TENSORIAL AND HADAMARD PRODUCT INEQUALITIES FOR FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES VIA A CARTWRIGHT-FIELD RESULT

SILVESTRU SEVER DRAGOMIR ${ }^{1,2}$

Communicated by Toshihiro Nakanishi
(Received: September 12, 2023)

Abstract. Let H be a Hilbert space. In this paper we show among others that, if the functions f and g are continous and positive on the interval I and such that there exist the positive numbers $m<M$ with

$$
0<m \leq \frac{f(t)}{g(t)} \leq M \text { for all } t \in I
$$

then, for the selfadjoint operators A, B with spectra $\operatorname{Sp}(A), \operatorname{Sp}(A) \subset I$, we have the tensorial inequalities

$$
\begin{aligned}
0 & \leq \frac{1}{M} \nu(1-\nu) \\
& \times\left[\frac{\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)+g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)}{2}-f(A) \otimes f(B)\right] \\
& \leq(1-\nu) f(A) \otimes g(B)+\nu g(A) \otimes f(B) \\
& -\left(f^{1-\nu}(A) g^{\nu}(A)\right) \otimes\left(f^{\nu}(B) g^{1-\nu}(B)\right) \\
& \leq \frac{1}{m} \nu(1-\nu) \\
& \times\left[\frac{\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)+g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)}{2}-f(A) \otimes f(B)\right]
\end{aligned}
$$

for all $\nu \in[0,1]$. Some similar inequalities for Hadamard product are also given.

1. Introduction

We have the following inequality that provides a refinement and a reverse for the celebrated Young's inequality

$$
\begin{equation*}
\frac{1}{2} \nu(1-\nu) \frac{(b-a)^{2}}{\max \{a, b\}} \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \leq \frac{1}{2} \nu(1-\nu) \frac{(b-a)^{2}}{\min \{a, b\}} \tag{1.1}
\end{equation*}
$$

[^0]for any $a, b>0$ and $\nu \in[0,1]$.
This result was obtained in 1978 by Cartwright and Field [4] who established a more general result for n variables and gave an application for a probability measure supported on a finite interval.

Since $\max \{a, b\} \min \{a, b\}=a b$ for $a, b>0$, then by (1.1) we get

$$
\begin{aligned}
\frac{1}{2} \nu(1-\nu) \min \{a, b\} \frac{(b-a)^{2}}{a b} & \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \\
& \leq \frac{1}{2} \nu(1-\nu) \max \{a, b\} \frac{(b-a)^{2}}{a b}
\end{aligned}
$$

namely

$$
\begin{align*}
0 & \leq \frac{1}{2} \nu(1-\nu) \min \{a, b\}\left(\frac{a}{b}+\frac{b}{a}-2\right) \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \tag{1.2}\\
& \leq \frac{1}{2} \nu(1-\nu) \max \{a, b\}\left(\frac{a}{b}+\frac{b}{a}-2\right),
\end{align*}
$$

for any $a, b>0$ and $\nu \in[0,1]$.
Let I_{1}, \ldots, I_{k} be intervals from \mathbb{R} and let $f: I_{1} \times \ldots \times I_{k} \rightarrow \mathbb{R}$ be an essentially bounded real function defined on the product of the intervals. Let $A=\left(A_{1}, \ldots, A_{n}\right)$ be a k-tuple of bounded selfadjoint operators on Hilbert spaces H_{1}, \ldots, H_{k} such that the spectrum of A_{i} is contained in I_{i} for $i=1, \ldots, k$. We say that such a k-tuple is in the domain of f. If

$$
A_{i}=\int_{I_{i}} \lambda_{i} d E_{i}\left(\lambda_{i}\right)
$$

is the spectral resolution of A_{i} for $i=1, \ldots, k$; by following [2], we define

$$
\begin{equation*}
f\left(A_{1}, \ldots, A_{k}\right):=\int_{I_{1}} \ldots \int_{I_{k}} f\left(\lambda_{1}, \ldots, \lambda_{k}\right) d E_{1}\left(\lambda_{1}\right) \otimes \ldots \otimes d E_{k}\left(\lambda_{k}\right) \tag{1.3}
\end{equation*}
$$

