1 Original Article

2	Cohort study of subclinical sensitization against galactose-α-1,3-galactose in Japan:
3	Prevalence and regional variations
4	
5	Yusei Nakagawa ^{1,*} , Yuko Chinuki ¹ , Ryohei Ogino ^{1.2} , Kenshi Yamasaki ³ , Setsuya Aiba ³ , Tsukasa
б	Ugajin ⁴ , Hiroo Yokozeki ⁴ , Kaoru Kitamura ⁵ , Eishin Morita ¹
7 8	¹ Department of Dermatology, Faculty of Medicine, Shimane University, Izumo, Japan
9	² Department of Frontier Science for Pharmacotherapy, Graduate School of Biomedical and
10	Health Sciences, Hiroshima University, Hiroshima, Japan
11	³ Department of Dermatology, Graduate School of Medicine, Tohoku University, Sendai, Japan
12	⁴ Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo,
13	Japan
14	⁵ Immuno Diagnostic Division, Thermo Fischer Diagnostics KK, Tokyo, Japan.
15	
16	*Correspondence: Yusei Nakagawa
17	Address: Department of Dermatology, Shimane University Faculty of Medicine, 89-1 Enya-
18	cho, Izumo, Shimane 693-8501, Japan
19	Tel.: +81-853-20-2210
20	Fax: +81-853-21-8317
21	E-mail: yuusei@med.shimane-u.ac.jp
22	
23	Running title: Prevalence of α -Gal sensitization in Japan
24	

25 Abstract

Sensitization to galactose- α -1,3-galactose (α -Gal) leads to the development of α -Gal syndrome, 26 which includes red meat allergy and cetuximab-induced anaphylaxis. Since tick bites represent 27 the main cause of α -Gal sensitization, it was speculated that sensitization to α -Gal occurs 28 throughout Japan. However, few cohort studies have investigated α -Gal sensitization in Japan. 29 Therefore, we aimed to elucidate the subclinical sensitization rate to α -Gal in Japan. Sera were 30 31 obtained from 300 participants without food or cetuximab allergy at Shimane University Hospital (Shimane prefecture), Tokyo Medical and Dental University Hospital (Tokyo 32 33 metropolis), and Tohoku University Hospital (Miyagi prefecture). ImmunoCAP-bovine thyroglobulin (BTG), ImmunoCAP-beef, and IgE immunoblotting with cetuximab were 34 performed to detect α -Gal-specific IgE. Clinical information was collected from participants 35 36 using a questionnaire. The overall positivity rate of ImmunoCAP-BTG was 4.0% without significant inter-institute differences, whereas that for ImmunoCAP-beef was 9.7% with a 37 38 significant inter-institute difference. Tokyo Medical and Dental University Hospital (19.0%) had the highest positivity rate. The positivity rate based on cetuximab IgE immunoblotting was 39 2.7%, without any significant inter-institute differences. The overall positivity rate for both 40 41 ImmunoCAP-BTG and cetuximab immunoblotting was 2.0%, with a significant inter-institute 42 difference; 5.0% of Shimane University Hospital was the highest. Two cases showed 43 sensitization against the non- α -Gal epitope of cetuximab. The overall positivity rate for both ImmunoCAP-beef and cetuximab immunoblotting was 1.3%, without significant inter-institute 44 differences. Male sex was associated with positive beef-specific IgE. The prevalence of 45 subclinical sensitization to α -Gal was estimated at 2.0–4.0% in Japan and may be higher in rural 46 47 areas, supporting an association between tick bites and α -Gal sensitization. In contrast, the

48	prevalence of subclinical	sensitization to b	beef is 9.7% in .	Japan and is	highest in 7	Tokyo
----	---------------------------	--------------------	-------------------	--------------	--------------	-------

- 49 Metropolis, suggesting the presence of another IgE-binding epitope apart from α -Gal and
- 50 another sensitization route in the sensitization to beef IgE.
- **Keywords:** beef, cetuximab, galactose- α -1,3-galactose, red meat allergy, tick bites

54 Introduction

55	Sensitization to tick salivary proteins via tick bites causes several IgE-mediated allergic
56	reactions, such as red meat allergy, anaphylactic reactions to cetuximab, and hypersensitivity to
57	tick bites. Galactose- α -1,3-galactose (α -Gal) bound to tick salivary proteins is known to serve as
58	the IgE-binding epitope in these allergic reactions, which are referred to α -Gal syndrome. ¹⁻⁵
59	Cetuximab is a chimeric mouse-human IgG1 monoclonal antibody that is specifically
60	expressed against epidermal growth factor receptor (EGFR) and has been approved for use in
61	patients with EGFR-positive unresectable progressive/recurrent colorectal cancer and squamous
62	cell carcinoma of the head and neck. ^{6,7} Cetuximab contains glycosylation sites, including the α -
63	Gal site in the Fab region. ⁸ Chung et al. showed that most of the severe hypersensitivity
64	reactions to cetuximab are associated with IgE antibodies against α -Gal, and the prevalence of
65	IgE against cetuximab varies among different regions in the USA, with a high incidence in
66	Tennessee and low incidence in California and Massachusetts. ⁸ In 2009, Commins et al.
67	reported that the late-onset urticaria and anaphylaxis that occurred 3-6 h after meat consumption
68	are mediated by IgE specific to the α -Gal carbohydrate structure, similar to that in cetuximab
69	allergy.1 Moreover, the distribution of anaphylactic reactions to cetuximab overlaps the area of
70	the high prevalence of Rocky Mountain spotted fever, which is spread by Amblyomma
71	americanum and Dermacentor variabilis.9 Subsequently, other studies in Australia, France, and
72	Spain showed that tick bites are involved in the development of red-meat allergy via
73	sensitization to α -Gal. ¹⁰⁻¹² Hamsten et al. reported the existence of α -Gal in the gastrointestinal
74	tract of <i>Ixodes ricinus</i> , which suggests the exposure of the host to α -Gal during a tick bite. ¹³
75	Moreover, they identified 39 patients with mammalian meat allergy in Sweden who had a
76	history of repeated tick bites and serum IgE antibodies against I. ricinus.14

