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ABSTRACT: Herein, we demonstrated the oxidative cross-dehydrogenative coupling between amidines and chalcones catalyzed by 
flavin and iodine. The riboflavin-iodine catalytic system played multiple roles in substrate- and O2-activation, enabling the facile and 
atom-economical synthesis of tetra-substituted imidazoles in good yields (60–87%). This metal-free reaction consumed only 1 equiv 
of molecular oxygen and generated 2 equiv of environmentally benign H2O as the only by-product.  

   Cross-dehydrogenative coupling (CDC) to form new C-X 
(X=C, S, O, N) bonds using the C-H and X-H bonds of the sub-
strates directly removes the necessity of redundant intermediate 
steps and the usage of stoichiometric reagents for the pre-acti-
vation of substrates. Therefore, it has become a powerful tool 
for step- and atom-economical syntheses in organic chemistry.1 
In oxidative transformations, molecular oxygen (O2) is recog-
nized as an ideal oxidant because of its economical and envi-
ronmental advantages, such as sustainable abundance, safety, 
cost-effectiveness, atom economy, and minimal pollution.2-4 
Therefore, aerobic CDC that generates the environmentally be-
nign H2O as the only waste is an ideal atom-economical and 
green approach that combines the advantages of both the CDC 
and the O2-mediated process.3 Recently, we have developed a 
novel dual catalytic system for aerobic CDC using a coupled 
redox catalyst system consisting of a biomimetic flavin organo-
catalyst5 and an iodine catalyst.6 The coupled flavin-iodine cat-
alyst promoted aerobic CDC through direct C-H bond function-
alization when applied to the azolation of indoles, specifically 
the formation of imidazo[1,2-a]pyridine from acetophenones 
and 2-aminopyridines.7 Although aerobic CDC generally re-
quires transition metal catalysts, these flavin-iodine-catalyzed 
CDC reactions are unique metal-free systems, which facilitate 
non-metal redox catalysis for O2- and substrate activation. In 
addition to its environmental advantages, the coupled flavin-io-
dine catalyst occasionally demonstrated excellent chemoselec-
tivity and enabled further applications in multistep syntheses, 
which have not been achieved by the metal-catalyzed sys-
tems.7,8 
   Imidazoles are one of the most prevalent heterocyclic skele-
tons, which are found in biologically active natural products, 

pharmaceuticals, and functional molecules, such as ionic liq-
uids, precursors of N-heterocyclic carbene catalysts and ligands, 
organic semiconductors, and optoelectrical materials.9 Over the 
years, numerous synthetic methods for imidazole derivatives 
have been developed. However, most of these are limited to 
mono-, di-, or tri-substituted imidazoles; facile and efficient 
synthetic methods for the bulky tetra-substituted imidazoles are 
relatively scarce. Some synthetic methods have been reported 
for tetra-substituted imidazoles, e.g. transition-metal-catalyzed 
dehydrogenation of amines and imines (Scheme 1A),10a,b Ni-
catalyzed coupling of aldehydes with diketones (Scheme 1B),10c 
cross-coupling of aldimine (Scheme 1C),10d domino reaction of 
azidoacrylates and nitrones (Scheme 1D),10e Cu-catalyzed cy-
cloaddition of amidines (Scheme 1E)10f, multi-component reac-
tions (Scheme 1 and G),10g-m and others.10n-p However, most of 
them have disadvantages such as the use of harmful and less-
available substrates and metal reagents, harsh reaction condi-
tions, high catalyst loading, and low regioselectivity. The cata-
lytic aerobic CDC of chalcones 1 and amidines 2 may be the 
most promising method for regioselective and atom-economical 
synthesis of 1,2,4,5-substituted imidazoles 3, in which, through 
the activation of two C(sp2)-H bonds of 1, two C-N bonds are 
formed along with H2O as the by-product (Scheme 1H). How-
ever, this synthetic route is limited to only the coupled iron(III)- 
iodine catalyst system;11 thus, other approaches to synthesize 
tetra-substituted imidazoles must be developed. In this study, 
we applied the flavin-iodine-catalyzed C-H bond functionaliza-
tion7 to the aerobic CDC between 1 and 2 and successfully syn-
thesized 3 under atom-economical metal-free conditions. 
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Scheme 1. Synthetic Strategy of Tetrasubstituted-Imidaz-
oles. 

