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Abstract: Ovarian cancer has the highest mortality rate among all gynecological malignancies; there-
fore, a novel treatment strategy is needed urgently. Utilizing immune checkpoint inhibitors has been
considered for microsatellite instability (MSI)-high (MSI-H) tumors. However, the prevalence of
MSI-H tumors in ovarian endometrioid and clear cell carcinomas remains unclear. Here, polymerase
chain reaction was used to analyze 91 cases of ovarian endometrioid and clear cell carcinomas for
the MSI status and the relationship between MSI-H, immune checkpoint molecules, and clinico-
pathological factors (including patient survival). Only 5 of 91 (5%) cases were MSI-H endometrioid
carcinomas. In these cases, CD-8 expression was significantly higher (p = 0.026), confirming an
enhanced immune response. From the survival curve, no statistical correlations were found between
the MSI-H group and the microsatellite stable (MSS) group; however, the MSS group trended towards
better progression-free survival than the MSI-H group (p = 0.056). Patients with PD-L1 expression
had shorter overall survival than those without (p = 0.022). Thus, MSI-H is a rare event and not a
favorable prognostic factor in ovarian endometrioid and clear cell carcinomas. Thus, to improve the
prognosis of ovarian endometrioid carcinoma and clear cell carcinomas, a combination therapy of
immune checkpoint inhibitors and other molecular targeted therapies may be required.

Keywords: ovarian endometrioid carcinoma; ovarian clear cell carcinoma; microsatellite instability;
immune checkpoint inhibitors

1. Introduction

Globally, in 2020, there were more than 300,000 new of cases ovarian cancer which
resulted in more than 190,000 deaths [1]. The 5-year survival rate for ovarian cancer is
60%, which is a poor prognosis, and it has the highest mortality rate among gynecological
cancers [2,3]. Thus, there is an urgent need to discover novel treatments for ovarian
cancer. Recently, due to the development of genomic medicine, molecular-targeted drugs
have attracted attention. There have been reports that immune checkpoint inhibitors may
be effective in microsatellite instability (MSI)-high (MSI-H) tumors [4]. MSI is a unique
molecular change and hypermutable phenotype caused by a defective DNA mismatch
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repair (MMR) system [5]. In Japan, immune checkpoint inhibitors for MSI-H tumors were
covered by insurance in 2018.

A mismatch repair (MMR) is a DNA repair mechanism that repairs the damage caused
by DNA replication errors. However, when the function of MMR proteins (MSH2, MSH6,
PMS2, and MLH1) is impaired due to mutations or methylation, the DNA replication error
due to the mismatch cannot be repaired and the gene abnormalities accumulate [6]. In
addition, gene mutations are likely to occur in microsatellite lesions during DNA replication.
An MMR deficiency cannot repair the error, which may result in an abnormal number
of iterations in the microsatellite lesion. Recently, mutations in the AT-rich interactive
domain-containing protein 1A (ARID1A) have been reported to be associated with MSI
through the inhibition of the protein binding with MSH2 [7].

Normally, when tumors are present in the body, they are phagocytosed by natural
killer (NK) cells and macrophages, causing an immune response. The dendritic cells then
present antigens, and the T cells attack tumor cells to prevent carcinogenesis. However,
tumor cells can escape from the immune system and continue to grow. PD-L1 is expressed
by the tumor cells, and the PD-1 expressed by the T cells engages with these, resulting
in immunosuppression [8]. MSI-H tumors have many mutations, an increased risk of
abnormal protein expression, and increased tumor immunogenicity. All of these are related
to the efficacy of the immune checkpoint inhibitors against MSI-H tumors [9–11].

The frequency of MSI-H in ovarian cancer is reportedly 2–20%, and it is common
mainly in endometrioid and clear cell carcinomas [12–15]. Ovarian endometrioid and
clear cell carcinomas are called endometriosis-related ovarian neoplasms (ERONs), and en-
dometriosis has been reported to be a cause of carcinogenesis. The phosphatase and tensin
homolog deleted on chromosome10 (PTEN) deletion and microsatellite instability found in
ERONs can also be confirmed in the epithelium of endometriosis [16–18]. Previously, we
reported a high frequency of ARID1A mutations and suggested that this contributed to
carcinogenesis in the ERONs in the Japanese population [19].