as a bounded selfadjoint operator on the tensorial product $H_{1} \otimes \ldots \otimes H_{k}$.
If the Hilbert spaces are of finite dimension, then the above integrals become finite sums, and we may consider the functional calculus for arbitrary real functions. This construction [2] extends the definition of Korányi [5] for functions of two variables and have the property that

$$
f\left(A_{1}, \ldots, A_{k}\right)=f_{1}\left(A_{1}\right) \otimes \ldots \otimes f_{k}\left(A_{k}\right)
$$

whenever f can be separated as a product $f\left(t_{1}, \ldots, t_{k}\right)=f_{1}\left(t_{1}\right) \ldots f_{k}\left(t_{k}\right)$ of k functions each depending on only one variable.

It is known that, if f is super-multiplicative (sub-multiplicative) on $[0, \infty$), namely

$$
f(s t) \geq(\leq) f(s) f(t) \text { for all } s, t \in[0, \infty)
$$

and if f is continuous on $[0, \infty)$, then $[7, \mathrm{p}$. 173]

$$
\begin{equation*}
f(A \otimes B) \geq(\leq) f(A) \otimes f(B) \text { for all } A, B \geq 0 \tag{1.4}
\end{equation*}
$$

This follows by observing that, if

$$
A=\int_{[0, \infty)} t d E(t) \text { and } B=\int_{[0, \infty)} s d F(s)
$$

are the spectral resolutions of A and B, then

$$
\begin{equation*}
f(A \otimes B)=\int_{[0, \infty)} \int_{[0, \infty)} f(s t) d E(t) \otimes d F(s) \tag{1.5}
\end{equation*}
$$

for the continuous function f on $[0, \infty)$.
Recall the geometric operator mean for the positive operators $A, B>0$

$$
A \#_{t} B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{t} A^{1 / 2}
$$

where $t \in[0,1]$ and

$$
A \# B:=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2} .
$$

By the definitions of $\#$ and \otimes we have

$$
A \# B=B \# A \text { and }(A \# B) \otimes(B \# A)=(A \otimes B) \#(B \otimes A)
$$

In 2007, S. Wada [9] obtained the following Callebaut type inequalities for tensorial product

$$
\begin{align*}
(A \# B) \otimes(A \# B) & \leq \frac{1}{2}\left[\left(A \#_{\alpha} B\right) \otimes\left(A \#_{1-\alpha} B\right)+\left(A \#_{1-\alpha} B\right) \otimes\left(A \#_{\alpha} B\right)\right] \tag{1.6}\\
& \leq \frac{1}{2}(A \otimes B+B \otimes A)
\end{align*}
$$

for $A, B>0$ and $\alpha \in[0,1]$.
Recall that the Hadamard product of A and B in $B(H)$ is defined to be the operator $A \circ B \in B(H)$ satisfying

$$
\left\langle(A \circ B) e_{j}, e_{j}\right\rangle=\left\langle A e_{j}, e_{j}\right\rangle\left\langle B e_{j}, e_{j}\right\rangle
$$

for all $j \in \mathbb{N}$, where $\left\{e_{j}\right\}_{j \in \mathbb{N}}$ is an orthonormal basis for the separable Hilbert space H.

It is known that, see [6], we have the representation

$$
\begin{equation*}
A \circ B=\mathcal{U}^{*}(A \otimes B) \mathcal{U} \tag{1.7}
\end{equation*}
$$

where $\mathcal{U}: H \rightarrow H \otimes H$ is the isometry defined by $\mathcal{U} e_{j}=e_{j} \otimes e_{j}$ for all $j \in \mathbb{N}$.
If f is super-multiplicative operator concave (sub-multiplicative operator convex) on $[0, \infty)$, then also [7, p. 173]

$$
\begin{equation*}
f(A \circ B) \geq(\leq) f(A) \circ f(B) \text { for all } A, B \geq 0 \tag{1.8}
\end{equation*}
$$

We recall the following elementary inequalities for the Hadamard product

$$
A^{1 / 2} \circ B^{1 / 2} \leq\left(\frac{A+B}{2}\right) \circ 1 \text { for } A, B \geq 0
$$

and Fiedler inequality

$$
\begin{equation*}
A \circ A^{-1} \geq 1 \text { for } A>0 . \tag{1.9}
\end{equation*}
$$