 
 
   First, we elucidated the effects of various flavin catalysts on 
the aerobic CDC. In the presence of flavins 4-712 (10 mol%) and 
I2 (10 mol%), 1a was reacted with 2a (1.5 equiv) in 1,2-dichlo-
robenzene (1,2-DCB) under molecular oxygen (1 atm, balloon) 
at 110 °C (Scheme 2). As a result, the desired 3a was obtained 
in 37–61% yields in the presence of riboflavin 4a, riboflavin 
tetraacetate 4b, isoalloxaziniums 5, and alloxaziniums 6 and 7, 
whereas a poor 16% yield was achieved in the absence of a fla-
vin catalyst. This result revealed that the flavin-iodine catalysis 
was effectively applied to the aerobic CDC of 1a and 2a. 
Among the seven flavin catalysts tested, the cationic flavinium 
catalysts 5-7, which generally work as efficient organocatalysts 
for aerobic oxygenations,5c,5d,13 showed moderate catalytic ac-
tivity. The best yield was obtained by neutral riboflavin tetraac-
etate 4b, which can be readily prepared from the inexpensive 
and commercially available riboflavin 4a (vitamin B2). The su-
perior catalytic activity of neutral 4b is ascribed to its stability 
under basic conditions because cationic flavinium catalysts of-
ten show reduced catalytic activity under basic conditions ow-
ing to the formation of an adduct formation with various nucle-
ophiles.5d 
 
 
 
 
 
 
 

Scheme 2. Effects of flavin catalysts on the aerobic CDC of 
1a and 2a to produce 3a.a 

 
a Conditions: 1a (0.25 M), 2a (0.30 M), flavin, I2, and 1,2-DCB 
under O2 (1 atm, balloon) at 110 °C. Yield was determined by 1H 
NMR using 1,3,5-trimethoxybenzene as the internal standard. 

 
   Further optimization of the reaction conditions revealed that 
I2 worked efficiently in comparison with other iodine sources 
such as KI, NH4I, and HI (Table S1). The desired 3a was ob-
tained in 87% yield (75% isolated yield) when a solution of 1a 
and 2a (1.5 equiv) in chlorobenzene was stirred in the presence 
of 4b (10 mol%) and I2 (10 mol%) under molecular oxygen (1 
atm, balloon) at 110 °C for 42 h (Tables S1 and Scheme 3). In 
contrast, the yield decreased to 25% for the reaction without 4b, 
evidently supporting the catalytic efficiency of 4b. Using this 
optimized condition as the standard, we then investigated the 
substrate scope of the aerobic oxidative imidazole synthesis. A 
series of 2 bearing the electron-donating and -withdrawing sub-
stituents (such as methyl and chloro groups, respectively) at the 
phenyl rings reacted efficiently with 1a, producing the corre-
sponding 3b–e in 71–87% yields. The yield of 3b increased to 
92% in a short reaction time of 42 h when 20 mol% of 4b and 
I2 were used. The reaction of thiophene and furan carboxami-
dines 2f and 2g also proceeded smoothly to produce the corre-
sponding 3f and 3g in 85 and 72% yields, respectively. A car-
boxamidine bearing a basic pyridine unit, 2h, successfully re-
acted to afford 3h in 60% yield. In contrast, the reaction of me-
thane carboxamidine 2i hardly occurred. A series of chalcone 
bearing electron-donating and -withdrawing substituents re-
acted with 2a, producing the corresponding 3j–p good yields 
(60–85%). To demonstrate the synthetic utility of this method, 
a gram-scale reaction was conducted, producing 3d in 70% 
yield (1.01 g) with an extended reaction time of 60 h. 
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Scheme 3. Scope of flavin-iodine-catalyzed oxidative imid-
azole synthesis via aerobic CDC of 1 and 2.a 

 
 
a Conditions: 1 (0.25 M), 2 (0.38 M), 4b (10 mol%), I2 (10 mol%), 
and PhCl under O2 (1 atm, balloon) at 110 °C for 42 h. b 4b (20 
mol%) and I2 (20 mol%) were used. c Yield was determined by 1H 
NMR using 1,3,5-trimethoxybenzene as an internal standard. d 1a 
(3.5 mmol) was used. 