To date, while there have been some reports that utilized immunostaining of the MMR
protein to determine the MSI status rather than an MSI analysis with a polymerase chain
reaction (PCR), to the best of our knowledge there has been no report that evaluates the
MSI status using a PCR, and focuses on ovarian endometrioid and clear cell carcinomas
as a unique subset of ovarian carcinomas. In this study, ovarian endometrioid and clear
cell carcinomas tissue samples were analyzed for their MSI status using a PCR, and the
relationship between MSI-H, immune checkpoint molecules, and clinicopathological factors,
including patient survival, was assessed.

2. Materials and Methods
2.1. Ethics Statement

This study was conducted in accordance with the ethical standards of national and
international guidelines, as well as the Declaration of Helsinki. It was also approved
by the Review Committee of the Shimane University Hospital. Tumor specimens were
collected after obtaining written consent from all the patients with the approval of the
Facility Ethical Committee (Shimane University Hospital, Izumo, Japan; approval No.
2004-0381, 5 March 2007).

2.2. Tissue Samples

This study evaluated 91 cases of ovarian carcinoma (52 clear cell carcinomas, 39 en-
dometrioid carcinomas), which had received treatment between April 2008 and December
2018 at the Department of Obstetrics and Gynecology at the Shimane University Hospital
and the Seirei Hamamatsu General Hospital. The tissues were formalin-fixed, paraffin-
embedded tissue blocks. A pathologist diagnosed a sample stained with hematoxylin
and eosin (Figure 1a,b). Ovarian cancer was staged according to the 2014 International
Federation of Gynecology and Obstetrics (FIGO) guidelines [20]. The histological diagnoses
were made in accordance with the 2014 World Health Organization (WHO) classification
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of ovarian cancer [21]. Clinical data were collected from the patient charts. The follow-up
period ranged from 4 to 128 months, with a median follow-up of 57 months.
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Figure 1. Hematoxylin and eosin (H&E) staining of ovarian endometrioid and clear cell carcinomas.
(a) Representative H&E section showed ovarian endometrioid carcinoma. (b) Representative H&E
section showed ovarian clear cell carcinoma.

2.3. Immunohistochemistry

We evaluated the expression of the MMR proteins (MSH2, MLH1, MSH6, and PMS2),
immune checkpoint molecules (PD-1 and PD-L1), CD8 lymphocyte infiltration in the tumor,
and the ARID1A using immunohistochemistry (IHC) (Figures 2a–h and 3a–h). The tissues
were formalin-fixed, paraffin-embedded tissue blocks. They were sliced from the block to a
thickness of 4 µm. We used antibodies against the MutS protein homolog 2 (MSH2, 1:50;
Dako, Santa Clara, CA, USA), MutL protein homolog 1 (MLH1, 1:50; Dako), MutS protein
homolog 6 (MSH6, 1:40; Dako), PMS1 homolog 2 (PMS2, 1:40; Dako), mouse monoclonal
antibody [NAT105] to PD1 (NAT105, 1:100; Roche, Basel, Switzerland), rabbit monoclonal to
PD-L1 (SP263, 1:100; Roche), and monoclonal mouse anti-human CD8 (SP57, 1:100; Dako).
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Figure 2. Immunostaining of mismatch repair proteins in ovarian endometrioid carcinomas. (a) There
is no expression of MSH2. (b) There is expression of MSH2. (c) There is no expression of MLH1.
(d) There is expression of MLH1. (e) There is no expression of MSH6. (f) There is expression of MSH6.
(g) There is no expression of PMS2. (h) There is expression of PMS2.
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Figure 3. Immunostaining of immune checkpoint molecules (PD-1, PD-L1), CD8 lymphocytes
infiltrations into the tumor and ARID1A. (a) There is no expression of PD-1. (b) There is expression
of PD-1. (c) There is no expression PD-L1. (d) There is expression PD-L1. (e) CD8 expression score
of 0. (f) CD8 expression score of 3+. (g) There is no expression of ARID1A. (h) There is expression
of ARID1A.
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A diagnosis of a deficient MMR (d-MMR) tumor was made if at least one of the four
MMR proteins were negative; all other cases were considered to involve proficient MMR
(p-MMR). We classified the expression of CD8 lymphocytes that infiltrated the tumor into
four levels (0, undetectable; 1+, low density; 2+, moderate density; and 3+, high density).
We considered as positive those grouped into the 2+ and 3+ groups. When 5% or more of
the tumor-infiltrating lymphocytes were stained (membranous and cytoplasmic staining),
they were considered to be PD-1-positive. Similarly, a PD-1-positive diagnosis was made
when 5% or more of the tumors were stained. Two gynecologists (Y.N. and K.N.), who
were blinded to the clinicopathological factors, assessed the experimental slides under
a microscope.

