ = 𝛼∕𝜈 +1∕𝜌 and 2∕𝜌∗ =
𝛼(1∕𝜇+1∕𝜈)+2∕𝜌1. For instance, we shall prove (2.20) and (2.24). We set 2∕𝛽0 = 1∕𝜇+1∕𝜈
and 2∕𝛽1 = 1∕𝜅1 + 1∕𝜌1, so that ‖𝑢‖2

𝐿𝛽0
≤ ‖𝑢‖𝐿𝜇‖𝑢‖𝐿𝜈 and ‖𝑢‖2

𝐵𝑠−2𝛽1

≲ ‖𝑢‖𝐵𝑠−2𝜅1
‖𝑢‖𝐵𝑠−2𝜌1

. Since

1∕𝜌∗ = (𝛼 − 1)∕𝛽0 + 1∕𝛽1 + 1∕𝜌1 − (𝑠 − 2)∕𝑁 , we obtain from Lemma 2.2 (ii)‖𝑓 ′(𝑢)𝑢1‖𝐵𝑠−2𝜌∗
≲ ‖𝑢‖𝛼−1

𝐿𝛽0
‖𝑢‖𝐵𝑠−2𝛽1

‖𝑢1‖𝐵𝑠−2𝜌1
≲ (‖𝑢‖𝐿𝜇‖𝑢‖𝐿𝜈 )(𝛼−1)∕2(‖𝑢‖𝐵𝑠−2𝜅1

‖𝑢‖𝐵𝑠−2𝜌1
)1∕2‖𝑢1‖𝐵𝑠−2𝜌1

.

Taking 𝐿2 norm in 𝑡 and using 𝛾 = 𝛼 + 2, we obtain (2.20). Similarly, since 1∕𝜌′ = (𝛼 −
2)∕𝜈 + 1∕𝜌2 + 2∕𝜌1 − 2(𝑠 − 4)∕𝑁 , we obtain from Lemma 2.2 (iii)‖𝑓 ′′(𝑢)𝑢1𝑢2‖𝐵𝑠−4

𝜌′
≲ ‖𝑢‖𝛼−2𝐿𝜈 ‖𝑢‖𝐵𝑠−4𝜌2

‖𝑢1‖𝐵𝑠−4𝜌1
‖𝑢2‖𝐵𝑠−4𝜌1

.

Taking 𝐿𝛾 ′ norm in 𝑡 and using the relation 𝛾 ′ = 𝛾∕(𝛼 + 1), we obtain (2.24). The other
estimates can be proved analogously. □

Lemma 2.6. Let 2 < 𝑠 < 𝑁∕2 and 𝛼 = 𝛼∗(𝑠). We define operators 𝐹 and 𝐹1 by 𝐹 ∶ 𝑢 ↦

𝑓 (𝑢) and 𝐹1 ∶ [𝑢, 𝑣] ↦ 𝑓 ′(𝑢)𝑣 respectively.
(i) Let 𝛼 > max{1; 𝑠 − 2}. Then, the operator 𝐹 is locally Lipschitz continuous from

𝐿∞(𝐼 ;𝐵𝑠−2
𝜅1

(ℝ𝑁 )) into 𝐿∞(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )).
(ii) Let 𝑠 > 4 and 𝛼 > max{2; 𝑠 − 3}. If {𝑢𝑘} is bounded in 𝐿∞(𝐼 ;𝐻 𝑠(ℝ𝑁 )) and 𝑢𝑘 → 𝑢

in 𝐿∞(𝐼 ;𝐵𝑠−2
𝜅1

(ℝ𝑁 )), then 𝑓 (𝑢𝑘) → 𝑓 (𝑢) in 𝐿∞(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )); especially, the operator 𝐹 is
continuous from 𝐿∞(𝐼 ;𝐻 𝑠(ℝ𝑁 )) into 𝐿∞(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )).

(iii) Let 𝑠 > 4 and 𝛼 > max{2; 𝑠−3}. If [𝑢𝑘, 𝑣𝑘] → [𝑢, 𝑣] in 𝐿∞(𝐼 ;𝐵𝑠−4
𝜅2

(ℝ𝑁 )×𝐵𝑠−4
𝜅1

(ℝ𝑁 )),
then 𝑓 ′(𝑢𝑘)𝑣𝑘 → 𝑓 ′(𝑢)𝑣 in 𝐿∞(𝐼 ;𝐻 𝑠−4(ℝ𝑁 )); especially, the operator 𝐹1 is continuous from
𝐿∞(𝐼 ;𝐻 𝑠(ℝ𝑁 ) ×𝐻 𝑠−2(ℝ𝑁 )) into 𝐿∞(𝐼 ;𝐻 𝑠−4(ℝ𝑁 )).

Proof. (i) For 𝑢, 𝑣 ∈ 𝐿∞(𝐼 ;𝐵𝑠−2
𝜅1

), we obtain from Lemma 2.4 (ii) that‖𝑓 (𝑢) − 𝑓 (𝑣)‖𝐿∞(𝐻𝑠−2) ≲ (‖𝑢‖𝐿∞(𝐵𝑠−2𝜅1
) ∨ ‖𝑣‖𝐿∞(𝐵𝑠−2𝜅1

))𝛼‖𝑢 − 𝑣‖𝐿∞(𝐵𝑠−2𝜅1
), (2.26)
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which means that 𝐹 is locally Lipschitz continuous.
(ii) We put𝑀 = sup𝑘 ‖𝑢𝑘‖𝐿∞(𝐻𝑠). We choose 0 < 𝜀 < 1 such that 𝑠−2+ 𝜀 < 𝛼+1. Then,

it follows from Lemma 2.4 (i) together with the Sobolev inequality that ‖𝑓 (𝑢)‖𝐿∞(𝐵𝑠−2+𝜀2𝑁∕(𝑁+2𝜀))
≲‖𝑢‖𝛼+1𝐿∞(𝐻𝑠) ≤𝑀𝛼+1. On the other hand, it follows from Lemma 2.4 (ii) that

‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝐿∞(𝐵𝑠−4𝜅1
) ≲ (‖𝑢𝑘‖𝐿∞(𝐵𝑠−2𝜅1

) ∨ ‖𝑢‖𝐿∞(𝐵𝑠−2𝜅1
))𝛼‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1

)

≲ 𝑀𝛼‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1
) → 0.

Thus, by the interpolation relation

(𝐵𝑠−4
𝜅1

(ℝ𝑁 ), 𝐵𝑠−2+𝜀
2𝑁∕(𝑁+2𝜀)(ℝ

𝑁 ))2∕(𝜀+2),2 = 𝐻 𝑠−2(ℝ𝑁 ) (2.27)

(see [2, Theorem 6.4.5]), we obtain ‖𝑓 (𝑢𝑘)−𝑓 (𝑢)‖𝐿∞(𝐻𝑠−2) → 0, which implies the continuity
of 𝐹 .

(iii) We put 𝑀1 = sup𝑘 ‖[𝑢𝑘, 𝑣𝑘]‖𝐿∞(𝐵𝑠−4𝜅2
×𝐵𝑠−4𝜅1

). From Lemma 2.4 (iii)–(iv), we have

‖𝑓 ′(𝑢𝑘)𝑣𝑘 − 𝑓 ′(𝑢)𝑣‖𝐿∞(𝐻𝑠−4)

≲ ‖𝑓 ′(𝑢𝑘)(𝑣𝑘 − 𝑣)‖𝐿∞(𝐻𝑠−4) + ‖(𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢))𝑣‖𝐿∞(𝐻𝑠−4)

≲ (‖𝑢𝑘‖𝐿∞(𝐵𝑠−4𝜅2
) ∨ ‖𝑢‖𝐿∞(𝐵𝑠−4𝜅2

))𝛼−1

× (‖𝑢𝑘‖𝐿∞(𝐵𝑠−4𝜅2
)‖𝑣𝑘 − 𝑣‖𝐿∞(𝐵𝑠−4𝜅1

) + ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−4𝜅2
)‖𝑣‖𝐿∞(𝐵𝑠−4𝜅1

))

≲ 𝑀𝛼
1 (‖𝑣𝑘 − 𝑣‖𝐿∞(𝐵𝑠−4𝜅1

) + ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−4𝜅2
)) → 0. □

Lemma 2.7. Let 2 < 𝑠 < 𝑁∕2 and 𝛼 = 𝛼∗(𝑠). Let �̄� = 𝛼 + 1, �̄� = 2𝑁(𝛼 + 1)∕(𝑁 + 2𝛼𝑠).
(i) Let 𝛼 > max{1; 𝑠− 2}. If 𝑢 ∈

⋂1
𝑗=0𝑊

𝑗,�̄�(𝐼 ;𝐵𝑠−2𝑗
�̄� (ℝ𝑁 )), then 𝑓 (𝑢) ∈ 𝐶(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )).

(ii) Let 𝑠 > 4 and 𝛼 > max{2; 𝑠 − 3}. If 𝑢 ∈
⋂2

𝑗=0𝑊
𝑗,�̄�(𝐼 ;𝐵𝑠−2𝑗

�̄� (ℝ𝑁 )), then 𝑓 (𝑢) ∈
𝐶1(𝐼 ;𝐻 𝑠−4(ℝ𝑁 )) ∩ 𝐶(𝐼 ;𝐵𝑠−4

𝜅1
(ℝ𝑁 )). Furthermore, if 𝑢 ∈ 𝐿∞(𝐼 ;𝐻 𝑠(ℝ𝑁 )), then 𝑓 (𝑢) ∈

𝐶(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )).

Remark. We can easily check that (�̄� , �̄�) is an admissible pair.