77	We previously demonstrated that the salivary gland of Haemaphysalis longicornis
78	contains α -Gal-bearing proteins, and most of the patients with red meat allergy in Shimane
79	(located in western Japan) have serum IgE antibodies against the salivary gland proteins of H.
80	longicornis. ¹⁵ Similar to A. americanum that spreads Rocky Mountain spotted fever, H.
81	longicornis is a dominant vector of Japanese spotted fever (JSF), which is endemic to the central
82	and western regions of Japan. ¹⁶ Hashizume et al. reported a close association between the
83	production of α -Gal-specific IgE antibodies and repeated bites by Amblyomma testudinarium in
84	rural areas of Shizuoka, Japan. ¹⁷
85	Three dominant tick species, Amblyomma, Haemaphysalis, and Ixodes, exist in
86	Japan. ¹⁸ Few cohort studies have evaluated cetuximab and/or red meat allergy in Japan. It is
87	speculated that sensitization to α -Gal occurs throughout Japan owing to the wide distribution of
88	these ticks: Amblyomma from the central to western regions, Ixodes from the central to northern
89	regions, and Haemaphysalis throughout Japan. ¹⁸ Since we have identified certain cases of
90	cetuximab allergy even without a previous history of red meat allergy, ¹⁸ it is of clinical interest
91	to determine the prevalence of sensitization to α -Gal for predicting the risk of allergic reactions
92	before cetuximab administration. Therefore, this study was conducted to investigate subclinical
93	sensitization rates to α-Gal in three areas of Japan: Shimane prefecture (western Japan), Tokyo
94	metropolis (central Japan), and Miyagi prefecture (northeastern Japan).
95	
96	Methods
97	Participants
98	We randomly recruited 100 participants each from Shimane University Hospital
99	(Shimane prefecture), Tokyo Medical and Dental University Hospital (Tokyo metropolis), and

100	Tohoku University Hospital (Miyagi prefecture), for a total of 300 participants. The inclusion
101	criterion was a chief complaint of anything other than food or cetuximab allergy. This study was
102	conducted from February 2015 to March 2021 and was approved by the Ethics Committee of
103	the Shimane University Faculty of Medicine (approval nos. 1788 and 4278). The purpose and
104	procedures of the study were explained to eligible participants and written informed consent was
105	obtained from each participant.
106	
107	Structured questionnaire
108	The questionnaire assessed the following items: age, sex, blood type, history of
109	urticaria, food allergy, cetuximab treatment, tick bites, history of JSF, and pet keeping.
110	
111	Serum allergen-specific IgE values
112	Sera obtained from the participants were stored at -20 °C until use. Since bovine
113	thyroglobulin (BTG) is a typical α -Gal-carrying glycoprotein, ¹⁹ and most patients with red meat
114	allergy have anti-BTG IgE and anti-beef IgE,20 serum allergen-specific IgE values were
115	measured for both BTG and beef IgE antibodies using a CAP-fluorescent enzyme immunoassay
116	system (ImmunoCAP®; Thermo Fisher Scientific, Uppsala, Sweden), and the results are
117	expressed as units of allergen per milliliter (U _A /mL). Allergen-specific IgE values \geq 0.35 U _A /mL
118	indicated a positive result.
119	
120	IgE immunoblotting analysis
121	Cetuximab (Erbitux [®] , Merck, Darmstadt, Germany) was used to detect specific IgE
122	antibodies against α -Gal, ²¹ and was electrophoresed at 1 μ g/lane via sodium dodecyl sulfate-

123	polyacrylamide gel electrophoresis using a 7.5% polyacrylamide gel. The electrophoresed
124	proteins were transferred to polyvinylidene difluoride membranes (PVDFs; Immobilon-P;
125	Millipore, Billerica, MA, USA). After blocking the PVDF membrane with 0.6% skim milk in
126	Tris-buffered saline containing 0.1% Tween-20 (TBS-T) for 1 h, the membrane was incubated
127	with 1:20 diluted serum for 20 h at room temperature (15-25 °C), washed three times with TBS-
128	T, and incubated with horseradish peroxidase-conjugated mouse monoclonal anti-human IgE Fc
129	(ab99806; Abcam, Cambridge, United Kingdom) for 1 h at room temperature. After washing
130	with TBS-T, cetuximab-binding IgE antibodies were visualized on Super RX (FUJIFILM Co.,
131	Tokyo, Japan) using an Amersham ECL-Prime kit (GE Healthcare UK Ltd., Buckinghamshire,
132	United Kingdom). Serum from a healthy participant with negative results for BTG-specific IgE
133	(<0.35 U_A/mL , ImmunoCAP [®]) and serum from a patient with red meat allergy with positive
134	BTG-specific IgE (21.8 U _A /mL, ImmunoCAP [®]) were used as negative and positive controls,
135	respectively, in all experiments.
136	
137	Statistical analyses
138	One-way analysis of variance and the post hoc Tukey multiple comparison or Games-
139	Howell test were used to compare the positive rates among hospitals. The chi-square test was

140 used to investigate the association of clinical factors with positivity for α -Gal-specific IgE and/or

141 beef-specific IgE. Pearson's correlation analysis was used to confirm the correlation between the

142 two parameters. Statistical analysis was performed using SPSS software version 25 (SPSS Inc.,

143 Chicago, IL, USA). P = 0.05 was considered significant.

144

145 **Results**

Clinical features of the participants

The clinical features of the 300 participants are presented in Table 1. Among the 300 participants with a median age of 56 years (range, 16–94 years), 173 were female and 127 were male. There were no significant differences in the clinical features of the participants among the three institutes.