2.4. Microsatellite Instability Analysis

All 91 cases were outsourced to BML (BML, Tokyo, Japan), and MSI was diagnosed
using PCR. Genomic DNA was extracted from the paraffin slides of the tumors, and the
number of repetitions of the five microsatellite markers (BAT25, BAT26, MONO27, NR21,
and NR24) was evaluated using PCR. This method has been used in at least three of the
five markers of the pentaplex assay, and enabling a conclusion to be reached without the
need to analyze matching normal DNA [22].

2.5. Statistical Analysis

We divided the cases into the MSI-H and microsatellite stable (MSS) groups, and their
associations with each clinicopathological and immune checkpoint factor was evaluated
using the chi-squared test. In addition, we performed univariate analyses for progression-
free survival (PFS) and overall survival (OS). PFS was defined as the period from the first
treatment date to the recurrence date or the last follow-up date. OS was defined as the
period from the first treatment to the death date or the last follow-up date. A survival
analysis was performed for the PFS and OS and expressed as a Kaplan–Meier curve. The
log-rank test was used to determine the statistical significance. In this study, we defined
p-values below 0.05 as statistically significant. IBM SPSS Statistics for Windows, version 27
(IBM Corp., Armonk, NY, USA) was used for the data analysis.

3. Results
3.1. Clinicopathological Factors

We examined 52 clear cell carcinomas and 39 endometrioid carcinomas, retrospectively.
The FIGO stages I and II were identified in 72 cases (43 clear cell carcinomas and 29 en-
dometrioid carcinomas) while 19 cases were FIGO stage III/IV (9 clear cell carcinomas and
10 endometrioid carcinomas). Surgery was performed as the first treatment in 90 patients.
Eighty patients had no residual tumors after the primary debulking surgery (PDS). In
almost all cases, 3–6 courses of TC therapy (paclitaxel 175 mg/m2 and carboplatin area
under the curve = 5 mg) were administered as postoperative chemotherapy. In addition,
some cases using CPT-11 and cases in which intraperitoneal administration of carboplatin
was added at the time of surgery, were also included. The clinicopathological factors of the
patients are shown in Table 1.
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Table 1. Characteristics of ovarian cancer patients.

Characteristic MSI-H MSS p-Value

N = 5 N = 86
Age 0.249

<60 years 4 (80%) 46 (53%)
≥60 years 1 (20%) 40 (47%)

FIGO stage 0.301
I, II 5 (100%) 67 (78%)

III, IV 0 (0%) 19 (22%)
Initial treatment 0.055

PDS 4 (80%) 86 (100%)
NAC 1 (20%) 0 (0%)

Residual tumor after PDS or IDS 0.517
No residual tumor (R0) 5 (100%) 75 (87%)

Yes 0 (0%) 11 (13%)
ARID1A 0.406

Intact 2 (40%) 48 (56%)
Loss 3 (60%) 38 (44%)