As extension of Kadison's Schwarz inequality on the Hadamard product, Ando [1] showed that

$$
A \circ B \leq\left(A^{2} \circ 1\right)^{1 / 2}\left(B^{2} \circ 1\right)^{1 / 2} \text { for } A, B \geq 0
$$

and Aujla and Vasudeva [3] gave an alternative upper bound

$$
A \circ B \leq\left(A^{2} \circ B^{2}\right)^{1 / 2} \text { for } A, B \geq 0 .
$$

It has been shown in $[8]$ that $\left(A^{2} \circ 1\right)^{1 / 2}\left(B^{2} \circ 1\right)^{1 / 2}$ and $\left(A^{2} \circ B^{2}\right)^{1 / 2}$ are incomparable for 2 -square positive definite matrices A and B.

Motivated by the above results, in this paper we obtain some lower and upper bounds for the quantities

$$
(1-\nu) f(A) \otimes g(B)+\nu g(A) \otimes f(B)-\left(f^{1-\nu}(A) g^{\nu}(A)\right) \otimes\left(f^{\nu}(B) g^{1-\nu}(B)\right)
$$

and

$$
(1-\nu) f(A) \circ g(B)+\nu g(A) \circ f(B)-\left(f^{1-\nu}(A) g^{\nu}(A)\right) \circ\left(f^{\nu}(B) g^{1-\nu}(B)\right)
$$

with $\nu \in[0,1]$, under the assumptions that the functions f and g are continuous and positive on the interval I and such that there exists the positive numbers $m<M$ such that

$$
0<m \leq \frac{f(t)}{g(t)} \leq M \text { for all } t \in I
$$

while the selfadjoint operators A, B are with spectra $\operatorname{Sp}(A), \operatorname{Sp}(A) \subset I$.

2. Main Results

We have the following main result:
Theorem 1. Assume that the functions f and g are continuous and positive on the interval I and such that there exist the positive numbers $m<M$ such that

$$
0<m \leq \frac{f(t)}{g(t)} \leq M \text { for all } t \in I
$$

then for the selfadjoint operators A, B with spectra $\operatorname{Sp}(A), \operatorname{Sp}(A) \subset I$, we have the tensorial inequalities

$$
\begin{align*}
0 & \leq \frac{1}{M} \nu(1-\nu) \tag{2.1}\\
& \times\left[\frac{\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)+g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)}{2}-f(A) \otimes f(B)\right] \\
& \leq(1-\nu) f(A) \otimes g(B)+\nu g(A) \otimes f(B) \\
& -\left(f^{1-\nu}(A) g^{\nu}(A)\right) \otimes\left(f^{\nu}(B) g^{1-\nu}(B)\right) \\
& \leq \frac{1}{m} \nu(1-\nu) \\
& \times\left[\frac{\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)+g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)}{2}-f(A) \otimes f(B)\right]
\end{align*}
$$

for $\nu \in[0,1]$.

Proof. Now if $a, b \in[m, M] \subset(0, \infty)$, then we have from (1.1) the following inequalities

$$
\begin{align*}
0 & \leq \frac{1}{2 M} \nu(1-\nu)\left(a^{2}-2 a b+b^{2}\right) \leq(1-\nu) a+\nu b-a^{1-\nu} b^{\nu} \tag{2.2}\\
& \leq \frac{1}{2 m} \nu(1-\nu)\left(a^{2}-2 a b+b^{2}\right)
\end{align*}
$$

for $\nu \in[0,1]$.
Since

$$
a=\frac{f(t)}{g(t)}, b=\frac{f(s)}{g(s)} \in[m, M] \text { for all } t, s \in I
$$

then by (2.2) we get

$$
\begin{align*}
0 & \leq \frac{1}{2 M} \nu(1-\nu)\left(\left(\frac{f(t)}{g(t)}\right)^{2}-2 \frac{f(t)}{g(t)} \frac{f(s)}{g(s)}+\left(\frac{f(s)}{g(s)}\right)^{2}\right) \tag{2.3}\\
& \leq(1-\nu) \frac{f(t)}{g(t)}+\nu \frac{f(s)}{g(s)}-\left(\frac{f(t)}{g(t)}\right)^{1-\nu}\left(\frac{f(s)}{g(s)}\right)^{\nu} \\
& \leq \frac{1}{2 m} \nu(1-\nu)\left(\left(\frac{f(t)}{g(t)}\right)^{2}-2 \frac{f(t)}{g(t)} \frac{f(s)}{g(s)}+\left(\frac{f(s)}{g(s)}\right)^{2}\right)
\end{align*}
$$

