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Abstract. We introduce coordinate systems to the Teichmüller space of
the twice-punctured torus and give matrix representations for the points of Te-
ichmüller space. The coordinate systems allow representation of the mapping

class group of the twice punctured torus as a group of rational transforma-
tions and provide several applications to the mapping class group and also to
Kleinian groups.

1. Introduction.

The Teichmüller space Tg,n of the closed oriented surface Mg,n of genus g with n

punctures with 2g−2+n > 0 is homeomorphic to RD, D = 6g−6+2n, (see, for example,

[16, 34.3]) and there are several global coordinate-systems for T which realize it as a D-

cell in Rm for some m. The Fenchel–Nielsen coordinate-system and coordinate-systems

by using a set of geodesic length functions or equivalently trace functions are the most

popular among them (see, for example, [10], [12], [13] and [14].) In particular in [10]

and [11] a coordinate-system by a set of D + 1 trace functions is introduced to Tg,n by

which the action of mapping class group MCg,n of Mg,n can be described as a group of

rational transformations.

Let T = T1,2 denote the Teichmüller space of the twice puncture torus M , the space

of all marked complete hyperbolic structures on M of finite area. In this paper we regard

T as a space quasiconformal deformations of twice punctured torus groups, or Fuchsian

groups with signature (1;∞,∞). For this particular case, Button gave in [2] a coordinate-

system by which T can be identified with an open subset of R4 defined by a single simple

inequality and also gave matrix representations of the twice punctured torus group in

PSL(2,R). The objective of this paper is also to give coordinate-systems to T . But we

put emphasis on their applications to the mapping class group MC = MC1,2 of the twice

punctured torus. We apply our coordinate systems to give a rational representation of

the mapping class group MC as a group of rational transformations.

Any twice punctured torus group in PSL(2,R) is a subgroup of Fuchsian groups with

signature (0; 2, 2, 2, 2,∞), [4, Theorem 3A], [15, Thereom 1]. We consider in Section 2

Fuchsian groups of signature (0; 2, 2, 2, 2,∞) and give their matrix representations in

PSL(2,R). The matrix representations naturally lead to those of twice punctured torus

groups. In Section 3, we give two global coordinate systems of the Teichmüller space T .
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One coordinate-system is defined by trace functions on the Teichmüller space T of twice

puncture torus groups as in papers cited above. The other coordinate-system uses trace

functions on the Teichmüller space of Fuchsian groups with signature (0; 2, 2, 2, 2,∞).

With the second coordinate-system the Teichmüller space T is embedded into the locus

of a very simple polynomial equation in R5. In this section we also give matrix repre-

sentations of twice punctured torus groups by matrices whose entries are described as

rational functions in the coordinates introduced here. In Section 4, we consider the map-

ping class group MC of the twice punctured torus. We will show that the action of MC
on the Teichmüller space T is represented by a group of rational transformations in the

coordinates introduced in the previous section. In Section 5, we treat periodic elements

of the mapping class group MC and describe them as a product of Gervais generators

[3] up to conjugation. A periodic element has fixed points in T . We also give Fuchsian

groups related to the fixed points. The matrix representations of the twice punctured

torus group obtained in Section 3 extend naturally to those in SL(2,C). We conclude

this paper by examples of twice punctured torus groups in PSL(2,C). Two of them have

extensions to Kleinian groups of finite covolume and the other one is a Kleinian group

of the second kind which is a combination of two conjugations of PSL(2,Z).

Acknowledgements. The author thanks the referee for carefully reading the

manuscript and giving a number of comments which help to improve the readability and

quality of the manuscript.

2. Twice punctured torus groups.

This section is devoted to a preparatory argument for a matrix representation of

Fuchsian group Γ with signature (1;∞,∞) or a twice punctured torus group. This

matrix representation is a lift of Γ to SL(2,R). We also consider a matrix representation

of a group which projects to a Fuchsian group G with signature (0; 2, 2, 2, 2,∞). Contrary

to the case of Γ, there are no lifts of G to SL(2,R), since G contains elliptic elements of

order 2.

2.1. Matrix representations of twice punctured torus groups.

Let H = {z = x+ iy : y > 0} be the upper half plane equipped with the hyperbolic

metric

ds2 =
dx2 + dy2

y2
.

Each matrix A of SL(2,R) acts on H as a conformal isometry:

A(z) =
az + b

cz + d
where A =

(
a b

c d

)
and z ∈ H.