Proof. (i) Let 1∕�̄� = 1∕�̄�− 𝑠∕𝑁 and let 1∕�̄�𝑗 = 1∕�̄�−2𝑗∕𝑁 , 𝑗 = 1, 2 with 𝑠−2𝑗 > 0. Then
the inclusion 𝐵𝑠

�̄� ⊂ 𝐵
𝑠−2𝑗
�̄�𝑗

⊂ 𝐿�̄� holds. We have the relation 1∕2 = (𝛼 − 1)∕�̄� + 1∕�̄�1 + 1∕�̄� −
(𝑠 − 2)∕𝑁 . Applying Lemma 2.2 (ii), we see

‖𝜕𝑡𝑓 (𝑢)‖𝐿1(𝐻𝑠−2) ≲ ‖𝑢‖𝛼−1𝐿�̄� (𝐿�̄�)‖𝑢‖𝐿�̄� (𝐵𝑠−2�̄�1
)‖�̇�‖𝐿�̄� (𝐵𝑠−2�̄� ) ≲ ‖𝑢‖𝛼𝐿�̄� (𝐵𝑠�̄�)‖�̇�‖𝐿�̄� (𝐵𝑠−2�̄� ).

Similarly, we see ‖𝑓 (𝑢)‖𝐿1(𝐻𝑠−2) ≲ ‖𝑢‖𝛼𝐿�̄� (𝐵𝑠�̄�)‖𝑢‖𝐿�̄� (𝐵𝑠−2�̄� ). These estimates show that 𝑓 (𝑢) ∈
𝑊 1,1(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )), which implies 𝑓 (𝑢) ∈ 𝐶(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )).
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(ii) From similar estimates with the index (𝑠 − 2) replaced by (𝑠 − 4), we obtain 𝑓 (𝑢) ∈
𝑊 1,1(𝐼 ;𝐻 𝑠−4(ℝ𝑁 )). Furthermore, applying Lemma 2.2 (iii), we see

‖𝜕2𝑡 𝑓 (𝑢)‖𝐿1(𝐻𝑠−4) = ‖𝑓 ′(𝑢)�̈� + 𝑓 ′′(𝑢)�̇��̇�‖𝐿1(𝐻𝑠−4)

≲ ‖𝑢‖𝛼−1𝐿�̄� (𝐿�̄�)‖𝑢‖𝐿�̄� (𝐵𝑠−4�̄�2
)‖�̈�‖𝐿�̄� (𝐵𝑠−4�̄� ) + ‖𝑢‖𝛼−2𝐿�̄� (𝐿�̄�)‖𝑢‖𝐿�̄� (𝐵𝑠−4�̄�2

)‖�̇�‖2𝐿�̄� (𝐵𝑠−4�̄�1
)

≲ ‖𝑢‖𝛼−1𝐿�̄� (𝐵𝑠�̄�)
(‖𝑢‖𝐿�̄� (𝐵𝑠�̄�)‖�̈�‖𝐿�̄� (𝐵𝑠−4�̄� ) + ‖�̇�‖2

𝐿�̄� (𝐵𝑠−2�̄� )
).

This estimate shows that 𝑓 (𝑢) ∈ 𝑊 2,1(𝐼 ;𝐻 𝑠−4(ℝ𝑁 )), which implies 𝑓 (𝑢) ∈ 𝐶1(𝐼 ;𝐻 𝑠−4(ℝ𝑁 )).
On the other hand, since �̇�𝑠−4

𝜅1
(ℝ𝑁 ) has the same scale as �̇� 𝑠−2(ℝ𝑁 ), we see as before that

𝑓 (𝑢) ∈ 𝑊 1,1(𝐼 ;𝐵𝑠−4
𝜅1

(ℝ𝑁 )), although 𝑓 (𝑢)might not be differentiable (𝑠−2)-times. Hence we
obtain 𝑓 (𝑢) ∈ 𝐶(𝐼 ;𝐵𝑠−4

𝜅1
(ℝ𝑁 )). To prove the last assertion, let 𝑢 ∈ 𝐿∞(𝐼 ;𝐻 𝑠(ℝ𝑁 )). Then,

from Lemma 2.4 (i), we obtain 𝑓 (𝑢) ∈ 𝐿∞(𝐼 ;𝐵𝑠−2+𝜀
2𝑁∕(𝑁+2𝜀)(ℝ

𝑁 )). Therefore, as in the proof of
Lemma 2.6, by the interpolation relation (2.27), we obtain 𝑓 (𝑢) ∈ 𝐶(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )). □

3. PROOF OF THEOREM 1.1

In this section, we shall prove Theorem 1.1. Let Φ(𝑢) be defined by (1.2). We look for so-
lutions to (1.2) by finding fixed points of Φ in appropriate metric spaces. Since the nonlinear
term has limited regularity, as explained in §1, we replace spatial derivatives by temporal ones
to reduce the total number of derivatives. Taking the time derivative of (1.2) and integrating
by parts (see [17]), we obtain

𝜕𝑡Φ(𝑢)(𝑡) = 𝑈 (𝑡)�̇� − 𝑖 ∫
𝑡

0
𝑈 (𝑡 − 𝜏)𝜕𝜏𝑓 (𝑢(𝜏)) 𝑑𝜏, (3.1)

where �̇� = 𝑖(Δ𝜑− 𝑓 (𝜑)) is the initial data for 𝜕𝑡Φ(𝑢). Furthermore, if 𝑠− 3 < 𝛼∗(𝑠) ≤ 𝑠− 2
with 𝑠 > 4, then we also need the second derivative 𝜕2𝑡Φ(𝑢), which satisfies

𝜕2𝑡Φ(𝑢)(𝑡) = 𝑈 (𝑡)�̈� − 𝑖 ∫
𝑡

0
𝑈 (𝑡 − 𝜏)𝜕2𝜏𝑓 (𝑢(𝜏)) 𝑑𝜏 (3.2)

with �̈� = 𝑖(Δ�̇�−𝑓 ′(𝜑)�̇�). For each 𝑗 ≥ 0, the corresponding differential equation for 𝜕𝑗𝑡Φ(𝑢)
is

(𝑖𝜕𝑡 + Δ)𝜕𝑗𝑡Φ(𝑢) = 𝜕𝑗𝑡 𝑓 (𝑢). (3.3)

It follows from Lemma 2.6 that �̇� ∈ 𝐻 𝑠−2(ℝ𝑁 ), and �̈� ∈ 𝐻 𝑠−4(ℝ𝑁 ). Furthermore, if𝜑𝑘 → 𝜑
in𝐻 𝑠(ℝ𝑁 ), then �̇�𝑘 ≡ 𝑖(Δ𝜑𝑘−𝑓 (𝜑𝑘)) → �̇� in𝐻 𝑠−2(ℝ𝑁 ), and �̈�𝑘 ≡ 𝑖(Δ�̇�𝑘−𝑓 ′(𝜑𝑘)�̇�𝑘) → �̈�
in 𝐻 𝑠−4(ℝ𝑁 ).

Let 𝐼 = [0, 𝑇 ] for some 𝑇 > 0. We set 𝑍(𝐼) = 𝐿𝛾(𝐼 ;𝐿𝜌(ℝ𝑁 )) ∩ 𝐿2(𝐼 ;𝐿𝜌∗(ℝ𝑁 )), and

𝑋𝑗(𝐼) = 𝐿𝛾(𝐼 ;𝐵𝑠−2𝑗
𝜌 (ℝ𝑁 )) ∩ 𝐿2(𝐼 ;𝐵𝑠−2𝑗

𝜌∗ (ℝ𝑁 ))

for 𝑗 = 0, 1, 2 with 𝑠 − 2𝑗 > 0. Here, the admissible pair (𝛾, 𝜌) and the index 𝜌∗ are defined
by (2.1). We set

𝑋(𝐼) = {𝑢 ∈ 𝑋0(𝐼) ∶ 𝜕𝑡𝑢 ∈ 𝑋1(𝐼)},
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with ‖𝑢‖𝑋 ≡ ‖𝑢‖𝑋0
∨ ‖�̇�‖𝑋1

. If max{2; 𝑠 − 3} < 𝛼∗(𝑠) ≤ 𝑠 − 2 with 𝑠 > 4, we also need the
spaces

𝑌𝑗(𝐼) = 𝐿𝛾(𝐼 ;𝐵𝑠−2𝑗−2
𝜌1

(ℝ𝑁 )) ∩ 𝐿2(𝐼 ;𝐵𝑠−2𝑗−2
𝜌∗1

(ℝ𝑁 )),

𝑗 = 0, 1, where the indices 𝜌1 and 𝜌∗1 are defined by (2.3). We have the inclusion 𝑋𝑗(𝐼) ⊂
𝑌𝑗(𝐼). We set

𝑌 (𝐼) = {𝑢 ∈ 𝑌0(𝐼) ∩𝑋1(𝐼) ∶ 𝜕
𝑗
𝑡 𝑢 ∈ 𝑋𝑗(𝐼), 𝑗 = 1, 2}

with ‖𝑢‖𝑌 ≡ ‖𝑢‖𝑌0 ∨ ‖𝑢‖𝑋1
∨ ‖�̇�‖𝑋1

∨ ‖�̈�‖𝑋2
.

We begin with the case 𝛼∗(𝑠) > 𝑠−2. We shall first show the unique existence of solutions
in Proposition 3.1. The proof of the continuous dependence of solutions on data is proved in
Proposition 3.2.

Proposition 3.1. Let 𝑁 ≥ 8, 2 < 𝑠 < 𝑁∕2 and let 𝛼 = 𝛼∗(𝑠) satisfy max{1; 𝑠 − 2} < 𝛼 ≤
𝑠 − 1. Then, for any 𝜑 ∈ 𝐻 𝑠(ℝ𝑁 ), there exists 𝑇 > 0 such that (1.2) has a unique solution
𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )), where 𝐼 = [0, 𝑇 ]. Furthermore, 𝑢 ∈ 𝐿𝑞(𝐼 ;𝐵𝑠

𝑟 (ℝ
𝑁 )) for any admissible

pair (𝑞, 𝑟).