151

152 Positivity rates of allergen-specific IgE and cetuximab IgE immunoblotting

The overall positivity rate of BTG-specific IgE was 4.0% among the 300 participants 153 154 (Table 2). The positivity rates of BTG-specific IgE were 7.0% at Shimane University Hospital, 4.0% at Tokyo Medical and Dental University Hospital, and 1.0% at Tohoku University 155 Hospital, with no significant inter-institute difference (P = 0.059, Table 2). The overall positivity 156 rate of beef-specific IgE was 9.7%, and the positivity rates at Shimane University Hospital, 157 Tokyo Medical and Dental University Hospital, and Tohoku University Hospital were 4.0%, 158 19.0%, and 6.0%, respectively, with significant inter-institute differences (P = 0.003, Table 2). 159 IgE immunoblotting with cetuximab showed IgE binding at an approximately 50 kDa 160 band corresponding to cetuximab in eight participants (Figure 1), and the overall positivity rate 161 was 2.7% for this study population (Table 2). Positive IgE binding was detected in 5.0%, 2.0%, 162 163 and 1.0% of participants at Shimane University Hospital, Tokyo Medical and Dental University 164 Hospital, and Tohoku University Hospital, respectively, without significant inter-institute differences (P = 0.251, Table 2). In the participants of Shimane University Hospital, the positive 165 cetuximab-specific IgE antibodies were observed in five participants with ImmunoCAP-BTG 166 167 values >1.2 U_A/mL (S7, S17, S19, S40, and S58) out of the seven participants with positive 168 BTG-specific IgE values (Table 3). In the participants of Tokyo Medical and Dental University

169	Hospital, the positive cetuximab-specific IgE antibodies were observed in two participants
170	containing ImmunoCAP-BTG values $<0.1 U_A/mL$ (K19) and $8.25 U_A/mL$ (K51) (Table 3).
171	Among the participants of Tohoku University Hospital, one participant (H27) had positive
172	cetuximab-specific IgE antibodies and an ImmunoCAP-BTG value of $<0.1 \text{ U}_{A}/\text{mL}$ (Table 3).
173	The overall rates for both positive BTG-specific IgE tests and positive cetuximab
174	immunoblotting were 2.0%, with a significant difference among the three institutes with the
175	highest rate of 5.0% at Shimane University Hospital ($P = 0.028$, Table 2). Two participants (K19
176	and H27) with negative BTG-specific IgE tests and negative beef-specific IgE test results
177	showed positive immunoblotting with cetuximab, suggesting that these participants had IgE
178	against the non- α -Gal epitope of cetuximab (Table 3). The overall rates for both positive beef-
179	specific IgE tests and positive cetuximab immunoblotting were 1.3%, without significant
180	differences among the three institutes ($P = 0.171$, Table 2).
180 181	differences among the three institutes ($P = 0.171$, Table 2).
	differences among the three institutes ($P = 0.171$, Table 2). Association between the BTG-specific IgE value and the beef-specific IgE value
181	
181 182	Association between the BTG-specific IgE value and the beef-specific IgE value
181 182 183	Association between the BTG-specific IgE value and the beef-specific IgE value On studying the association between the BTG-specific IgE and beef-specific IgE
181 182 183 184	Association between the BTG-specific IgE value and the beef-specific IgE value On studying the association between the BTG-specific IgE and beef-specific IgE values, a significant correlation was observed between the positive results in the two tests (Table
181 182 183 184 185	Association between the BTG-specific IgE value and the beef-specific IgE value On studying the association between the BTG-specific IgE and beef-specific IgE values, a significant correlation was observed between the positive results in the two tests (Table 4). Three of seven participants at Shimane University Hospital with positive BTG-specific IgE
181 182 183 184 185 186	Association between the BTG-specific IgE value and the beef-specific IgE value On studying the association between the BTG-specific IgE and beef-specific IgE values, a significant correlation was observed between the positive results in the two tests (Table 4). Three of seven participants at Shimane University Hospital with positive BTG-specific IgE levels had positive beef-specific IgE antibodies. Four participants at the Tokyo Medical and
181 182 183 184 185 186 187	Association between the BTG-specific IgE value and the beef-specific IgE value On studying the association between the BTG-specific IgE and beef-specific IgE values, a significant correlation was observed between the positive results in the two tests (Table 4). Three of seven participants at Shimane University Hospital with positive BTG-specific IgE levels had positive beef-specific IgE antibodies. Four participants at the Tokyo Medical and Dental Hospital with positive BTG-specific IgE had positive beef-specific IgE. One participant
181 182 183 184 185 186 187 188	Association between the BTG-specific IgE value and the beef-specific IgE value On studying the association between the BTG-specific IgE and beef-specific IgE values, a significant correlation was observed between the positive results in the two tests (Table 4). Three of seven participants at Shimane University Hospital with positive BTG-specific IgE levels had positive beef-specific IgE antibodies. Four participants at the Tokyo Medical and Dental Hospital with positive BTG-specific IgE had positive beef-specific IgE. One participant at Tohoku University Hospital with positive BTG-specific IgE had positive beef-specific IgE.