 
   Subsequently, we performed control experiments to gain in-
sight into the reaction mechanism. Although the imidazole 3a 
was obtained in 87% yield at the optimized reaction conditions, 
the reaction hardly occurred in the absence of I2 or under N2 
atmosphere, indicating that the iodine catalyst and molecular 
oxygen are essential for the CDC (Scheme 4A). Air (1 atm) 
could be used instead of molecular oxygen, although the yield 
slightly decreased. The addition of radical inhibitors such as 
2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and 3,5-di-tert-
butyl-4-hydroxytoluene (BHT) did not significantly affect the 
reaction and afforded 3a in 70 and 79% yields, respectively. 
This negligible effect of the radical inhibitors suggested a non-
radical catalytic mechanism.  

 
 
 
 
 
 
 

Scheme 4. Control experiments. 

 
 
Scheme 5. Proposed mechanism for aerobic oxidative imid-
azole synthesis. 

 

 
   Based on these experimental results and previous reports, we 
propose a plausible mechanism for flavin-iodine-catalyzed im-
idazole synthesis (Scheme 5). Molecular iodine is a good halo-
gen bond catalyst as evidenced by the iodine-catalyzed Michael 
addition on the carbonyl oxygen of chalcone.14 We propose that 
a Michael adduct 8 is initially formed when 2 is reacted with 1 
in the iodine-catalyzed reaction.11 By the reaction of 8 with I2, 
the a-iodination of the carbonyl group occurs to yield HI and 
the iodo intermediate 9,11 which subsequently undergoes intra-
molecular cyclization affording dihydroimidazole 10.11 The 
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intermediate 10a was detected by HRMS analysis of the reac-
tion mixture obtained after the 2 h stirring, and 10a was isolated 
in 32% yield (Scheme 4B and Figure S1).11a The formation of 
10a (7% yield) in the reaction under an N2 atmosphere was also 
confirmed by 1H NMR (Scheme 4A). The subsequent dehydro-
genative oxidation of 10 yielded the desired product 3 and by-
product HI. In this system, flavin is responsible for the regener-
ation of I2 (Scheme 5).6a,15 The in situ generated HI is converted 
to I2 by the oxidation of the neutral flavin Fl. The reduced flavin 
Flred reacts with molecular oxygen to form the hydroperoxyl in-
termediate FlOOH, which then reverts to Fl through the elimina-
tion of H2O2.16 Interestingly, the oxidatively active H2O2 oxi-
dizes HI to generate I2 and H2O. Flavin catalysts are known to 
catalyze the aerobic dehydrogenative aromatization of hetero-
cyclic compounds such as dihydropyridine,17 benzothiazoline,17 
and indoline.18 Therefore, in the present transformation, Fl not 
only oxidizes HI to I2 but also catalyzes the dehydrogenative 
aromatization of 10 to 3. Indeed, comparing the reaction of 10a 
in the presence and absence of 4b revealed that 4b accelerated 
the dehydrogenative oxidation of 10a, although the dehydro-
genative oxidation is also performed by O2, I2 and in situ gen-
erated H2O2 (Scheme 4C). 
   In conclusion, the organocatalytic aerobic CDC of amidines 
and chalcones to synthesize tetra-substituted imidazoles has 
been successfully demonstrated for the first time in literature. 
In the flavin-iodine dual catalytic system, iodine exhibited not 
only redox catalysis for C-H activation but also halogen bond 
catalysis for the activation of chalcone. In addition, because of 
the presence of flavin, these multistep transformations consume 
only 1 equiv of molecular oxygen and generate 2 equiv of the 
environmentally benign water as the solo by-product, thus prov-
ing the atom economy of this synthetic method. We expect that 
the findings of this study would provide a novel non-metal-cat-
alyzed methodology for the facile multistep synthesis of com-
plex heterocyclic molecules, including other aerobic CDC reac-
tions. 
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