Proof. For 𝑅 > 0, we define the metric space

𝐵𝑅 = {𝑢 ∈ 𝑋(𝐼) ∶ 𝑢(0) = 𝜑, ‖𝑢‖𝑋 ≤ 𝑅}

with metric 𝑑(𝑢1, 𝑢2) = ‖𝑢1 − 𝑢2‖𝑍 . We note that (𝐵𝑅, 𝑑) is a complete metric space. For
suitable 𝑇 and 𝑅 to be specified later, we shall prove that the mapping Φ is a contraction
mapping on 𝐵𝑅. We set

𝑅0 = 𝑅0(𝜑; 𝑇 ) ≡ ‖𝑈 (⋅)𝜑‖𝑋 ∨ ‖𝑈 (⋅)�̇�‖𝑋1
∨ ‖𝑓 (𝑈 (⋅)𝜑)‖𝐿𝛾 (𝐵𝑠−2𝜌 ). (3.4)

From Lemma 2.1, we see 𝑈 (⋅)𝜑 ∈ 𝑋(𝐼), 𝑈 (⋅)�̇� ∈ 𝑋1(𝐼). It follows from Lemma 2.4 (i)
together with the unitarity of𝑈 (𝑡) in𝐻 𝑠(ℝ𝑁 ) that ‖𝑓 (𝑈 (⋅)𝜑)‖𝐿𝛾 (𝐵𝑠−2𝜌 ) ≲ ‖𝜑‖𝛼𝐻𝑠‖𝑈 (⋅)𝜑‖𝐿𝛾 (𝐵𝑠𝜌).
We have lim𝑇→0𝑅0(𝜑; 𝑇 ) = 0 by the definition of 𝑋(𝐼). For 𝑢 ∈ 𝐵𝑅, we set 𝑣(𝑡) = 𝑢(𝑡) −
𝑈 (𝑡)𝜑. Since 𝑣(0) = 0, it follows from Lemma 2.3 that

‖𝑣‖2𝐿∞(𝐵𝑠−2𝜅1
) ≲ ‖𝑣‖𝐿2(𝐵𝑠−2

𝜌∗1
)‖�̇�‖𝐿2(𝐵𝑠−2𝜌∗ ) ≲ ‖𝑣‖2𝑋 . (3.5)

From (3.5) together with the inequalities ‖𝑢−𝑣‖𝑋 ≲ ‖𝜑‖𝐻𝑠∧𝑅0 and ‖𝑢−𝑣‖𝐿∞(𝐵𝑠−2𝜅1
) ≲ ‖𝜑‖𝐻𝑠 ,

we obtain

‖𝑣‖𝑋 ≲ ‖𝑢‖𝑋 ∨ 𝑅0, ‖𝑢‖𝐿∞(𝐿𝜇) ≲ ‖𝑢‖𝐿∞(𝐵𝑠−2𝜅1
) ≲ ‖𝑢‖𝑋 ∨ ‖𝜑‖𝐻𝑠 . (3.6)

We shall show that Φ maps 𝐵𝑅 into itself. We apply Lemma 2.1 to (1.2) and (3.1) together
with Lemma 2.5 to obtain

‖Φ(𝑢)‖𝑋1
≲ ‖𝑈 (⋅)𝜑‖𝑋1

+ ‖𝑓 (𝑢)‖𝐿𝛾′ (𝐵𝑠−2
𝜌′

) ≲ 𝑅0 + ‖𝑢‖𝛼𝑋0
‖𝑢‖𝑋1

≲ 𝑅0 + 𝑅𝛼+1, (3.7)

‖𝜕𝑡Φ(𝑢)‖𝑋1
≲ ‖𝑈 (⋅)�̇�‖𝑋1

+ ‖𝑓 ′(𝑢)�̇�‖𝐿𝛾′ (𝐵𝑠−2
𝜌′

) ≲ 𝑅0 + ‖𝑢‖𝛼𝑋0
‖�̇�‖𝑋1

≲ 𝑅0 + 𝑅𝛼+1, (3.8)
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especially, we have used (2.17) for (3.7), and (2.19) for (3.8) respectively. Lemma 2.1 also
shows that Φ(𝑢) ∈ 𝐶1(𝐼 ;𝐻 𝑠−2), with the estimate

max
𝑗=0,1

‖𝜕𝑗𝑡Φ(𝑢)‖𝐿∞(𝐻𝑠−2) ≲ ‖𝜑‖𝐻𝑠 ∨ ‖�̇�‖𝐻𝑠−2 + 𝑅𝛼+1. (3.9)

For the estimate of Φ(𝑢) in 𝑋(𝐼), we use the equation (3.3) with 𝑗 = 0. Then, we obtain

‖Φ(𝑢)‖𝑋0
∼ ‖(1 − Δ)Φ(𝑢)‖𝑋1

≲ ‖Φ(𝑢)‖𝑋1
+ ‖𝜕𝑡Φ(𝑢)‖𝑋1

+ ‖𝑓 (𝑢)‖𝑋1
. (3.10)

From the estimates (3.7) and (3.8), the first two terms of the right-hand side are bounded by
𝐶𝑅0+𝐶𝑅𝛼+1, so it suffices to consider the third term. In 𝐿2(𝐼 ;𝐵𝑠−2

𝜌∗ (ℝ𝑁 )), we can treat 𝑓 (𝑢)
directly. It follows from (2.18) that

‖𝑓 (𝑢)‖𝐿2(𝐵𝑠−2𝜌∗ ) ≲ ‖𝑢‖𝛼∕2
𝐿∞(𝐵𝑠−2𝜅1

)‖𝑢‖𝛼∕2+1𝐿𝛾 (𝐵𝑠𝜌)
≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼∕2𝑅𝛼∕2+1. (3.11)

On the other hand, in 𝐿𝛾(𝐼 ;𝐵𝑠−2
𝜌 (ℝ𝑁 )), similar estimate would not work. (See the remark

below.) Instead, taking account of the inequality ‖𝑓 (𝑈 (⋅)𝜑)‖𝐿𝛾 (𝐵𝑠−2𝜌 ) ≤ 𝑅0, we estimate the
difference 𝑓 (𝑢) − 𝑓 (𝑈 (⋅)𝜑). It follows from Lemma 2.4 (ii) and (3.5) that

‖𝑓 (𝑢) − 𝑓 (𝑈 (⋅)𝜑)‖𝐿𝛾 (𝐵𝑠−2𝜌 )

≲ (‖𝑢‖𝐿∞(𝐿𝜇) ∨ ‖𝑈 (⋅)𝜑‖𝐿∞(𝐿𝜇))𝛼−1(‖𝑢‖𝐿𝛾 (𝐵𝑠𝜌) ∨ ‖𝑈 (⋅)𝜑‖𝐿𝛾 (𝐵𝑠𝜌))‖𝑣‖𝐿∞(𝐵𝑠−2𝜅1
)

≲ (‖𝑢‖𝑋 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(‖𝑢‖𝑋 ∨ ‖𝑈 (⋅)𝜑‖𝑋)‖𝑣‖𝑋 ≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(𝑅 ∨ 𝑅0)2. (3.12)

Combining (3.11) and (3.12), we obtain

‖𝑓 (𝑢)‖𝑋1
≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼∕2𝑅𝛼∕2+1 + (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(𝑅 ∨ 𝑅0)2 + 𝑅0. (3.13)

Collecting the estimates (3.7)–(3.10) and (3.13), we obtain

‖Φ(𝑢)‖𝑋 ≤ 𝐶𝑅0 + 𝐶(𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼∕2𝑅𝛼∕2+1 + 𝐶(𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(𝑅 ∨ 𝑅0)2

for some constant 𝐶 ≥ 1. Similarly, for 𝑢1, 𝑢2 ∈ 𝐵𝑅, we can easily show

‖Φ(𝑢1) − Φ(𝑢2)‖𝑍 ≤ 𝐶𝑅𝛼‖𝑢1 − 𝑢2‖𝑍 .
Now, we choose 𝑅 and 𝑇 so small that

3𝐶𝑅0(𝜑; 𝑇 ) < 𝑅 < min
{ 1
(3𝐶)2∕𝛼‖𝜑‖𝐻𝑠

; 1
3𝐶‖𝜑‖𝛼−1𝐻𝑠

; (3𝐶)−1∕𝛼
}
. (3.14)

Then, we can obtain ‖Φ(𝑢)‖𝑋 < 𝑅, so that Φ maps 𝐵𝑅 into itself. We also obtain that Φ is
a contraction mapping on 𝐵𝑅. From the contraction mapping principle, Φ has a unique fixed
point in 𝐵𝑅, which gives a solution 𝑢 ∈ 𝑋(𝐼) to (1.2). Furthermore, as we have mentioned,
𝑢 = Φ(𝑢) ∈ 𝐶1(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )). On the other hand, since𝑋(𝐼) ⊂

⋂1
𝑗=0𝑊

𝑗,�̄�(𝐼 ;𝐵𝑠−2𝑗
�̄� (ℝ𝑁 )), it

follows from Lemma 2.7 (i) that 𝑓 (𝑢) ∈ 𝐶(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )). Hence, we see−Δ𝑢 = 𝑖𝜕𝑡𝑢−𝑓 (𝑢) ∈
𝐶(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )), so that 𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )). The uniqueness of solutions in 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 ))
has been proved in [3, Proposition 4.2.13]. Finally, we can easily check that 𝑢 ∈ 𝐿𝑞(𝐼 ;𝐵𝑠

𝑟 (ℝ
𝑁 ))

for any admissible pair (𝑞, 𝑟), since 𝐿∞(𝐼 ;𝐻 𝑠(ℝ𝑁 )) ∩𝐿2(𝐼 ;𝐵𝑠
𝜌∗(ℝ

𝑁 )) ⊂ 𝐿𝑞(𝐼 ;𝐵𝑠
𝑟 (ℝ

𝑁 )). □
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Remark. A direct application of Lemma 2.2 gives ‖𝑓 (𝑢)‖𝐿𝛾 (𝐵𝑠−2𝜌 ) ≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1𝑅, which
would not suffice to show that Φ should be a contraction mapping. This is why we estimate
the difference ‖𝑓 (𝑢) − 𝑓 (𝑈 (⋅)𝜑)‖𝐿𝛾 (𝐵𝑠−2𝜌 ) instead. On the other hand, we cannot estimate‖𝑓 (𝑢) − 𝑓 (𝑈 (⋅)𝜑)‖𝐿2(𝐵𝑠−2𝜌∗ ) by Lemma 2.4, since the assumption 𝜌∗ < 𝑁∕𝑠 for the lemma
might not be satisfied. This is why we estimate ‖𝑓 (𝑢)‖𝐿2(𝐵𝑠−2𝜌∗ ) and ‖𝑓 (𝑢)‖𝐿𝛾 (𝐵𝑠−2𝜌 ) differently.