MMR protein (IHC) 0.000
p-MMR 1 (20%) 80 (93%)
d-MMR 4 (80%) 6 (7%)

Endometriosis 0.265
No 4 (80%) 47 (55%)
Yes 1 (20%) 39 (45%)

Organization type 0.012
Clear cell 0 (0%) 52 (60%)

Endometrioid 5 (100%) 34 (40%)
CD-8 0.026

Positive 4 (80%) 23 (27%)
Negative 1 (20%) 63 (73%)

PD-1 0.251
Positive 1 (20%) 4 (5%)

Negative 4 (80%) 82 (95%)
PD-L1 0.664

Positive 0 (0%) 7 (8%)
Negative 5 (100%) 79 (92%)

All data are expressed as number (%). MSI: microsatellite instability; MSS: microsatellite stable; FIGO: International
Federation of Gynecology and Obstetrics; PDS: primary debulking surgery; NAC: neoadjuvant chemotherapy;
IDS: interval debulking surgery; MMR: mismatch repair; IHC: immunohistochemistry; p-MMR: proficient MMR;
d-MMR: deficient MMR.

3.2. Microsatellite Instability

In this study, we examined the MSI status using PCR. We also performed IHC for
the MMR proteins (MSH2, MSH6, PMS2, and MLH1). From the PCR results, 5 of 91 (5%)
cases were MSI-H, and all of these were endometrioid carcinomas. The number of MSI-H
tumors was significantly higher in endometrioid carcinomas than in clear cell carcinomas
(Table 1). The MSI-H group had an increased number of nucleotide sequence repetitions
with two or more markers, including NR21 and BAT26 (Figure 4). Furthermore, in these five
MSI-H cases, no correlations were found between the MSI-H and clinicopathological factors
including age, FIGO stage, initial treatment, status of residual tumor, status of ARID1A
expression, and the status of endometriosis (Table 1). In four of the five (80%) MSI-H cases,
the MMR protein IHC results were negative. (Table 1). This was comparable to previous
reports on the consistency of the findings between IHC and the MSI analyses [23].
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3.3. Relationship between MSI-H and the Expression of CD8, PD-1, and PD-L1

Next, we examined the relationship between MSI-H and CD-8, PD-1, and PD-L1. In
the MSI-H group, the expression of CD-8 was significantly higher (p = 0.026), while there
were no significant differences in the expressions of PD-1 (p = 0.251) and PD-L1 (p = 0.664)
(Table 1).

3.4. Prognostic Analysis Using the Kaplan–Meier Method

Survival curves were created for the PFS and OS of patients with MSI-H and MSS
(Figure 5a). Neither group showed significant differences; however, in the ovarian en-
dometrioid and clear cell carcinomas, the PFS tended to be better in the MSI-H group.
In addition, a similar analysis was performed for the presence or absence of the expres-
sion of CD-8, PD-1, PD-L1, and MMR proteins. The OS was shorter in patients with a
PD-L1 expression than in those without a PD-L1 expression (p = 0.022) (Figure 5b). There
were no significant differences in the expression status of CD8, PD-1, MMR, and ARID1A
(Figure S1).
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Figure 5. Prognostic analysis using Kaplan–Meier curves. (a) Progression-free (left panel) and overall
(right panel) prognostic analysis of the MSI status in ovarian endometrioid and clear cell carcinomas.
(b) Progression-free (left panel) and overall (right panel) prognostic analysis of the PD-L1 expression
status in ovarian endometrioid and clear cell carcinomas.