192	the 99 participants who had negative BTG-specific IgE tests at Tohoku University Hospital
193	(Table 4). Among the 33 participants showing either positive BTG-specific IgE or beef-specific
194	IgE, no significant association was observed between BTG-specific IgE values and beef-specific
195	IgE values (Figure 2).
196	
197	Association between the BTG- or the beef-specific IgE value with clinical characteristics
198	Table 5 shows the associations of clinical characteristics of participants with positive
199	BTG-specific IgE. Positive BTG-specific IgE was detected only in the participants with non-B
200	blood type. Table 6 shows the association of clinical characteristics of participants with positive
201	beef-specific IgE. Positive beef-specific IgE was associated only with the male sex.
202	
203	Discussion
204	In the present study, we performed three different tests to investigate subclinical
205	sensitization to α -Gal: BTG-specific IgE test, beef-specific IgE test, and cetuximab IgE
206	immunoblotting. We demonstrated that the prevalence of sensitization to α -Gal was 4.0% in
207	Japan using a BTG-specific IgE test in the investigation of three institutes covering Shimane
208	Prefecture (western part), Tokyo Metropolis (central part), and Miyagi Prefecture (northern part)
209	of Japan. True sensitization to α -Gal seemed to be lower than 4.0%, since the positivity rate
210	based on cetuximab IgE immunoblotting was 2.7% and the rate for both positive BTG-specific
211	IgE and positive cetuximab-immunoblotting was 2.0% (Table 2). The low positivity rate of
212	cetuximab IgE immunoblotting (2.7%) may be attributed to its higher detection limit (1.2
213	U_A/mL) than that of the BTG-specific IgE-test ($\geq 0.35 U_A/mL$ was considered positive). Notably,
214	cetuximab immunoblotting showed a positive reaction in two participants who had negative

215	BTG- and beef-specific IgE tests, suggesting that these participants had IgE against the non- α -
216	Gal epitope of cetuximab (Figure 1 and Table 3). The characteristics of IgE antibodies are yet to
217	be investigated. Taken together, the overall sensitization rate to α -Gal was estimated to be 2.0–
218	4.0% in Japan. This overall positivity rate is comparable to the α -Gal sensitization rates in
219	previous reports, which are 1.8% in Denmark and 2.2% in Spain. ²² These results indicate that α -
220	Gal sensitization occurs worldwide, although the rates vary among different regions.
221	The positive results in this study may indicate subclinical sensitization because the
222	results were not related to clinical symptoms such as red meat allergy or cetuximab allergy.
223	Nevertheless, these participants with subclinical α -Gal sensitization may develop anaphylaxis if
224	they receive intravenous administration of cetuximab, since we previously found eight cases of
225	cetuximab-induced anaphylactic shock that developed without a history of red meat allergy. ¹⁸
226	The rate of α -Gal sensitization differed based on region. This difference became
226 227	The rate of α -Gal sensitization differed based on region. This difference became obvious when sensitization was evaluated using ImmunoCAP-BTG combined with cetuximab
227	obvious when sensitization was evaluated using ImmunoCAP-BTG combined with cetuximab
227 228	obvious when sensitization was evaluated using ImmunoCAP-BTG combined with cetuximab immunoblotting (Table 2). Among the three regions, the sensitization rate was highest in
227 228 229	obvious when sensitization was evaluated using ImmunoCAP-BTG combined with cetuximab immunoblotting (Table 2). Among the three regions, the sensitization rate was highest in Shimane Prefecture (5.0%). The regional difference in the α -Gal sensitization found in this study
227 228 229 230	obvious when sensitization was evaluated using ImmunoCAP-BTG combined with cetuximab immunoblotting (Table 2). Among the three regions, the sensitization rate was highest in Shimane Prefecture (5.0%). The regional difference in the α -Gal sensitization found in this study is compatible to that in previous studies reporting that the prevalence of positive specific IgE to
 227 228 229 230 231 	obvious when sensitization was evaluated using ImmunoCAP-BTG combined with cetuximab immunoblotting (Table 2). Among the three regions, the sensitization rate was highest in Shimane Prefecture (5.0%). The regional difference in the α -Gal sensitization found in this study is compatible to that in previous studies reporting that the prevalence of positive specific IgE to α -Gal varies among regions. ^{8,9,23,24} Commins et al. showed that the prevalence of IgE antibodies
 227 228 229 230 231 232 	obvious when sensitization was evaluated using ImmunoCAP-BTG combined with cetuximab immunoblotting (Table 2). Among the three regions, the sensitization rate was highest in Shimane Prefecture (5.0%). The regional difference in the α -Gal sensitization found in this study is compatible to that in previous studies reporting that the prevalence of positive specific IgE to α -Gal varies among regions. ^{8,9,23,24} Commins et al. showed that the prevalence of IgE antibodies against cetuximab is 20% in the southeast region of the USA, whereas it is only 2% in northern
 227 228 229 230 231 232 233 	obvious when sensitization was evaluated using ImmunoCAP-BTG combined with cetuximab immunoblotting (Table 2). Among the three regions, the sensitization rate was highest in Shimane Prefecture (5.0%). The regional difference in the α -Gal sensitization found in this study is compatible to that in previous studies reporting that the prevalence of positive specific IgE to α -Gal varies among regions. ^{8,9,23,24} Commins et al. showed that the prevalence of IgE antibodies against cetuximab is 20% in the southeast region of the USA, whereas it is only 2% in northerm California. ⁹ Furthermore, they reported that the prevalence of IgE antibodies against α -Gal is