We denote by I the identity matrix in SL(2,R). Two matrices A and B of SL(2,R) define
an identical isometry if and only if B = ±A. The group of all conformal isometries on

H is PSL(2,R) = SL(2,R)/{±I} ([1, Theorem 7.4.1]). The trace trA of A ∈ SL(2,R)
is invariant under conjugation. If |trA| > 2, then A is called hyperbolic and A has two

fixed points pA and qA with |A′(pA)| > 1 and |A′(qA)| < 1, and they are called repulsive
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and attractive fixed point of A, respectively. We assume that the axis ax(A) of A, the

hyperbolic line connecting pA and qA, is oriented from pA to qA. We call a matrix E of

SL(2,R) elliptic of order 2, if trE = 0. If E is elliptic of order 2, then E2 = −I. So the

order 2 means the order of E when it is regarded as an element of PSL(2,R).
Let Γ be a Fuchsian group in PSL(2,R) with signature (1;∞,∞):

Γ =
⟨
a, b, c, d : aba−1b−1cd = 1

⟩
, (2.1)

where c and d are parabolic elements. The factor surface for the action of Γ on H is a

twice punctured torus. The group Γ always has an extension G of index 2 which has

signature (0; 2, 2, 2, 2,∞) (see [4, Theorem 3A], [15, Thereom 1]):

G =
⟨
e1, e2, e3, e4, d : e21 = e22 = e23 = e24 = e1e2e3e4d = 1

⟩
, (2.2)

where

a = e1e3, b = e3e2, c = e−1
4 de4 = e3e2e1e4. (2.3)

We normalize G by a conjugation with an element of PSL(2,R) in order to have canonical

generating systems (a, b, c, d) of Γ and (e1, e2, e3, e4) of G so that the position of the fixed

points and axes of some of their elements is as illustrated in Figure 2.1, in which we

identify the upper half plane H with the unit disk by conformal maps.

0

∞

d c

e4

aba−1b−1

ab ba

a b

e−1
3 e2e3

e1 e3

e2 e−1
3 e1e3

∞ 0
a

d

d

e1

e2
e3

e4

Figure 2.1. The two unit disks in the figure are images of H under different

conformal maps.

The following lemmas for elliptic elements of order 2 may be well known. Let c(E)

denote the (2, 1)-entry of an elliptic element E in SL(2,R). We remark that in SL(2,R)
there are no elliptic elements E of order 2 with c(E) = 0.

Lemma 2.1. The sign of c(E) is invariant under conjugation.

Proof. Let

E =

(
p q

r −p

)
, (2.4)
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be elliptic of order 2. Suppose that r = c(E) > 0. From −qr = 1 + p2 > 0, q < 0. If

P =

(
a b

c d

)
is a matrix of SL(2,R), then

c(P−1EP ) = a2r + c2(−q)− 2acp ≥ 2(|ac|
√
−qr − acp)

= 2(|ac|
√

1 + p2 − acp) > 0.

If c(E) < 0, it suffices to apply the same argument to −E. □

Lemma 2.2. Let E be elliptic of order 2 and D be a conjugate of(
−1 −1

0 −1

)
(2.5)

in SL(2,R). Then trED > 0 if and only if c(E) < 0.

Proof. By our assumption, D can be written with real numbers c and d as

D =

(
−1− cd −d2

c2 −1 + cd

)
.

If E is as in (2.4), then −c(E) · trED = −rtrED = c2 + (cp+ rd)2 > 0. □

Lemma 2.3. Let E1, E2 and E3 be elliptic of order 2 with distinct fixed points. Let

ϵj be the sign of c(Ej) for j = 1, 2, 3. If trE1E3 > 0, trE3E2 > 0 and trE1E2 < 0, then

(ϵ1, ϵ2, ϵ3) equals (+1,+1,−1) or (−1,−1,+1).

Proof. By Lemma 2.1 we may assume that

E1 = ϵ1

(
0 −1

1 0

)
, E2 = ϵ2

(
p q

r −p

)
, E3 = ϵ3

(
0 −1/λ

λ 0

)
, (2.6)

where r > 0, λ > 1 and q = −(p2 +1)/r < 0. Then ϵj = sign(c(Ej)) for i = 1, 2, 3. Since

trE1E3 = −ϵ1ϵ3(λ+ 1/λ), trE3E2 = ϵ2ϵ3(−r/λ+ qλ), trE1E2 = ϵ1ϵ2(−r + q),

(see (2.10) below), we have ϵ1ϵ3 < 0, ϵ2ϵ3 < 0 and ϵ1ϵ2 > 0 under our assumption. □