4. Discussion

With a 5-year survival rate of 60%, ovarian cancer is the most common gynecological
malignancy [2,3]. Moreover, since current treatments do not improve survival [24], a
new treatment strategy is needed. Recently, with the development of genomic medicine,
molecular-targeted therapies have attracted attention. The use of immune checkpoint
inhibitors is being considered for use in MSI-H tumors. The frequency of MSI-H in ovarian
carcinomas has been found to be 2–20% [12–15], in clear cell carcinoma 2.4–14.3%, and in
endometrioid carcinoma 13.8–33% [13–15]. In our study, MSI-H was observed in 5% of all
endometrioid and clear cell carcinomas, and MSI-H in approximately 13% of endometrioid
carcinomas. These results are consistent with those of previous reports [13,14]. Howitt et al.
reported that clear cell carcinomas display more MSI-H than endometrioid carcinomas [15].
However, in the present study, there were no cases of MSI-H in clear cell carcinomas. This
disparity suggests that the genetic background of clear cell carcinomas may differ between
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Japanese and Western patients. Previously, we reported that the carcinogenic process may
differ between Japanese and Westerners in low-grade serous carcinoma [25]. Our findings,
taken together with those of our previous study and another report, suggest that collecting
genetic data from more Japanese cases is necessary to clarify this issue.

d-MMR is considered to be caused by the mutation or promoter methylation of MMR-
related genes; in fact, 80% (4/5) of the patients with MSI-H in this study also showed
a loss of MMR protein. In contrast, only one MSI-H case with MMR protein expression
showed a loss of ARID1A protein. This may support the report by Shen et al. that ARID1A
gene mutations are involved in MSI-H without mutations or methylation of MMR-related
genes [7].

There have been reports that the effectiveness of immune checkpoint inhibitors for
MSI-H has increased immunogenicity [26]. MSI-H tumors display increased gene mutations
and tumor mutational burden (TMB). Immune checkpoint inhibitors have been reported to
be effective against TMB-high tumors [26]. Furthermore, immune checkpoint inhibitors
are effective in cases with a high infiltration of CD-8-positive lymphocytes and cases with
a high PD-L1 expression [27–32]. By inhibiting the PD-1 and PD-L1 pathways, tumor
overgrowth may be suppressed. In our study, we found that the infiltration of CD-8
into tumors was significantly higher in the MSI-H group, confirming that the immune
response was enhanced in MSI-H ovarian endometrioid carcinomas. However, we did not
observe significant correlations between MSI-H and PD-1 or PD-L1 expressions, suggesting
that the effects of the immune checkpoint inhibitors in ovarian endometrioid carcinomas
may be limited. Ngheim et al. reported, in a closer view of our current findings, that
PD-L1 expression is not always proportional to the effectiveness of immune checkpoint
inhibitors [33].

There have been many reports that MSI-H tumors have a better prognosis than MSI-
low and MSS in colorectal and gastric cancers [34–36]. MSI-H tumors have been shown to
be more immunogenic, have better anti-tumor immune responses, and are more capable of
inhibiting tumor cell growth [35,37–39]. It was discovered that the lymphocytes that invade
the tumor are composed primarily of cytotoxic T lymphocytes, triggering a more specific
anti-tumor immune response in rectal cancer [40]. Here, in the survival curve, no statistical
correlations were found between the MSI-H group and the MSS group. On the other hand,
PD-L1 expression is significantly associated with shorter OS in ovarian endometrioid and
clear cell carcinomas. This prognostic difference between colorectal and ovarian cancers
may be due to the relatively small number of analyzed cases and low prevalence of MSI-H
tumors in ovarian endometrioid and clear cell carcinomas or in an organ-specific manner.
Since immune checkpoint inhibitors are expected to be effective in tumors with a high
PD-L1 expression [41], the positive PD-L1 cases with poor survival found in the current
study may be aided using immune checkpoint inhibitors.

The main limitation of this study was the small number of cases that was analyzed.
Further examination using an increased number of cases of Japanese ovarian endometrioid
and clear cell carcinomas is necessary.