237	Sensitization to α -Gal is thought to be caused mainly by tick bites and, thus, the
238	relatively higher sensitization rate may be due to the higher chance of tick bites. ⁷ A.
239	americanum, D. variabilis, Ixodes holocyclus, I. ricinus, H. longicornis, and A. testudinarium
240	have been reported to be involved in α -Gal sensitization. ^{9-15, 17, 18} Thus, α -Gal sensitization
241	induced by tick bites can occur anywhere in Japan. However, in this study, we found a
242	difference in α -Gal sensitization rates depending on the region. The α -Gal syndrome is
243	specifically related to activities or occupations, such as hiking, hunting, or forest work, based on
244	frequent exposure to ticks. ^{14, 25, 26} Therefore, the rural population is likely to have a higher chance
245	of acquiring tick bites than that of the urban population. Taking these factors into consideration,
246	the participants examined at Shimane University Hospital possibly had a higher incidence of
247	tick bites because the forest area accounts for more than 80% of Shimane Prefecture; however,
248	we failed to collect information on the occupations of the participants. Furthermore, Shimane is
249	an endemic area for JSF which is spread by tick bites. ²⁷ In contrast, the participants examined at
250	Tokyo Medical and Dental University Hospital had relatively fewer opportunities of acquiring
251	tick bites because the Tokyo Metropolis is an urban area with few forests and is located in the
252	Kanto Plain in central Japan. Similarly, the participants examined at Tohoku University Hospital
253	had a relatively lower risk of tick bites because Tohoku University Hospital is located in Sendai
254	city, which is a medium-sized city in northeastern Japan where thick clothing is preferred
255	because of the prevailing low temperatures.
256	In contrast, we found that the prevalence of sensitization to beef was 19% in the
257	participants examined at Tokyo Medical and Dental University Hospital and was significantly
258	higher than that in those examined at Shimane University Hospital (4%) and Tohoku University
259	Hospital (6%) (Table 2). Although red meat allergy is usually associated with α -Gal-specific IgE

260	antibodies, ¹ 79% (15 out of 19), 83% (5 out of 6), and 25% (1 out of 4) of the participants in
261	Tokyo Medical and Dental University Hospital, Tohoku University Hospital, and Shimane
262	University Hospital, respectively, who had positive beef-specific IgE tested negative for BTG-
263	specific IgE (Table 4). In addition, no correlation was found between BTG-specific IgE levels
264	and beef-specific IgE levels in these participants (Figure 2). The discrepancy in these results
265	between the two tests may be attributed to different sensitization routes and causative allergens;
266	tick bites may represent the main cause of sensitization in the Shimane area, whereas
267	gastrointestinal absorption of beef allergens may represent the predominant route for beef-
268	sensitization in the Tokyo and Miyagi areas.
269	A key aspect of our study was the association between positive beef-specific IgE and
270	male sex ($p < 0.001$, n = 300; Table 6), although no association was found between positive
271	BTG-specific IgE test and sex ($p = 0.082$, n = 300; Table 5). Currently, there is no evidence of an
272	association of α -Gal syndrome with difference in sex; ^{22, 24, 28,29} however, Orhan et al. reported 12
273	patients with beef allergy and a 3:9 sex ratio of female to male. ³⁰ These cases may differ from
274	those of α -Gal-related beef allergy, which is characterized by delayed-onset of allergic reactions
275	(>3 h from beef ingestion) ¹ , because these 12 patients had the onset of beef allergy at a relatively
276	younger age and short symptom-onset time of ≤ 2 h. Therefore, a primary beef allergy, and not α -
277	Gal syndrome, can occur more frequently in males, whereas tick bites do not contribute to sex
278	differences. A limitation of this study is the small sample size of 300 participants from only three
279	institutes.
280	In conclusion, the prevalence of subclinical sensitization to α -Gal is likely to be 2.0-

281 4.0% in Japan and high in Shimane prefecture. The risk of hypersensitivity reactions to

- 282 cetuximab and/or red meat should be carefully evaluated, even in subjects without a history of
- red meat allergy, especially in rural areas, such as Shimane prefecture.
- 284

285 Acknowledgements

- 286 The authors thank Mrs. Kiyoe Ueda for technical assistance with this research. This research
- 287 was funded by the Japan Agency for Medical Research and Development, AMED grant
- number. 17ek0410020h0003, and JSPS KAKENHI grant number 16K10157.
- 289

290 Conflicts of interest

- 291 The authors declare that they do not have any potential conflict of interest to disclose.
- 292

293 **References**

Commins SP, Satinover SM, Hosen J, Mozena J, Borish L, Lewis BD, et al. Delayed
 anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE
 antibodies specific for galactose-alpha-1,3-galactose. J Allergy Clin Immunol. 2009;123:426-33.

- 297 2. Araujo RN, Franco PF, Rodrigues H, Santos LCB, McKay CS, Sanhueza CA, et al.
 298 Amblyomma sculptum tick saliva: α-Gal identification, antibody response and possible
 299 association with red meat allergy in Brazil. Int J Parasitol. 2016;46:213-20.
- 300 3. Cabezas-Cruz A, Hodzic A, Roman-Carrasco P, Mateos-Hernandez L, Duscher GG, Sinha DK,
- 301 et al. Environmental and molecular drivers of the α-Gal Syndrome. Front Immunology.
 302 2019;10:1210.
- 4. Platts-Mills TAE, Li RC, Keshavarz B, Smith AR, Wilson JM. Diagnosis and Management of
- Patients with the α-Gal Syndrome. J Allergy Clin Immunol Pract. 2020;8:15-23.e1.
- 305 5. Roman-Carrasco P, Hemmer W, Cabezas-Cruz A, Hodzic A, de la Fuenta J, Swoboda I. The α-
- Gal syndrome and potential mechanisms. Front Allergy 2021;2:783279.
- 307 6. Tahara M, Shirao K, Boku N, Yamaguchi K, Komatsu Y, Inaba Y, et al. Multicenter Phase II
- 308 study of cetuximab plus irinotecan in metastatic colorectal carcinoma refractory to irinotecan,
- 309 oxaliplatin and fluoropyrimidines. Jpn J Clin Oncol. 2008;38:762-9.
- 310 7. Okano S, Yoshino T, Fujii M, Onozawa Y, Kodaira T, Fujii H, et al. Phase II study of cetuximab
- 311 plus concomitant boost radiotherapy in Japanese patients with locally advanced squamous cell
- 312 carcinoma of the head and neck. Jpn J Clin Oncol. 2013;43:476-82.
- 8. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced
- anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358:1109-
- 315 17.