Proposition 3.2. Let 𝑁 ≥ 8, 2 < 𝑠 < 𝑁∕2 and let 𝛼 = 𝛼∗(𝑠) satisfy max{1; 𝑠 − 2} < 𝛼 ≤
𝑠 − 1. Let 𝜑 ∈ 𝐻 𝑠(ℝ𝑁 ) and let {𝜑𝑘}∞𝑘=1 ⊂ 𝐻 𝑠(ℝ𝑁 ) satisfy 𝜑𝑘 → 𝜑 in 𝐻 𝑠(ℝ𝑁 ). Then there
exists 𝑇 > 0 such that (1.2) has a unique solution 𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 ))∩𝑋(𝐼) with 𝐼 = [0, 𝑇 ],
and that (1.2) with 𝜑 replaced by 𝜑𝑘 has a unique solution 𝑢𝑘 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )) ∩ 𝑋(𝐼) for
sufficiently large 𝑘. Furthermore, 𝑢𝑘 → 𝑢 in 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )) ∩𝑋(𝐼).

Proof. Step 1. Let𝑅 and 𝑇 satisfy (3.14) in the proof of Proposition 3.1. We note that we can
take 𝑅 arbitrarily small, if we choose 𝑇 smaller so as to satisfy the first inequality of (3.14).
By Proposition 3.1, the equation (1.2) has a unique solution 𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 ))∩𝑋(𝐼). From
Lemmas 2.1 and 2.4, we see 𝑅0(𝜑𝑘; 𝑇 ) → 𝑅0(𝜑; 𝑇 ) as 𝑘→ ∞, where 𝑅0 is defined by (3.4).
Especially, we use (2.12) to show that ‖𝑓 (𝑈 (⋅)𝜑𝑘) − 𝑓 (𝑈 (⋅)𝜑)‖𝐿𝛾 (𝐵𝑠−2𝜌 ) → 0. Therefore, for
sufficiently large 𝑘, the mapping Φ with 𝜑 replaced by 𝜑𝑘 is still a contraction on 𝐵𝑅, so that
(1.2) with 𝜑 replaced by 𝜑𝑘 has a unique solution 𝑢𝑘 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )) ∩ 𝑋(𝐼). We have‖𝑢𝑘‖𝑋 ≤ 𝑅 and ‖𝑢𝑘‖𝐿∞(𝐵𝑠−2𝜅1

) ≲ 𝑅 ∨ ‖𝜑‖𝐻𝑠 .
Step 2. From the equations for 𝑢 and 𝑢𝑘, we have‖𝑢𝑘 − 𝑢‖𝑋 ≲ ‖𝑢𝑘 − 𝑢‖𝑋1

+ ‖�̇�𝑘 − �̇�‖𝑋1
+ ‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝑋1

, (3.15)‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠) ≲ ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠−2) + ‖�̇�𝑘 − �̇�‖𝐿∞(𝐻𝑠−2) + ‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝐿∞(𝐻𝑠−2). (3.16)

From Lemma 2.4 (ii), and (2.20) together with the mean value theorem, we obtain‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝐿𝛾 (𝐵𝑠−2𝜌 )

≲ (‖𝑢𝑘‖𝐿∞(𝐵𝑠−2𝜅1
) ∨ ‖𝑢‖𝐿∞(𝐵𝑠−2𝜅1

))𝛼−1(‖𝑢𝑘‖𝑋 ∨ ‖𝑢‖𝑋)‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1
), (3.17)‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝐿2(𝐵𝑠−2𝜌∗ )

≲ (‖𝑢𝑘‖𝐿∞(𝐵𝑠−2𝜅1
) ∨ ‖𝑢‖𝐿∞(𝐵𝑠−2𝜅1

))𝛼∕2(‖𝑢𝑘‖𝑋 ∨ ‖𝑢‖𝑋)𝛼∕2‖𝑢𝑘 − 𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1
). (3.18)

From (3.17) and (3.18), we obtain‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝑋1
≲ 𝑅‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1

) + 𝑅𝛼∕2‖𝑢𝑘 − 𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1
). (3.19)

As in the proof of Proposition 3.1, we set 𝑣(𝑡) = 𝑢(𝑡) − 𝑈 (𝑡)𝜑, and analogously 𝑣𝑘(𝑡) =
𝑢𝑘(𝑡) − 𝑈 (𝑡)𝜑𝑘, so that 𝑣(0) = 𝑣𝑘(0) = 0. Like (3.5), we have ‖𝑣𝑘 − 𝑣‖𝐿∞(𝐵𝑠−2𝜅1

) ≲ ‖𝑣𝑘 − 𝑣‖𝑋 ,
so that ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1

) ≲ ‖𝑢𝑘 − 𝑢‖𝑋 + ‖𝜑𝑘 − 𝜑‖𝐻𝑠 . (3.20)

It follows from (3.15), (3.19) and (3.20) that‖𝑢𝑘 − 𝑢‖𝑋 ≲ ‖𝑢𝑘 − 𝑢‖𝑋1
+ ‖�̇�𝑘 − �̇�‖𝑋1

+ (𝑅 ∨ 𝑅𝛼∕2)‖𝑢𝑘 − 𝑢‖𝑋 + ‖𝜑𝑘 − 𝜑‖𝐻𝑠 .
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If 𝑅 > 0 is small enough, the third term in the right-hand side is absorbed into the left-hand
side, so that we obtain

‖𝑢𝑘 − 𝑢‖𝑋 ≲ ‖𝑢𝑘 − 𝑢‖𝑋1
+ ‖�̇�𝑘 − �̇�‖𝑋1

+ ‖𝜑𝑘 − 𝜑‖𝐻𝑠 . (3.21)

Step 3. We shall show
lim
𝑘→∞

‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠−2)∩𝑋1
= 0. (3.22)

From Lemma 2.1 and the estimate (2.19) together with the mean value theorem, we have

‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠−2)∩𝑋1
≲ ‖𝜑𝑘 − 𝜑‖𝐻𝑠−2 + ‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝐿𝛾′ (𝐵𝑠−2

𝜌′
)

≲ ‖𝜑𝑘 − 𝜑‖𝐻𝑠−2 + (‖𝑢𝑘‖𝑋 ∨ ‖𝑢‖𝑋)𝛼‖𝑢𝑘 − 𝑢‖𝑋1

≲ ‖𝜑𝑘 − 𝜑‖𝐻𝑠−2 + 𝑅𝛼‖𝑢𝑘 − 𝑢‖𝑋1
.

If 𝑅 is small enough, the second term in the right-hand side is absorbed into the left-hand
side. Since ‖𝜑𝑘 − 𝜑‖𝐻𝑠−2 → 0, we obtain (3.22).

Step 4. We shall next show

lim
𝑘→∞

‖�̇�𝑘 − �̇�‖𝐿∞(𝐻𝑠−2)∩𝑋1
= 0. (3.23)

Again by Lemma 2.1,

‖�̇�𝑘 − �̇�‖𝐿∞(𝐻𝑠−2)∩𝑋1
≲ ‖�̇�𝑘 − �̇�‖𝐻𝑠−2 + ‖𝑓 ′(𝑢𝑘)(�̇�𝑘 − �̇�)‖𝐿𝛾′ (𝐵𝑠−2

𝜌′
)

+ ‖(𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢))�̇�‖𝐿𝛾′ (𝐵𝑠−2
𝜌′

). (3.24)

From (2.19), the second term in the right-hand side is bounded by 𝑅𝛼‖�̇�𝑘 − �̇�‖𝑋1
, and hence

it is absorbed into the left-hand side provided that 𝑅 is small enough. Therefore, to prove
(3.23), it suffices to show that the third term goes to zero. To this end, let 𝜒𝑙(𝜉) = 𝜒(𝜉∕2𝑙),
where 𝜒 is defined at the beginning of §2. We decompose 𝑢 as

𝑢 = 𝜒𝑙(𝐷)𝑢 + (1 − 𝜒𝑙(𝐷))𝑢 ≡ 𝑢𝐿 + 𝑢𝐻 . (3.25)

The supports of F𝑢𝐿 and F𝑢𝐻 are respectively contained in the region |𝜉| ≲ 2𝑙 and |𝜉| ≳ 2𝑙.
Therefore, (1−Δ)𝑢𝐿 ∈ 𝑋(𝐼) for arbitrary 𝑙. For a while, we arbitrarily fix 𝑙. For the estimate
of the low frequency part, we take 𝜀 > 0 satisfying 𝑠 − 2 + 𝜀 < min{𝑠; 𝛼}. Then, from a
slight modification of the estimate (2.19) together with the mean value theorem, we see

‖(𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢))�̇�𝐿‖𝐿𝛾′ (𝐵𝑠−2+𝜀
𝜌′

) ≲ (‖𝑢𝑘‖𝑋 ∨ ‖𝑢‖𝑋)𝛼‖�̇�𝐿‖𝐿𝛾 (𝐵𝑠−2+𝜀𝜌 ) ≲ 𝑅
𝛼‖(1 − Δ)�̇�𝐿‖𝑋1

.