Some clinical studies have reported the efficacy and safety of nivolumab for platinum-
resistant ovarian cancers, and a phase II study (KEYNOTE100) is currently underway.
According to the reported studies, the disease control rate was relatively high at approxi-
mately 44–47.6% [41–43] and the OS was 17.6–18.7 months. Among patients with higher
PD-L1 expressions, the OS was between 21.9 and 24.0 months. In addition, Kato et al.
reported that, in an experimental model, the antitumor activity of lenvatinib plus anti
PD-1 (immune checkpoint inhibitor) was greater than that of either single treatment [44].
Lenvatinib exhibits immunomodulatory activity by reducing the number of tumor-related
macrophages. Combination therapy with immune checkpoint inhibitors induces potent
antitumor activities through the activation of interferon (IFN) signaling pathways in the
tumor immune microenvironments. Lwin et al. investigated the efficacy and safety of pem-
brolizumab and lenvatinib in combination therapy for advanced solid tumors, including
triple-negative breast cancer and ovarian cancer (LEAP-005) in a phase II study in patients
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aged >18 years, with advanced cancer [45]. This trial included 31 patients with advanced
ovarian cancers, and the disease control rate reached 74%, showing a significant improve-
ment. While side effects (immune-related adverse events (irAEs) caused by the immune
checkpoint inhibitors have been observed, they have been controllable, and strict control
may lead to an improved prognosis of ovarian cancer [45]. Due to the low prevalence of
MSI-H in ovarian endometrioid and clear cell carcinomas, the use of immune checkpoint
inhibitors alone did not show a good response, while the use of combination therapy such
as lenvatinib and immune checkpoint inhibitors may have had some effect. The effective-
ness of combined treatment with immune checkpoint inhibitors and other agents, and the
utility of biomarkers as indicators for the use of immune checkpoint inhibitors, have been
reported with regard to ovarian cancers [46,47].

Previous studies have reported that treatment with platinum increases the PD-L1
expression in tumors. The treatment is useful in combination with other carcinoma im-
mune checkpoint inhibitors [48,49] and the prognosis has shown an improvement with the
addition of an immune checkpoint inhibitor to the standard treatment [50]. Furthermore,
the response rate was increased with the use of a combination of checkpoint inhibitors [51].
Thus, it can be expected that the prognosis of ovarian endometrioid and clear cell carcino-
mas may have improved after the use of standard chemotherapy. Quite recently, it was
reported that a combination of pembrolizumab and lenvatinib improved the prognosis of
patients with endometrial cancers [52]. The authors of that study evaluated the prognosis
of patients treated with platinum-combined chemotherapy for untreatable endometrial
cancer by dividing them into a lenvatinib plus pembrolizumab group and a doxorubicin
or paclitaxel monotherapy group. The median PFS was 7.2 and 3.8 months (HR = 0.56,
p < 0.0001), respectively; this indicated a significant improvement in the lenvatinib plus
pembrolizumab group. Although the study involved a different type of carcinoma, it
demonstrated an improvement in the prognosis of patients who received concomitant
immune checkpoint inhibitor treatment. Thus, there is a possibility that this treatment can
improve the prognosis of patients with endometriosis-related ovarian cancer.

5. Conclusions

In conclusion, MSI-H is a very rare event in ovarian endometrioid and clear cell carci-
nomas. Furthermore, unlike other carcinomas, MSI-H is not a favorable prognostic factor
in ovarian endometrioid and clear cell carcinomas. Therefore, improving the prognosis
of these unique subtypes of ovarian carcinoma may require the use of a combination of
immune checkpoint inhibitors and other molecular targeted therapies such as lenvatinib.

Supplementary Materials: The following supporting information can be downloaded at: https:
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panel) and overall (right panel) prognostic analysis on CD8 expression status in ovarian endometrioid
and clear cell carcinomas. (B) Progression-free (left panel) and overall (right panel) prognostic analysis
on PD-1 expression status in ovarian endometrioid and clear cell carcinomas. (C) Progression-free
(left panel) and overall (right panel) prognostic analysis on MMR protein expression status in ovarian
endometrioid and clear cell carcinomas. (D) Progression-free (left panel) and overall (right panel)
prognostic analysis on ARID1A expression status in ovarian endometrioid and clear cell carcinomas.
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