for all $t, s \in I$ and $\nu \in[0,1]$.
If we multiply the inequalities (2.3) by $g(t) g(s) \geq 0$, then we get

$$
\begin{align*}
0 & \leq \frac{1}{2 M} \nu(1-\nu)\left(\frac{f^{2}(t)}{g(t)} g(s)-2 f(t) f(s)+\frac{f^{2}(s)}{g(s)} g(t)\right) \tag{2.4}\\
& \leq(1-\nu) f(t) g(s)+\nu g(t) f(s)-f^{1-\nu}(t) g^{\nu}(t) f^{\nu}(s) g^{1-\nu}(s) \\
& \leq \frac{1}{2 m} \nu(1-\nu)\left(\frac{f^{2}(t)}{g(t)} g(s)-2 f(t) f(s)+\frac{f^{2}(s)}{g(s)} g(t)\right)
\end{align*}
$$

for all $t, s \in I$ and $\nu \in[0,1]$.
If

$$
A=\int_{I} t d E(t) \text { and } B=\int_{I} s d F(s)
$$

are the spectral resolutions of A and B, then by taking the double integral $\int_{I} \int_{I}$ over $d E(t) \otimes d F(s)$ in (2.4) we get

$$
\begin{align*}
0 & \leq \frac{1}{2 M} \nu(1-\nu) \tag{2.5}\\
& \times \int_{I} \int_{I}\left(\frac{f^{2}(t)}{g(t)} g(s)-2 f(t) f(s)+\frac{f^{2}(s)}{g(s)} g(t)\right) d E(t) \otimes d F(s) \\
& \leq \int_{I} \int_{I}\left[(1-\nu) f(t) g(s)+\nu g(t) f(s)-f^{1-\nu}(t) g^{\nu}(t) f^{\nu}(s) g^{1-\nu}(s)\right] \\
& \times d E(t) \otimes d F(s) \\
& \leq \frac{1}{2 m} \nu(1-\nu) \\
& \times \int_{I} \int_{I}\left(\frac{f^{2}(t)}{g(t)} g(s)-2 f(t) f(s)+\frac{f^{2}(s)}{g(s)} g(t)\right) d E(t) \otimes d F(s)
\end{align*}
$$

for all $\nu \in[0,1]$.
Now, by (1.3) we get

$$
\begin{aligned}
& \int_{I} \int_{I}\left(\frac{f^{2}(t)}{g(t)} g(s)-2 f(t) f(s)+\frac{f^{2}(s)}{g(s)} g(t)\right) d E(t) \otimes d F(s) \\
& =\int_{I} \int_{I} \frac{f^{2}(t)}{g(t)} g(s) d E(t) \otimes d F(s)+\int_{I} \int_{I} g(t) \frac{f^{2}(s)}{g(s)} d E(t) \otimes d F(s) \\
& -2 \int_{I} \int_{I} f(t) f(s) d E(t) \otimes d F(s) \\
& =\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)+g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right) \\
& -2 f(A) \otimes f(B),
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{I} \int_{I}\left[(1-\nu) f(t) g(s)+\nu g(t) f(s)-f^{1-\nu}(t) g^{\nu}(t) f^{\nu}(s) g^{1-\nu}(s)\right] \\
& \times d E(t) \otimes d F(s) \\
& =(1-\nu) \int_{I} \int_{I} f(t) g(s) d E(t) \otimes d F(s)+\nu \int_{I} \int_{I} g(t) f(s) d E(t) \otimes d F(s) \\
& -\int_{I} \int_{I} f^{1-\nu}(t) g^{\nu}(t) f^{\nu}(s) g^{1-\nu}(s) d E(t) \otimes d F(s) \\
& =(1-\nu) f(A) \otimes g(B)+\nu g(A) \otimes f(B) \\
& -\left(f^{1-\nu}(A) g^{\nu}(A)\right) \otimes\left(f^{\nu}(B) g^{1-\nu}(B)\right) .
\end{aligned}
$$

Then by (2.5) we get (2.1).