- 316 9. Commins SP, James HR, Kelly LA, Pochan SL, Workman LJ, Perzanowski MS, et al. The
- 317 relevance of tick bites to the production of IgE antibodies to the mammalian oligosaccharide
- 318 galactose- α -1,3-galactose. J Allergy Clin Immunol. 2011;127:1286-93.
- 319 10. Van Nunen SA, O'Connor KS, Clarke LR, Boyle RX, Fernando SL. An association between
- tick bite reactions and red meat allergy in humans. Med J Aust. 2009;190:510-1.
- 321 11. Jacquenet S, Moneret-Vautrin DA, Bihain BE. Mammalian meat-induced anaphylaxis:
- 322 clinical relevance of anti-galactose-alpha-1,3-galactose IgE confirmed by means of skin tests to
- 323 cetuximab. J Allergy Clin Immunol. 2009;124:603-5.
- 324 12. Nuñez R, Carballada F, Gonzalez-Quintela A, Gomez-Rial J, Boquete M, Vidal C. Delayed
- 325 mammalian meat-induced anaphylaxis due to galactose-α-1,3-galactose in 5 European patients. J
- 326 Allergy Clin Immunol. 2011;128:1122-4.
- 327 13. Hamsten C, Starkhammar M, Tran TA, Johansson M, Bengtsson U, Ahlén G, et al.
- 328 Identification of galactose- α -1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus;
- possible relationship with red meat allergy. Allergy. 2013;68:549-52.
- 14. Hamsten C, Tran TAT, Starkhammar M, Brauner A, Commins SP, Platts-Mills TAE, et al. Red
- 331 meat allergy in Sweden: association with tick sensitization and B-negative blood groups. J Allergy
- 332 Clin Immunol. 2013;132:1431-4.
- 333 15. Chinuki Y, Ishiwata K, Yamaji K, Takahashi H, Morita E. Haemaphysalis longicornis tick
- bites are a possible cause of red meat allergy in Japan. Allergy. 2016;71:421-5.
- 335 16. National Institute of Infectious Diseases–Japan. Scrub typhus and Japanese spotted fever in
- Japan 2007–2016. Infectious Agent Surveillance Report. Tokyo: The Institute; 2017. p. 110
- 337 17. Hashizume H, Fujiyama T, Umayahara T, Kageyama R, Walls AF, Satoh T. Repeated
- 338 Amblyomma testudinarium tick bites are associated with increased galactose- α -1,3-galactose

340 Dermatol. 2018;78:1135-41.

- 18. Chinuki Y, Morita E. Alpha-Gal-containing biologics and anaphylaxis. Allergol Int.
 2019;68:296-300.
- 343 19. Shifrin S, Consiglio E, Kohn LD. Effect of the complex carbohydrate moiety on the structure
 344 of thyroglobulin. J Biol Chem. 1983;258:3780-6.
- 345 20. Sim DW, Lee JS, Park KH, Jeong KY, Ye YM, Lee JH, et al. Accurate assessment of alpha-
- 346 gal syndrome using cetuximab and bovine thyroglobulin-specific IgE. Mol Nutr Food Res.
- 347 2017;61(10). Doi: 10.1002/mnfr.201601046.
- 348 21. Takahashi H, Chinuki Y, Tanaka A, Morita E. Laminin γ -1 and collagen α -1 (VI) chain are
- 349 galactose- α -1,3-galactose-bound allergens in beef. Allergy. 2014;69:199-207.
- 350 22. Gonzalez-Quintela A, Dam Laursen AS, Vidal C, Skaaby T, Gude F, Linneberg A. IgE
- antibodies to alpha-gal in the general adult population: relationship with tick bites, atopy, and cat
- 352 ownership. Clin Exp Allergy. 2014;44:1061-8.
- 353 23. O'Neil BH, Allen R, Spigel DR, Stinchcombe TE, Moore DT, Berlin JD, et al. High incidence
- 354 of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with
- 355 atopic history. J Clin Oncol. 2007;25:3644-8.
- 356 24. Villalta D, Pantarotto L, Da Re M, Conte M, Sjolander S, Borres MP, et al. High prevalence
- 357 of sIgE to Galactose-α-1,3-galactose in rural pre-Alps area: a cross-sectional study. Clin Exp
- 358 Allergy. 2016;46:377-80.
- 359 25. Fischer J, Lupberger E, Hebsaker J, Blumenstock G, Aichinger E, Yazdi AS, et al. Prevalence
- of type I sensitization to alpha-gal in forest service employees and hunters. Allergy. 2017;72:1540-
- 361 7.