Furthermore, by the Hölder inequality, we obtain

‖(𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢))�̇�𝐿‖𝐿𝛾′ (𝐿𝜌′ ) ≲ (‖𝑢𝑘‖𝑋 ∨ ‖𝑢‖𝑋)𝛼−1‖𝑢𝑘 − 𝑢‖𝐿𝛾 (𝐿𝜌)‖�̇�𝐿‖𝑋1
→ 0

as 𝑘 → ∞. Hence, by interpolation, we have ‖(𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢))�̇�𝐿‖𝐿𝛾′ (𝐵𝑠−2
𝜌′

) → 0 for any 𝑙. On
the other hand, it follows from (2.19) that

‖(𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢))�̇�𝐻‖𝐿𝛾′ (𝐵𝑠−2
𝜌′

) ≲ (‖𝑢𝑘‖𝑋 ∨ ‖𝑢‖𝑋)𝛼‖�̇�𝐻‖𝐿𝛾 (𝐵𝑠−2𝜌 ) ≲ 𝑅
𝛼‖�̇�𝐻‖𝑋1

,
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and the right-hand side is independent of 𝑘. Thus, we obtain

lim
𝑘→∞

‖(𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢))�̇�‖𝐿𝛾′ (𝐵𝑠−2
𝜌′

) ≲ 𝑅
𝛼‖�̇�𝐻‖𝑋1

. (3.26)

Furthermore, by the Lebesgue convergence theorem, we see that ‖𝑢𝐻‖𝑋 → 0 as 𝑙 → ∞.
Therefore, the left-hand side of (3.26) must be zero.

Step 5. From (3.21)–(3.23), we obtain lim𝑘→∞ ‖𝑢𝑘 − 𝑢‖𝑋 = 0. Once this is proved,
from (3.20) we obtain ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1

) → 0, which implies ‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝐿∞(𝐻𝑠−2) → 0
by Lemma 2.6 (i). Therefore, from (3.16), we obtain ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠) → 0. □

We shall proceed to the case max{2; 𝑠−3} < 𝛼∗(𝑠) ≤ 𝑠−2, which occurs only for𝑁 ≥ 11.
As in the previous case, we shall separately prove the unique existence (Proposition 3.3), and
the continuous dependence on data (Proposition 3.4).

Proposition 3.3. Let 𝑁 ≥ 11, 4 < 𝑠 < 𝑁∕2 and let 𝛼 = 𝛼∗(𝑠) satisfy max{2; 𝑠 − 3} <
𝛼 ≤ 𝑠 − 2. For any 𝜑 ∈ 𝐻 𝑠(ℝ𝑁 ), there exists 𝑇 > 0 such that (1.2) has a unique solution
𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )), where 𝐼 = [0, 𝑇 ]. Furthermore, 𝑢 ∈ 𝐿𝑞(𝐼 ;𝐵𝑠

𝑟 (ℝ
𝑁 )) for any admissible

pair (𝑞, 𝑟).

Proof. For 𝑅 > 0, we define the metric space

�̃�𝑅 = {𝑢 ∈ 𝑌 (𝐼) ∶ 𝑢(0) = 𝜑, �̇�(0) = �̇�, ‖𝑢‖𝑌 ≤ 𝑅}

with metric 𝑑(𝑢1, 𝑢2) = ‖𝑢1 − 𝑢2‖𝑍 . We note that (�̃�𝑅, 𝑑) is again a complete metric space.
For suitable 𝑇 and 𝑅 to be specified later, we shall prove that the mapping Φ is a contraction
mapping on �̃�𝑅. We set

𝑅1 = 𝑅1(𝜑; 𝑇 ) ≡ ‖𝑈 (⋅)𝜑‖𝑋 ∨ ‖𝑈 (⋅)�̇�‖𝑋1
∨ ‖𝑈 (⋅)�̈�‖𝑋2

∨ ‖𝑓 (𝑈 (⋅)𝜑)‖𝐿𝛾 (𝐵𝑠−4𝜌1
) ∨ ‖𝑓 ′(𝑈 (⋅)𝜑)𝑈 (⋅)�̇�‖𝐿𝛾 (𝐵𝑠−4𝜌 ). (3.27)

Then, we have lim𝑇→0𝑅1(𝜑; 𝑇 ) = 0. For 𝑢 ∈ �̃�𝑅, we set 𝑣(𝑡) = 𝑢(𝑡)−𝑈 (𝑡)𝜑, and𝑤(𝑡) = 𝑢(𝑡)−
𝑈 (𝑡)𝜓 with 𝜓 = 𝜑+ (−Δ)−1𝑓 (𝜑). Then 𝜓 ∈ 𝐻 𝑠, �̇�(𝑡) = �̇�(𝑡) −𝑈 (𝑡)�̇� and 𝑣(0) = �̇�(0) = 0.
Like (3.5), we see ‖𝑣‖𝐿∞(𝐵𝑠−2𝜅1

) ≲ ‖𝑣‖𝑌 and ‖�̇�‖𝐿∞(𝐵𝑠−4𝜅1
) ≲ (‖�̇�‖𝑋1

‖�̈�‖𝑋2
)1∕2. It follows from

these estimates together with Lemma 2.1 that

‖𝑣‖𝑌 ≲ ‖𝑢‖𝑌 ∨ 𝑅1, max
𝑗=1,2

‖𝜕𝑗𝑡𝑤‖𝑋𝑗
≲ max

𝑗=1,2
‖𝜕𝑗𝑡 𝑢‖𝑋𝑗

∨ 𝑅1, (3.28)

‖𝑢‖𝐿∞(𝐿𝜇) ≲ ‖𝑢‖𝐿∞(𝐵𝑠−2𝜅1
) ≲ ‖𝑢‖𝑌 ∨ ‖𝜑‖𝐻𝑠 . (3.29)
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Like (3.7) and (3.8), it follows from Lemmas 2.1 and 2.5 that

‖Φ(𝑢)‖𝑋1
≲ ‖𝑈 (⋅)𝜑‖𝑋1

+ ‖𝑓 (𝑢)‖𝐿𝛾′ (𝐵𝑠−2
𝜌′

) ≲ 𝑅1 + ‖𝑢‖𝛼𝑌0‖𝑢‖𝑋1
≲ 𝑅1 + 𝑅𝛼+1, (3.30)‖𝜕𝑡Φ(𝑢)‖𝑋2

≲ ‖𝑈 (⋅)�̇�‖𝑋2
+ ‖𝑓 ′(𝑢)�̇�‖𝐿𝛾′ (𝐵𝑠−4

𝜌′
)

≲ 𝑅1 + ‖𝑢‖𝛼𝑌0‖�̇�‖𝑋2
≲ 𝑅1 + 𝑅𝛼+1, (3.31)‖𝜕2𝑡Φ(𝑢)‖𝑋2

≲ ‖𝑈 (⋅)�̈�‖𝑋2
+ ‖𝑓 ′(𝑢)�̈� + 𝑓 ′′(𝑢)�̇��̇�‖𝐿𝛾′ (𝐵𝑠−4

𝜌′
)

≲ 𝑅1 + ‖𝑢‖𝛼𝑌0‖�̈�‖𝑋2
+ ‖𝑢‖𝛼−1𝑌0

‖�̇�‖2𝑋1
≲ 𝑅1 + 𝑅𝛼+1. (3.32)

Especially, we have used (2.17) for (3.30), (2.21) for (3.31), and (2.21) together with (2.24)
for (3.32). Lemma 2.1 also shows that Φ(𝑢) ∈ 𝐶(𝐼 ;𝐻 𝑠−2) ∩ 𝐶2(𝐼 ;𝐻 𝑠−4), with the estimate

‖Φ(𝑢)‖𝐿∞(𝐻𝑠−2) ∨ max
𝑗=1,2

‖𝜕𝑗𝑡Φ(𝑢)‖𝐿∞(𝐻𝑠−4) ≲ ‖𝜑‖𝐻𝑠−2 ∨ ‖�̇�‖𝐻𝑠−4 ∨ ‖�̈�‖𝐻𝑠−4 + 𝑅𝛼+1. (3.33)

On the other hand, for the estimates of Φ(𝑢) in 𝑌0 and 𝜕𝑡Φ(𝑢) in𝑋1, we use the equation (3.3)
with 𝑗 = 0, 1. We see

‖Φ(𝑢)‖𝑌0 ∼ ‖(1 − Δ)Φ(𝑢)‖𝑌1 ≲ ‖Φ(𝑢)‖𝑋1
+ ‖𝜕𝑡Φ(𝑢)‖𝑋1

+ ‖𝑓 (𝑢)‖𝑌1 , (3.34)‖𝜕𝑡Φ(𝑢)‖𝑋1
∼ ‖(1 − Δ)𝜕𝑡Φ(𝑢)‖𝑋2

≲ ‖𝜕𝑡Φ(𝑢)‖𝑋2
+ ‖𝜕2𝑡Φ(𝑢)‖𝑋2

+ ‖𝑓 ′(𝑢)�̇�‖𝑋2
. (3.35)

Here, we have used 𝑋1 ⊂ 𝑌1. Hence, we need to estimate ‖𝑓 (𝑢)‖𝑌1 and ‖𝑓 ′(𝑢)�̇�‖𝑋2
. As

in the proof of Proposition 3.1, we estimate ‖𝑓 (𝑢)‖𝐿2(𝐵𝑠−4
𝜌∗1

) and ‖𝑓 (𝑢)‖𝐿𝛾 (𝐵𝑠−4𝜌1
) separately. In

𝐿2(𝐼 ;𝐵𝑠−4
𝜌∗1

(ℝ𝑁 )), we directly estimate 𝑓 (𝑢) as before. Then, like (3.11), we have

‖𝑓 (𝑢)‖𝐿2(𝐵𝑠−4
𝜌∗1

) ≲ (‖𝑢‖𝑌 ∨ ‖𝜑‖𝐻𝑠)𝛼∕2‖𝑢‖𝛼∕2+1𝑌0
≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼∕2𝑅𝛼∕2+1.