Remark 1. We observe that for $\nu=1 / 2$ we obtain the following inequalities

$$
\begin{align*}
0 & \leq \frac{1}{4 M}\left[\frac{1}{2}\left[\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)+g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)\right]\right. \tag{2.6}\\
& -f(A) \otimes f(B)] \\
& \leq \frac{f(A) \otimes g(B)+g(A) \otimes f(B)}{2} \\
& -\left(f^{1 / 2}(A) g^{1 / 2}(A)\right) \otimes\left(f^{1 / 2}(B) g^{1 / 2}(B)\right) \\
& \leq \frac{1}{4 M}\left[\frac{1}{2}\left[\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)+g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)\right]\right. \\
& -f(A) \otimes f(B)] .
\end{align*}
$$

Corollary 1. With the assumptions of Theorem 1 we have

$$
\begin{align*}
0 & \leq \frac{1}{M} \nu(1-\nu) \tag{2.7}\\
& \times\left[\frac{\left(f^{2}(A) g^{-1}(A)\right) \circ g(B)+g(A) \circ\left(f^{2}(B) g^{-1}(B)\right)}{2}-f(A) \circ f(B)\right] \\
& \leq(1-\nu) f(A) \circ g(B)+\nu g(A) \circ f(B) \\
& -\left(f^{1-\nu}(A) g^{\nu}(A)\right) \circ\left(f^{\nu}(B) g^{1-\nu}(B)\right) \\
& \leq \frac{1}{m} \nu(1-\nu) \\
& \times\left[\frac{\left(f^{2}(A) g^{-1}(A)\right) \circ g(B)+g(A) \circ\left(f^{2}(B) g^{-1}(B)\right)}{2}-f(A) \circ f(B)\right]
\end{align*}
$$

for all $\nu \in[0,1]$.
Proof. For $X, Y \in B(H)$, we have the representation

$$
X \circ Y=\mathcal{U}^{*}(X \otimes Y) \mathcal{U}
$$

where $\mathcal{U}: H \rightarrow H \otimes H$ is the isometry defined by $\mathcal{U} e_{j}=e_{j} \otimes e_{j}$ for all $j \in \mathbb{N}$.
If we take \mathcal{U}^{*} at the left and \mathcal{U} at the right in the inequality (2.1), then we get

$$
\begin{aligned}
0 & \leq \frac{1}{M} \nu(1-\nu) \\
& \times \mathcal{U}^{*}\left[\frac{\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)+g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)}{2}-f(A) \otimes f(B)\right] \mathcal{U} \\
& \leq \mathcal{U}^{*}[(1-\nu) f(A) \otimes g(B)+\nu g(A) \otimes f(B) \\
& \left.-\left(f^{1-\nu}(A) g^{\nu}(A)\right) \otimes\left(f^{\nu}(B) g^{1-\nu}(B)\right)\right] \mathcal{U} \\
& \leq \frac{1}{m} \nu(1-\nu) \\
& \times \mathcal{U}^{*}\left[\frac{\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)+g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)}{2}-f(A) \otimes f(B)\right] \mathcal{U},
\end{aligned}
$$

namely

$$
\begin{aligned}
0 & \leq \frac{1}{M} \nu(1-\nu) \\
& \times\left[\frac{\mathcal{U}^{*}\left[\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)\right] \mathcal{U}+\mathcal{U}^{*}\left[g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)\right] \mathcal{U}}{2}\right. \\
& \left.-\mathcal{U}^{*}(f(A) \otimes f(B)) \mathcal{U}\right] \\
& \leq(1-\nu) \mathcal{U}^{*}[f(A) \otimes g(B)] \mathcal{U}+\nu \mathcal{U}^{*}(g(A) \otimes f(B)) \mathcal{U} \\
& -\mathcal{U}^{*}\left[\left(f^{1-\nu}(A) g^{\nu}(A)\right) \otimes\left(f^{\nu}(B) g^{1-\nu}(B)\right)\right] \mathcal{U} \\
& \leq \frac{1}{m} \nu(1-\nu) \\
& \times\left[\frac{\mathcal{U}^{*}\left[\left(f^{2}(A) g^{-1}(A)\right) \otimes g(B)\right] \mathcal{U}+\mathcal{U}^{*}\left[g(A) \otimes\left(f^{2}(B) g^{-1}(B)\right)\right] \mathcal{U}}{2}\right. \\
& \left.-\mathcal{U}^{*}(f(A) \otimes f(B)) \mathcal{U}\right],
\end{aligned}
$$