- 26. Venturini M, Lobera T, Sebastián A, Portillo A, Oteo JA. IgE to α-Gal in Foresters and Forest
 Workers From La Rioja, North of Spain. J Investig Allergol Clin Immunol. 2018;28:106-12.
- 364 27. Tabara K, Kawabata H, Arai S, Itagaki A, Yamauchi T, Katayama T, et al. High incidence of
- 365 rickettsiosis correlated to prevalence of Rickettsia japonica among Haemaphysalis longicornis
- 366 tick. J Vet Med Sci. 2011;73:507-10.
- 367 28. Mabelane T, Basera W, Botha M, Thomas HF, Ramjith J, Levin ME. Predictive values of
- alpha-gal IgE levels and alpha-gal IgE: Total IgE ratio and oral food challenge-proven meat
 allergy in a population with a high prevalence of reported red meat allergy. Pediatr Allergy
- allergy in a population with a high prevalence of reported red meat allergy. Pediatr Allergy
 Immunol. 2018;29:841-9.
- 29. Levin M, Apostolovic D, Biedermann T, Commins SP, Iweala OI, Platts-Mills TAE, et al.
- 372 Galactose α -1,3-galactose phenotypes: Lessons from various patient populations. Ann Allergy
- 373 Asthma Immunol. 2019;122:598-602.
- 374 30. Orhan F, Sekerel BE. Beef allergy: a review of 12 cases. Allergy. 2003;58:127-31.

377 Figure legends

378 **Figure 1.** IgE immunoblot analysis using cetuximab.

379 Cetuximab (1 µg/lane) was separated via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotted with the sera of the participants. The protein band at 380 approximately 50 kDa corresponded to the α-Gal-bound heavy chain of cetuximab in Coomassie 381 brilliant blue staining. Nos. S1-S100, K1-K100, and H1-H100 represent the participants at 382 Shimane University Hospital, Tokyo Medical and Dental University Hospital, and Tohoku 383 University Hospital, respectively. The results of 12 participants with positive ImmunoCAP-BTG 384 385 (S7, S17, S19, S33, S40, S58, S84, K31, K51, K52, K61, and H37) and two participants with positive immunoblotting (K19 and H27) are shown. P: patient with beef allergy as positive 386 control; N, healthy control used as negative controls. α -Gal, galactose- α -1,3-galactose. 387 388

389 Figure 2. Association of BTG- specific IgE values and beef-specific IgE values.

No correlation was observed between BTG-specific IgE values and beef-specific IgE values in
33 participants with either positive BTG-specific IgE or beef-specific IgE. BTG, bovine
thyroglobulin.

Institutes [†]	Shimane	Tokyo	Tohoku	P-value*	
Number of participants	100	100	100	NA	
Age, years, median (range)	57.8 (19–92)	45.0 (16-84)	52.4 (18–94)	0.342	
Female/male	59/41	52/48	62/38	0.082	
Blood type					
А	48.5% (48/99)	44.9% (44/98)	39.4% (39/99)		
В	19.2% (19/99)	23.5% (23/98)	21.2% (21/99)	0.005	
0	27.3% (27/99)	23.5% (23/98)	26.3% (26/99)	0.225	
AB	5.1% (5/99)	8.2% (8/98)	13.1% (13/99)		
History of					
Urticaria	53.0% (53/100)	67.0% (67/100)	52.0% (52/100)	0.052	
Red meat allergy	3.0% (3/100)	2.0% (2/100)	1.0% (1/100)	0.603	
Cetuximab treatment	0.0% (0/100)	1.0% (1/96)	0.0% (0/100)	0.354	
Tick bites	5.0% (5/99)	7.1% (7/99)	4.0% (4/100)	0.632	
JSF	1.0% (1/100)	0.0% (0/100)	0.0% (0/100)	0.369	
Keeping pets	71.0% (71/100)	61.0% (61/100)	67.0% (67/100)	0.329	

393 **Table 1**. Clinical features of the participants

³⁹⁴ [†]Shimane, Shimane University Hospital; Tokyo, Tokyo Medical and Dental University Hospital; Tohoku, Tohoku University Hospital.

395 NA, not applicable; JSF, Japanese spotted fever. **P*-values were obtained with Tukey's and Games–Howell tests as appropriate.

397 **Table 2.** Positive rates of serum allergen-specific IgE and cetuximab immunoblotting

Institutes [†]	Shimane	Tokyo	Tohoku	P-value*	Total
BTG-specific IgE	7.0% (7/100)	4.0% (4/100)	1.0% (1/100)	0.059	4.0% (12/300)
Cetuximab immunoblotting	5.0% (5/100)	2.0% (2/99)	1.0% (1/100)	0.251	2.7% (8/299)
Both BTG-specific IgE and cetuximab immunoblotting	5.0% (5/100)	1.0% (1/99)	0.0% (0/100)	0.028	2.0% (6/299)
Beef-specific IgE	4.0% (4/100)	19.0% (19/100)	6.0% (6/100)	0.003	9.7% (29/300)
Both beef-specific IgE and cetuximab immunoblotting	3.0% (3/100)	1.0% (1/99)	0.0% (0/100)	0.171	1.3% (4/299)

³⁹⁸ [†]Shimane, Shimane University Hospital; Tokyo, Tokyo Medical and Dental University Hospital; Tohoku, Tohoku University Hospital. BTG,

399 bovine thyroglobulin. **P*-values were obtained with Tukey's and Games–Howell tests as appropriate.

N. †	No. [†] Age Sex	Blood	T Tuti a a ui a	Red-meat	Cetuximab	Tick	ICE	Keeping	ImmunoCAP (U _A /mL)		IgE Immunoblotting	
No.'		type	Urticaria	allergy	treatment	bites	JSF	pets	BTG	Beef	with cetuximab	
S7	84	F	0	-	-	-	-	-	-	21.8	9.49	+
S17	84	Μ	ND	-	-	-	-	-	-	3.06	1.11	+
S19	61	F	0	-	-	-	-	-	-	1.31	0.161	+
S33	66	F	0	+	-	-	+	-	+	0.755	0.177	-
S40	54	М	0	-	-	-	-	-	+	1.20	0.347	+
S58	74	F	А	+	-	-	-	-	+	14.3	0.679	+
S84	82	М	А	-	-	-	-	-	-	0.675	< 0.1	-
K19	38	F	0	-	-	-	-	-	-	< 0.1	0.166	+
K31	26	Μ	0	-	-	-	-	-	+	0.396	0.624	-
K51	44	Μ	А	+	-	-	-	-	+	8.25	6.06	+
K52	56	Μ	А	+	-	-	-	-	+	0.765	0.626	-
K61	76	Μ	0	+	-	-	+	-	+	0.566	1.02	-
H27	47	М	А	+	-	-	-	-	+	< 0.1	<0.1	+
H37	41	М	Ο	+	-	-	-	-	+	0.514	0.716	-