On the other hand, taking account of the inequality ‖𝑓 (𝑈 (⋅)𝜑)‖𝐿𝛾 (𝐵𝑠−4𝜌1
) ≤ 𝑅1, we estimate the

difference 𝑓 (𝑢) − 𝑓 (𝑈 (⋅)𝜑) in 𝐿𝛾(𝐼 ;𝐵𝑠−4
𝜌1

(ℝ𝑁 )). It follows from Lemma 2.4 (ii) that

‖𝑓 (𝑢) − 𝑓 (𝑈 (⋅)𝜑)‖𝐿𝛾 (𝐵𝑠−4𝜌1
)

≲ (‖𝑢‖𝐿∞(𝐿𝜇) ∨ ‖𝑈 (⋅)𝜑‖𝐿∞(𝐿𝜇))𝛼−1(‖𝑢‖𝐿𝛾 (𝐵𝑠−4𝜌2
) ∨ ‖𝑈 (⋅)𝜑‖𝐿𝛾 (𝐵𝑠−4𝜌2

))‖𝑣‖𝐿∞(𝐵𝑠−2𝜅1
)

≲ (‖𝑢‖𝑌 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(‖𝑢‖𝑌0 ∨ ‖𝑈 (⋅)𝜑‖𝑋0
)‖𝑣‖𝑌 ≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(𝑅 ∨ 𝑅1)2.

Combining these estimates, we obtain

‖𝑓 (𝑢)‖𝑌1 ≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(𝑅 ∨ 𝑅1)2 + 𝑅1. (3.36)

We next estimate ‖𝑓 ′(𝑢)�̇�‖𝑋2
. We use (2.22) to obtain

‖𝑓 ′(𝑢)�̇�‖𝐿2(𝐵𝑠−4𝜌∗ ) ≲ (‖𝑢‖𝑌 ∨ ‖𝜑‖𝐻𝑠)𝛼∕2‖𝑢‖𝛼∕2𝑌0
‖�̇�‖𝑌1 ≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼∕2𝑅𝛼∕2+1.

On the other hand, for the estimate in 𝐿𝛾(𝐼 ;𝐵𝑠−4
𝜌 (ℝ𝑁 )), we write

𝑓 ′(𝑢)�̇� = 𝑓 ′(𝑢)�̇� + {𝑓 ′(𝑢) − 𝑓 ′(𝑈 (⋅)𝜑)}𝑈 (⋅)�̇� + 𝑓 ′(𝑈 (⋅)𝜑)𝑈 (⋅)�̇�.
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The last term is bounded by 𝑅1 in 𝐿𝛾(𝐼 ;𝐵𝑠−4
𝜌 (ℝ𝑁 )), so it suffices to estimate the first two

terms. From Lemma 2.4 (iii)–(iv), we see

‖𝑓 ′(𝑢)�̇�‖𝐿𝛾 (𝐵𝑠−4𝜌 ) ≲ ‖𝑢‖𝛼−1𝐿∞(𝐿𝜇)‖𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1
)‖�̇�‖𝐿∞(𝐵𝑠−4𝜅1

)

≲ (‖𝑢‖𝑌 ∨ ‖𝜑‖𝐻𝑠)𝛼−1‖𝑢‖𝑌0(‖�̇�‖𝑋1
‖�̈�‖𝑋2

)1∕2 ≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1𝑅(𝑅 ∨ 𝑅1),‖{𝑓 ′(𝑢) − 𝑓 ′(𝑈 (⋅)𝜑)}𝑈 (⋅)�̇�‖𝐿𝛾 (𝐵𝑠−4𝜌 )

≲ (‖𝑢‖𝐿∞(𝐵𝑠−4𝜅2
) ∨ ‖𝑈 (⋅)𝜑‖𝐿∞(𝐵𝑠−4𝜅2

))𝛼−1‖𝑣‖𝐿∞(𝐵𝑠−4𝜅2
)‖𝑈 (⋅)�̇�‖𝐿𝛾 (𝐵𝑠−4𝜌1

).

≲ (‖𝑢‖𝑌 ∨ ‖𝜑‖𝐻𝑠)𝛼−1‖𝑣‖𝑌 ‖𝑈 (⋅)�̇�‖𝑋1
≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(𝑅 ∨ 𝑅1)𝑅1.

Combining these estimates and taking 𝛼 > 2 into account, we obtain

‖𝑓 ′(𝑢)�̇�‖𝑋2
≲ (𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(𝑅 ∨ 𝑅1)2 + 𝑅1. (3.37)

Collecting the estimates (3.30)–(3.32), (3.34), (3.35) and (3.37), we obtain

‖Φ(𝑢)‖𝑌 ≤ 𝐶𝑅1 + 𝐶(𝑅 ∨ ‖𝜑‖𝐻𝑠)𝛼−1(𝑅 ∨ 𝑅1)2

for some constant 𝐶 ≥ 1. Now, we choose 𝑅 and 𝑇 such that

2𝐶𝑅1(𝜑; 𝑇 ) < 𝑅 < min
{ 1
2𝐶‖𝜑‖𝛼−1𝐻𝑠

; (2𝐶)−1∕𝛼
}
. (3.38)

Then, Φ is a contraction mapping from �̃�𝑅 into itself, and hence there is a unique fixed point
𝑢 of Φ in �̃�𝑅, which gives a solution to (1.2). We shall show that 𝑢 ∈ 𝑋0(𝐼) ∩𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 ))
by a sort of bootstrap argument. It follows from (3.29) and Lemma 2.4 (i) that 𝑓 (𝑢) ∈ 𝑋1(𝐼)∩
𝐿∞(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )). Then, from (3.34) with 𝑌0 and 𝑌1 respectively replaced with 𝑋0 and 𝑋1,
we find that 𝑢 = Φ(𝑢) ∈ 𝑋0(𝐼). As mentioned above, we have 𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )) ∩
𝐶2(𝐼 ;𝐻 𝑠−4(ℝ𝑁 )). Since 𝑋0(𝐼) ∩ 𝑌 (𝐼) ⊂

⋂2
𝑗=0𝑊

𝑗,�̄�(𝐼 ;𝐵𝑠−2𝑗
�̄� (ℝ𝑁 )), Lemma 2.7 (ii) shows

that 𝑓 (𝑢) ∈ 𝐶1(𝐼 ;𝐻 𝑠−4(ℝ𝑁 )). Hence, using the equation (3.3) with 𝑗 = 1, we obtain 𝜕𝑡𝑢 ∈
𝐶(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )). Next, using the equation (3.3) with 𝑗 = 0, we obtain 𝑢 ∈ 𝐿∞(𝐼 ;𝐻 𝑠(ℝ𝑁 )).
Once this is obtained, applying Lemma 2.7 (ii) again, we obtain 𝑓 (𝑢) ∈ 𝐶(𝐼 ;𝐻 𝑠−2(ℝ𝑁 )).
Then, we go back to the equation (3.3) with 𝑗 = 0 and obtain 𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )). The rest of
the proof is the same as that of Proposition 3.1. □

Proposition 3.4. Let 𝑁 ≥ 11, 4 < 𝑠 < 𝑁∕2 and let 𝛼 = 𝛼∗(𝑠) satisfy max{2; 𝑠 − 3} < 𝛼 ≤
𝑠 − 2. Let 𝜑 ∈ 𝐻 𝑠(ℝ𝑁 ) and let {𝜑𝑘}∞𝑘=1 ⊂ 𝐻 𝑠(ℝ𝑁 ) satisfy 𝜑𝑘 → 𝜑 in 𝐻 𝑠(ℝ𝑁 ). Then there
exists 𝑇 > 0 such that (1.2) has a unique solution 𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 ))∩𝑋(𝐼) with 𝐼 = [0, 𝑇 ],
and that (1.2) with 𝜑 replaced by 𝜑𝑘 has a unique solution 𝑢𝑘 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )) ∩ 𝑋(𝐼) for
sufficiently large 𝑘. Furthermore, 𝑢𝑘 → 𝑢 in 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )) ∩𝑋(𝐼).