which is equivalent to (2.7).
Remark 2. We observe that for $\nu=1 / 2$ we obtain the following inequalities

$$
\begin{align*}
0 & \leq \frac{1}{4 M}\left[\frac{1}{2}\left[\left(f^{2}(A) g^{-1}(A)\right) \circ g(B)+g(A) \circ\left(f^{2}(B) g^{-1}(B)\right)\right]\right. \tag{2.8}\\
& -f(A) \circ f(B)] \\
& \leq \frac{f(A) \circ g(B)+g(A) \circ f(B)}{2} \\
& -\left(f^{1 / 2}(A) g^{1 / 2}(A)\right) \circ\left(f^{1 / 2}(B) g^{1 / 2}(B)\right) \\
& \leq \frac{1}{4 M}\left[\frac{1}{2}\left[\left(f^{2}(A) g^{-1}(A)\right) \circ g(B)+g(A) \circ\left(f^{2}(B) g^{-1}(B)\right)\right]\right. \\
& -f(A) \circ f(B)] .
\end{align*}
$$

Now, if we take $B=A$ in Corollary 1, then we get

$$
\begin{align*}
0 & \leq \frac{1}{M} \nu(1-\nu)\left[\left(f^{2}(A) g^{-1}(A)\right) \circ g(A)-f(A) \circ f(A)\right] \tag{2.9}\\
& \leq f(A) \circ g(A)-\left(f^{1-\nu}(A) g^{\nu}(A)\right) \circ\left(f^{\nu}(A) g^{1-\nu}(A)\right) \\
& \leq \frac{1}{m} \nu(1-\nu)\left[\left(f^{2}(A) g^{-1}(A)\right) \circ g(A)-f(A) \circ f(A)\right]
\end{align*}
$$

for all $\nu \in[0,1]$.
In particular, for $\nu=1 / 2$ we get

$$
\begin{align*}
0 & \leq \frac{1}{4 M}\left[\left(f^{2}(A) g^{-1}(A)\right) \circ g(A)-f(A) \circ f(A)\right] \tag{2.10}\\
& \leq f(A) \circ g(A)-\left(f^{1 / 2}(A) g^{1 / 2}(A)\right) \circ\left(f^{1 / 2}(A) g^{1 / 2}(A)\right) \\
& \leq \frac{1}{4 m}\left[\left(f^{2}(A) g^{-1}(A)\right) \circ g(A)-f(A) \circ f(A)\right] .
\end{align*}
$$

Acknowledgement. The author would like to thank the anonymous referee for valuable comments that have been implemented in the final version of the manuscript.

References

[1] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Lin. Alg. \mathcal{E}^{3} Appl. 26 (1979), 203-241.
[2] H. Araki and F. Hansen, Jensen's operator inequality for functions of several variables, Proc. Amer. Math. Soc. 128 (2000), No. 7, 2075-2084.
[3] J. S. Aujila and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon. 42 (1995), 265-272.
[4] D. I. Cartwright, M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
[5] A. Korányi. On some classes of analytic functions of several variables. Trans. Amer. Math. Soc., 101 (1961), 520-554.
[6] J. I. Fujii, The Marcus-Khan theorem for Hilbert space operators. Math. Jpn. 41 (1995), 531-535
[7] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[8] K. Kitamura and Y. Seo, Operator inequalities on Hadamard product associated with Kadison's Schwarz inequalities, Scient. Math. 1 (1998), No. 2, 237-241.
[9] S. Wada, On some refinement of the Cauchy-Schwarz Inequality, Lin. Alg. \&3 Appl. 420 (2007), 433-440.
${ }^{1}$ Applied Mathematics Research Group, isilc, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

Email address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
${ }^{2}$ School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

[^0]: 2020 Mathematics Subject Classification. 47A63, 47A99.
 Key words and phrases. Tensorial product, Hadamard Product, Selfadjoint operators, Tensorial inequalities.