401 **Table 3.** Characteristics of the participants with positive allergen-specific IgE and/or immunoblot analysis

402 [†]Nos. S1–S100, K1–K100, and H1–H100 represent participants at Shimane University Hospital, Tokyo Medical and Dental University

403 Hospital, and Tohoku University Hospital, respectively. M, male; F, female; JSF, Japanese spotted fever; BTG, bovine thyroglobulin; IgE,

404 immunoglobulin E; ND, No data.

Institutes [†]	Sh	imane (n :	= 100)	Т	okyo (n =	100)	То	hoku (n =	100)	Total (n = 300)		
Beef (U _A /mL) BTG (U _A /mL)	<0.35	≥0.35	P-value*	<0.35	≥0.35	P-value	<0.35	≥0.35	P-value	<0.35	≥0.35	P-value
< 0.35	92	1	-0.001	81	15	-0.001	94	5	<0.001	267	21	<0.001
≥0.35	4	3	< 0.001	0	4	<0.001 4	0	1	< 0.001	4	8	

405 **Table 4.** Concordance ratio between BTG-specific IgE and beef-specific IgE

406 [†]Shimane, Shimane University Hospital; Tokyo, Tokyo Medical and Dental University Hospital; Tohoku, Tohoku University Hospital. *P-

407 values were obtained using chi-square tests. BTG, bovine thyroglobulin.

Institutes [†]		Shima	ine		Т	okyo		Tohoku			Т	otal
ImmunoCAP-BTG (U _A /mL)	< 0.35	≥0.35	P-value*	< 0.35	≥0.35	<i>P</i> -value	< 0.35	≥0.35	<i>P</i> -value	< 0.35	≥0.35	P-value
Sex												
Male (n = 127)	38	3	0.017	44	4	0.024	37	1	0 100	119	8	0.092
Female $(n = 173)$	55	4	0.917	52	0	0.034	62	0	0.199	169	4	0.082
Blood type												
A (n = 128)	46	2		42	2		39	0		127	4	
B (n = 63)	19	0	0.140	23	0	0.459	21	0	0.418	63	0	0.018
O (n = 76)	23	4		21	2		25	1		69	7	
AB (n = 26)	5	0		8	0		13	0		26	0	
History												
Urticaria (n = 172)	51	2	0.179	64	3	0.728	48	0	0.334	166	6	0.600
Red-meat allergy $(n = 6)$	3	0	0.629	2	0	0.771	1	0	0.920	6	0	0.614
Cetuximab treatment $(n = 1)$	0	0	NA§	1	0	0.834	0	0	NA	1	0	0.837
Tick bites $(n = 16)$	4	1	0.242	6	1	0.150	4	0	0.837	14	2	0.750
JSF $(n = 1)$	1	0	0.783	0	0	NA	0	0	NA	1	0	0.838
Keeping pets $(n = 199)$	68	3	0.089	57	4	0.103	66	1	0.481	191	8	0.980

Table 5. Demographic characteristics of participants testing positive for BTG-specific IgE

411 are presented as the number of participants. * *P*-values were obtained using chi-square tests. BTG, bovine thyroglobulin; NA, not applicable;

412 JSF, Japanese spotted fever

Institutes [†]		Sh	imane	r	Гokyo			Tohoku	Total			
ImmunoCAP-beef (U _A /mL)	< 0.35	≥0.35	<i>P</i> -value*	< 0.35	≥0.35	<i>P</i> -value	< 0.35	≥0.35	<i>P</i> -value	< 0.35	≥0.35	<i>P</i> -value
Sex												
Male (n = 127)	39	2	0.700	31	17	< 0.001	33	5	0.010	103	24	-0.001
Female $(n = 173)$	57	2	0.709	50	2		61	1	0.018	168	5	< 0.001
Blood type												
A (n = 128)	46	2		35	9		38	1		119	12	
B (n = 63)	19	0	0.801	20	3	0.111	20	1	0.507	59	4	0.304
O (n = 76)	26	1		20	3		23	3		69	7	
AB (n = 26)	5	0		4	4		12	1		21	5	
History												
Urticaria (n = 172)	52	1	0.252	56	11	0.348	50	2	0.345	158	14	0.299
Red-meat allergy $(n = 6)$	3	0	0.720	1	1	0.259	1	0	0.800	5	1	0.558
Cetuximab treatment $(n = 1)$	0	0	NA	1	0	0.619	0	0	NA	1	0	0.741
Tick bites $(n = 16)$	5	0	0.640	5	2	0.503	4	0	0.606	14	2	0.693
JSF(n=1)	1	0	0.837	0	0	NA	0	0	NA	1	0	0.743
Keeping pets $(n = 199)$	69	2	0.345	48	13	0.461	61	6	0.760	178	21	0.466

414 **Table 6.** Demographic characteristics of participants testing positive for beef-specific IgE

415 [†]Shimane, Shimane University Hospital; Tokyo, Tokyo Medical and Dental University Hospital; Tohoku, Tohoku University Hospital.

416 Data are presented as the number of participants. **P*-values were obtained using chi-square tests. NA, not applicable; JSF, Japanese spotted

417 fever