Proof. The proof of Proposition 3.4 is similar to that of Proposition 3.2.
Step 1. As in the previous case, there exist positive numbers 𝑅 and 𝑇 such that (i) the

equation (1.2) has a unique solution 𝑢 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 )) ∩ 𝑋0(𝐼) ∩ 𝑌 (𝐼); (ii) for sufficiently
large 𝑘, (1.2) with𝜑 replaced by𝜑𝑘 has a unique solution 𝑢𝑘 ∈ 𝐶(𝐼 ;𝐻 𝑠(ℝ𝑁 ))∩𝑋0(𝐼)∩𝑌 (𝐼);
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(iii) ‖𝑢𝑘‖𝑌 ≤ 𝑅 and ‖𝑢𝑘‖𝐿∞(𝐵𝑠−2𝜅1
) ∨‖�̇�𝑘‖𝐿∞(𝐻𝑠−2) ≲ 𝑅∨‖𝜑‖𝐻𝑠 . Choosing 𝑇 sufficiently small,

we may assume 𝑅 to be arbitrarily small, so that 𝑅𝛼−1 ≪ 𝑅𝛼∕2 ≪ 𝑅 ≪ 1, for we have
𝛼 > 2 by assumption. From Lemmas 2.1 and 2.4, we see 𝑅1(𝜑𝑘; 𝑇 ) → 𝑅1(𝜑; 𝑇 ), where 𝑅1

is defined by (3.27).
Step 2. Like (3.34), (3.35), we have

‖𝑢𝑘 − 𝑢‖𝑌0 ≲ ‖𝑢𝑘 − 𝑢‖𝑋1
+ ‖�̇�𝑘 − �̇�‖𝑋1

+ ‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝑌1 , (3.39)‖𝑢𝑘 − 𝑢‖𝑋1
≲ ‖𝑢𝑘 − 𝑢‖𝑋2

+ ‖�̇�𝑘 − �̇�‖𝑋2
+ ‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝑋2

, (3.40)‖�̇�𝑘 − �̇�‖𝑋1
≲ ‖�̇�𝑘 − �̇�‖𝑋2

+ ‖�̈�𝑘 − �̈�‖𝑋2
+ ‖𝑓 ′(𝑢𝑘)�̇� − 𝑓 ′(𝑢𝑘)�̇�‖𝑋2

. (3.41)

Like (3.19), we can obtain

‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝑌1 ≲ 𝑅(‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1
) + ‖𝑢𝑘 − 𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1

)), (3.42)‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝑋2
≲ 𝑅(‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−4𝜅1

) + ‖𝑢𝑘 − 𝑢‖𝐿𝛾 (𝐵𝑠−4𝜌1
)). (3.43)

Here, we have used Lemma 2.4 (ii)–(iii) together with (2.22) and (2.23). On the other hand,
it follows from Lemma 2.4 (iii)–(iv) and (2.22), (2.25) that

‖𝑓 ′(𝑢𝑘)�̇�𝑘 − 𝑓 ′(𝑢)�̇�‖𝐿𝛾 (𝐵𝑠−4𝜌 ) ≲ ‖𝑓 ′(𝑢𝑘)(�̇�𝑘 − �̇�)‖𝐿𝛾 (𝐵𝑠−4𝜌 ) + ‖(𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢))�̇�‖𝐿𝛾 (𝐵𝑠−4𝜌 )

≲ ‖𝑢𝑘‖𝛼−1𝐿∞(𝐵𝑠−2𝜅1
)(‖𝑢𝑘‖𝐿𝛾 (𝐵𝑠−2𝜌1

)‖�̇�𝑘 − �̇�‖𝐿∞(𝐵𝑠−4𝜅1
) + ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1

)‖�̇�‖𝐿𝛾 (𝐵𝑠−2𝜌 ))

≲ 𝑅(‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1
) + ‖�̇�𝑘 − �̇�‖𝐿∞(𝐵𝑠−4𝜅1

)),‖𝑓 ′(𝑢𝑘)�̇�𝑘 − 𝑓 ′(𝑢)�̇�‖𝐿2(𝐵𝑠−4𝜌∗ ) ≲ ‖𝑓 ′(𝑢𝑘)(�̇�𝑘 − �̇�)‖𝐿2(𝐵𝑠−4𝜌∗ ) + ‖(𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢))�̇�‖𝐿2(𝐵𝑠−4𝜌∗ )

≲ ‖𝑢𝑘‖𝛼∕2𝐿∞(𝐵𝑠−2𝜅1
)‖𝑢𝑘‖𝛼∕2𝐿𝛾 (𝐵𝑠−2𝜌1

)‖�̇�𝑘 − �̇�‖𝐿𝛾 (𝐵𝑠−2𝜌 )

+ (‖𝑢𝑘‖𝐿∞(𝐵𝑠−2𝜅1
) ∨ ‖𝑢‖𝐿∞(𝐵𝑠−2𝜅1

))(𝛼−1)∕2(‖𝑢𝑘‖𝐿𝛾 (𝐵𝑠−2𝜌1
) ∨ ‖𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1

))(𝛼−1)∕2

× ‖𝑢𝑘 − 𝑢‖1∕2𝐿∞(𝐵𝑠−2𝜅1
)‖𝑢𝑘 − 𝑢‖1∕2𝐿𝛾 (𝐵𝑠−2𝜌1

)‖�̇�‖𝐿𝛾 (𝐵𝑠−2𝜌 )

≲ 𝑅(‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1
) + ‖�̇�𝑘 − �̇�‖𝐿∞(𝐵𝑠−4𝜅2

) + ‖𝑢𝑘 − 𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1
) + ‖�̇�𝑘 − �̇�‖𝐿𝛾 (𝐵𝑠−2𝜌 )).

Therefore, we obtain

‖𝑓 ′(𝑢𝑘)�̇�𝑘 − 𝑓 ′(𝑢)�̇�‖𝑋2
≲ 𝑅(‖�̇�𝑘 − �̇�‖𝐿∞(𝐵𝑠−4𝜅1

) + ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1
) + ‖𝑢𝑘 − 𝑢‖𝑌 ). (3.44)

Collecting the estimates (3.39)–(3.44), we obtain

‖𝑢𝑘 − 𝑢‖𝑌 ≲ ‖𝑢𝑘 − 𝑢‖𝑋2
+ ‖�̇�𝑘 − �̇�‖𝑋2

+ ‖�̈�𝑘 − �̈�‖𝑋2

+ 𝑅(‖�̇�𝑘 − �̇�‖𝐿∞(𝐵𝑠−4𝜅1
) + ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1

) + ‖𝑢𝑘 − 𝑢‖𝑌 ). (3.45)

If 𝑅 > 0 is small enough, then the last term in the right-hand side is absorbed into the left-
hand side. Like (3.20), we can obtain

‖�̇�𝑘 − �̇�‖𝐿∞(𝐵𝑠−4𝜅1
) + ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1

) ≲ ‖𝑢𝑘 − 𝑢‖𝑌 + ‖𝜑𝑘 − 𝜑‖𝐻𝑠 + ‖�̇�𝑘 − �̇�‖𝐻𝑠−2 . (3.46)
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Substituting (3.46) into (3.45), we obtain‖𝑢𝑘 − 𝑢‖𝑌 ≲ ‖𝑢𝑘 − 𝑢‖𝑋2
+ ‖�̇�𝑘 − �̇�‖𝑋2

+ ‖�̈�𝑘 − �̈�‖𝑋2

+ ‖𝜑𝑘 − 𝜑‖𝐻𝑠 + ‖�̇�𝑘 − �̇�‖𝐻𝑠−2 . (3.47)

Step 3. We shall show lim𝑘→∞ ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠−4)∩𝑋2
= 0, analogous to the previous case

𝛼 > 𝑠 − 2. Indeed, we have only to replace the index (𝑠 − 2) with (𝑠 − 4) and the space 𝑋1

with 𝑋2 in the proof of (3.22). From Lemma 2.1 and the estimate (2.21), we have‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠−4)∩𝑋2
≲ ‖𝜑𝑘 − 𝜑‖𝐻𝑠−4 + ‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝐿𝛾′ (𝐵𝑠−4

𝜌′
)

≲ ‖𝜑𝑘 − 𝜑‖𝐻𝑠−4 + (‖𝑢𝑘‖𝑌 ∨ ‖𝑢‖𝑌 )𝛼‖𝑢𝑘 − 𝑢‖𝑋2

≲ ‖𝜑𝑘 − 𝜑‖𝐻𝑠−4 + 𝑅𝛼‖𝑢𝑘 − 𝑢‖𝑋2
.

If 𝑅 is small enough, the second term in the right-hand side is absorbed into the left-hand
side. Hence ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠−4)∩𝑋2

≲ ‖𝜑𝑘 − 𝜑‖𝐻𝑠−4 → 0.
Step 4. We next estimate ‖�̇�𝑘 − �̇�‖𝐿∞(𝐻𝑠−4)∩𝑋2

and ‖�̈�𝑘 − �̈�‖𝐿∞(𝐻𝑠−4)∩𝑋2
. From Lemma 2.1

and the estimates (2.21), (2.24), we obtain‖�̇�𝑘 − �̇�‖𝐿∞(𝐻𝑠−4)∩𝑋2

≲ ‖�̇�𝑘 − �̇�‖𝐻𝑠−4 + ‖𝑓 ′(𝑢𝑘)(�̇�𝑘 − �̇�)‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

) + ‖{𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢)}�̇�‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

)

≲ ‖�̇�𝑘 − �̇�‖𝐻𝑠−4 + ‖𝑢𝑘‖𝛼𝐿𝛾 (𝐵𝑠−2𝜌1
)‖�̇�𝑘 − �̇�‖𝐿𝛾 (𝐵𝑠−4𝜌 )

+ (‖𝑢𝑘‖𝐿𝛾 (𝐵𝑠−2𝜌1
) ∨ ‖𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1

))𝛼−1‖𝑢𝑘 − 𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌 )‖�̇�‖𝐿𝛾 (𝐵𝑠−2𝜌 )

≲ ‖�̇�𝑘 − �̇�‖𝐻𝑠−4 + 𝑅𝛼‖𝑢𝑘 − 𝑢‖𝑋1
+ 𝑅𝛼‖�̇�𝑘 − �̇�‖𝑋2

.

Using (3.47) and choosing 𝑅 sufficiently small, we obtain‖�̇�𝑘 − �̇�‖𝐿∞(𝐻𝑠−4)∩𝑋2
≲ ‖𝜑𝑘 − 𝜑‖𝐻𝑠 + ‖�̇�𝑘 − �̇�‖𝐻𝑠−2 + 𝑅‖𝑢𝑘 − 𝑢‖𝑋2

+ 𝑅‖�̈�𝑘 − �̈�‖𝑋2
. (3.48)

Similarly,‖�̈�𝑘 − �̈�‖𝐿∞(𝐻𝑠−4)∩𝑋2

≲ ‖�̈�𝑘 − �̈�‖𝐻𝑠−4 + ‖𝑓 ′(𝑢𝑘)(�̈�𝑘 − �̈�)‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

) + ‖{𝑓 ′(𝑢𝑘) − 𝑓 ′(𝑢)}�̈�‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

)

+ ‖𝑓 ′′(𝑢𝑘)(�̇�𝑘�̇�𝑘 − �̇��̇�)‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

) + ‖{𝑓 ′′(𝑢𝑘) − 𝑓 ′′(𝑢)}�̇��̇�‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

)

≡ ‖�̈�𝑘 − �̈�‖𝐻𝑠−4 + I + II + III + IV.

As before, the terms I, II and III are estimated by the Leibniz rule. Namely, from (2.21)
and (2.24),

I ≲ ‖𝑢𝑘‖𝛼𝐿𝛾 (𝐵𝑠−2𝜌1
)‖�̈�𝑘 − �̈�‖𝐿𝛾 (𝐵𝑠−4𝜌 ),

II ≲ (‖𝑢𝑘‖𝐿𝛾 (𝐵𝑠−2𝜌1
) ∨ ‖𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1

))𝛼−1‖𝑢𝑘 − 𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1
), ‖�̈�‖𝐿𝛾 (𝐵𝑠−4𝜌 ),

III ≲ (‖𝑢𝑘‖𝐿𝛾 (𝐵𝑠−2𝜌1
) ∨ ‖𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1

))𝛼−1(‖�̇�𝑘‖𝐿𝛾 (𝐵𝑠−2𝜌 ) ∨ ‖�̇�‖𝐿𝛾 (𝐵𝑠−2𝜌 ))‖�̇�𝑘 − �̇�‖𝐿𝛾 (𝐵𝑠−2𝜌 ),
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so that I + II + III ≲ 𝑅𝛼‖𝑢𝑘 − 𝑢‖𝑌 . Therefore

‖�̈�𝑘 − �̈�‖𝐿∞(𝐻𝑠−4)∩𝑋2
≲ ‖�̈�𝑘 − �̈�‖𝐻𝑠−4 + 𝑅𝛼‖𝑢𝑘 − 𝑢‖𝑌 + IV. (3.49)

The term IV ≡ ‖{𝑓 ′′(𝑢𝑘) − 𝑓 ′′(𝑢)}�̇��̇�‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

) is estimated as in Step 4 of the proof of Propo-
sition 3.2. Namely, we further decompose

IV ≤ ‖{𝑓 ′′(𝑢𝑘) − 𝑓 ′′(𝑢)}�̇��̇�𝐿‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

) + ‖{𝑓 ′′(𝑢𝑘) − 𝑓 ′′(𝑢)}�̇��̇�𝐻‖𝐿𝛾′ (𝐵𝑠−4
𝜌′

)

≡ IV1 + IV2.

Recall that the decomposition 𝑢 = 𝑢𝐿 + 𝑢𝐻 is defined by (3.25), so that the supports of F𝑢𝐿

and F𝑢𝐻 are respectively contained in the region |𝜉| ≲ 2𝑙 and |𝜉| ≳ 2𝑙. For arbitrarily
fixed 𝑙, we can show IV1 → 0 as 𝑘 → ∞. Indeed, it follows from the relation 1∕𝜌′2 =
(𝛼 − 2)∕𝜈 + 1∕𝜌+ 2(1∕𝜌− (𝑠− 2)∕𝑁) together with the Hölder and the Sobolev inequalities
that

‖{𝑓 ′′(𝑢𝑘) − 𝑓 ′′(𝑢)}�̇��̇�𝐿‖𝐿𝛾′ (𝐵−4
𝜌′
) ≲ ‖{𝑓 ′′(𝑢𝑘) − 𝑓 ′′(𝑢)}�̇��̇�𝐿‖

𝐿𝛾′ (𝐿𝜌
′
2 )

≲ (‖𝑢𝑘‖𝐿𝛾 (𝐿𝜈 ) ∨ ‖𝑢‖𝐿𝛾 (𝐿𝜈 ))𝛼−2‖𝑢𝑘 − 𝑢‖𝐿𝛾 (𝐿𝜌)‖�̇�‖2𝐿𝛾 (𝐵𝑠−2𝜌 ) ≲ 𝑅
𝛼‖𝑢𝑘 − 𝑢‖𝑋2

→ 0.

We take 𝜀 > 0 satisfying 𝑠 − 4 + 𝜀 < min{𝑠 − 2; 𝛼 − 1}. Let 1∕𝜌𝑗𝜀 = 1∕𝜌𝑗 + 𝜀∕𝑁 , 𝑗 = 1, 2.
From the Sobolev inequality, we have 𝐵𝑠−4+2𝑗

𝜌 ⊂ 𝐵𝑠−4+𝜀
𝜌𝑗𝜀

. It follows from a slight modification
of (2.24) that

‖𝑓 ′′(𝑢𝑘)�̇��̇�𝐿‖𝐿𝛾′ (𝐵𝑠−4+𝜀
𝜌′

) ≲ ‖𝑢𝑘‖𝛼−2𝐿𝛾 (𝐿𝜈 )‖𝑢𝑘‖𝐿𝛾 (𝐵𝑠−4+𝜀𝜌2𝜀 )‖�̇�‖𝐿𝛾 (𝐵𝑠−4+𝜀𝜌1𝜀 )‖�̇�𝐿‖𝐿𝛾 (𝐵𝑠−4+𝜀𝜌1 )

≲ ‖𝑢𝑘‖𝛼−1𝐿𝛾 (𝐵𝑠𝜌)
‖�̇�‖𝐿𝛾 (𝐵𝑠−2𝜌 )‖�̇�𝐿‖𝐿𝛾 (𝐵𝑠−2+𝜀𝜌 ) ≲ 𝑅

𝛼‖�̇�𝐿‖𝐿𝛾 (𝐵𝑠−2+𝜀𝜌 ),

and ‖𝑓 ′′(𝑢)�̇��̇�𝐿‖𝐿𝛾′ (𝐵𝑠−4+𝜀
𝜌′

) ≲ 𝑅𝛼‖�̇�𝐿‖𝐿𝛾 (𝐵𝑠−2+𝜀𝜌 ). Hence, we see that ‖{𝑓 ′′(𝑢𝑘)−𝑓 ′′(𝑢)}�̇��̇�𝐿‖𝐿𝛾′ (𝐵𝑠−4+𝜀
𝜌′

)

is bounded for arbitrarily fixed 𝑙. Therefore, we obtain IV1 → 0 as 𝑘 → ∞ by interpolation.
On the other hand, we have

IV2 ≲ (‖𝑢𝑘‖𝐿𝛾 (𝐵𝑠−2𝜌1
) ∨ ‖𝑢‖𝐿𝛾 (𝐵𝑠−2𝜌1

))𝛼−1‖�̇�‖𝐿𝛾 (𝐵𝑠−2𝜌 )‖�̇�𝐻‖𝐿𝛾 (𝐵𝑠−2𝜌 ) ≲ 𝑅
𝛼‖�̇�𝐻‖𝐿𝛾 (𝐵𝑠−2𝜌 ),

which goes to zero as 𝑙 → ∞, uniformly with respect to 𝑘. Therefore, we see IV → 0. Now,
collecting the estimates (3.47), (3.48) and (3.49), we have

‖𝑢𝑘 − 𝑢‖𝑌 ≲ ‖𝜑𝑘 − 𝜑‖𝐻𝑠 + ‖�̇�𝑘 − �̇�‖𝐻𝑠−2 + ‖�̈�𝑘 − �̈�‖𝐻𝑠−4

+ ‖𝑢𝑘 − 𝑢‖𝑋2
+ ‖{𝑓 ′′(𝑢𝑘) − 𝑓 ′′(𝑢)}�̇��̇�‖𝐿𝛾′ (𝐵𝑠−4

𝜌′
).

This estimate shows that lim𝑘→∞ ‖𝑢𝑘 − 𝑢‖𝑌 = 0. Going back to (3.46), (3.48) and (3.49), we
also obtain

lim
𝑘→∞

{‖𝑢𝑘 − 𝑢‖𝐿∞(𝐵𝑠−2𝜅1
) ∨ ‖�̇�𝑘 − �̇�‖𝐿∞(𝐵𝑠−4𝜅1

∩𝐻𝑠−4) ∨ ‖�̈�𝑘 − �̈�‖𝐿∞(𝐻𝑠−4)
}
= 0.
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Step 5. We shall finally show that lim𝑘→∞ ‖𝑢𝑘−𝑢‖𝐿∞(𝐻𝑠) = 0. It follows from the equations
for 𝑢𝑘 and 𝑢 that

‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠) ≲ ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐿2) + ‖�̇�𝑘 − �̇�‖𝐿∞(𝐻𝑠−2) + ‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝐿∞(𝐻𝑠−2),‖�̇�𝑘 − �̇�‖𝐿∞(𝐻𝑠−2) ≲ ‖�̇�𝑘 − �̇�‖𝐿∞(𝐿2) + ‖�̈�𝑘 − �̈�‖𝐿∞(𝐻𝑠−4) + ‖𝑓 ′(𝑢𝑘)�̇�𝑘 − 𝑓 ′(𝑢)�̇�‖𝐿∞(𝐻𝑠−4),

so that

‖𝑢𝑘 − 𝑢‖𝐿∞(𝐻𝑠) + ‖�̇�𝑘 − �̇�‖𝐿∞(𝐻𝑠−2)

≲ ‖𝑢𝑘 − 𝑢‖𝐿∞(𝐿2) + ‖�̇�𝑘 − �̇�‖𝐿∞(𝐿2) + ‖�̈�𝑘 − �̈�‖𝐿∞(𝐻𝑠−4)

+ ‖𝑓 (𝑢𝑘) − 𝑓 (𝑢)‖𝐿∞(𝐻𝑠−2) + ‖𝑓 ′(𝑢𝑘)�̇�𝑘 − 𝑓 ′(𝑢)�̇�‖𝐿∞(𝐻𝑠−4).

By Steps 3–4, the first three terms in the right-hand side converge to zero. Furthermore, it
follows from Lemma 2.6 (ii)–(iii) that the last two terms converge to zero. This completes
the proof. □
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