Theorem 2.1 (matrix representations). (1) Let

G =
⟨
E1, E2, E3, E4, D : E2

1 = E2
2 = E2

3 = E2
4 = −I, E1E2E3E4D = I

⟩
be a Fuchsian group with signature (0; 2, 2, 2, 2,∞) such that the fixed point of ej = Ej

for j = 1, 2, 3, 4 is as depicted in Figure 2.1. Then the matrices E1, E2, E3 and E4 can

be chosen so that
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E1 =

(
0 −1

1 0

)
, E2 =

(
p q

r −p

)
, E3 =

(
0 1/λ

−λ 0

)
, E4 =

(
s t

u −s

)
, (2.7)

where

p2 + qr = −1, s2 + tu = −1, p < 0, r > 0, s < 0, u < 0, λ > 1,

ps+ ru+ (ps+ qt)λ2 − 2λ = 0. (2.8)

(2) Let Γ = ⟨A,B,C,D : ABA−1B−1CD = I⟩ be a Fuchsian group with signature

(1;∞,∞) such that the axes of a = A and b = B are as depicted in Figure 2.1 and

trD = −2. Then the matrices can be chosen so that A = E1E3, B = E3E2, C =

E−1
4 DE4 = E3E2E1E4 with matrices in (2.7). They satisfy

trA > 0, trB > 0, trAB > 0, trC = −2. (2.9)

Proof. We choose E1, E2 and E3 in (2.6) with (ϵ1, ϵ2, ϵ3) = (+1,+1,−1). Then

r > 0, q < 0 and λ > 1. The traces of A = E1E3, B = E3E2 and AB = −E1E2 are

positive, since

A =

(
λ 0

0 1/λ

)
, B =

(
r/λ −p/λ

−pλ −qλ

)
, AB =

(
r −p

−p −q

)
. (2.10)

By Figure 2.1, the real part of fixed point (p+ i)/r of E2 is negative. Hence p < 0. Since

E1E2E3 =

(
−pλ −r/λ

−qλ p/λ

)
,

we have trE4D = tr(E1E2E3)
−1 = trE1E2E3 and

trE1E2E3 = −p(λ− 1/λ) > 0. (2.11)

If trD = −2, by Figure 2.1 D is a conjugate of the matrix in (2.5). By Lemma 2.2 and

(2.11), u < 0. Since by Figure 2.1 the real part of fixed point (s+ i)/u of E4 is positive,

s < 0. Finally we obtain (2.8) from trD = −2. It follows from E2
3 = E2

4 = −I that

ABA−1B−1CD = E1E2E3(E1E2E3E4D)E4D = I.

We remark that from trE1E4 = −u+ t, trE2E4 = 2ps+ qu+ rt and trE3E4 = uλ−1−λt

follow

trE1E4 > 0, trE2E4 > 0, trE3E4 < 0. (2.12)

□
Lemma 2.4. Let A, B and C be as in Theorem 2.1. Then trAC > 0, trBC < 0

and trABC > 0.

Proof. We use the matrices in the proof of Theorem 2.1. Since

C = E3E2E1E4 =

(
−(ps+ ru)/λ (rs− pt)/λ

(pu− qs)λ −(ps+ qt)λ

)
,
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we have

trAC = (−q)t+ (−u)r − 2ps ≥ 2(
√
(qr)(tu)− ps)

= 2(
√
(p2 + 1)(s2 + 1)− ps) > 0,

trABC = (q2t+ (−u)p2 + 2pqs)λ+ (p2t+ (−u)r2 − 2prs)/λ

≥ 2(|pq|
√

t(−u) + pqs)λ+ 2(|pr|
√
t(−u)− prs)/λ

= 2(|pq|λ+ |pr|/λ)(
√

s2 + 1− |s|) > 0

and from (2.8) we have trBC = −2(r/λ+ (−q)λ)− (t− u) < 0. □

The group G can be written as G = ⟨E3⟩⋉ Γ. E3 acts on Γ by

E3A = A−1E3, E3B = B−1E3,

E3C = B−1A−1C−1BAE3, E3D = B−1A−1D−1BAE3.
(2.13)

3. Teichmüller space of twice punctured torus groups.

3.1. Trace identities.

We will use the following trace identities in SL(2,C) and hence in SL(2,R).

(I1) trA = trA−1,

(I2) trAtrB = trAB + trAB−1,

(I3) trABC = trAtrBC + trBtrCA+ trCtrAB − trAtrBtrC − trACB,

(I4) tr[A,B] = trABA−1B−1 = (trA)2 + (trB)2 + (trAB)2 − trAtrBtrAB − 2,

(I5) trABA−1C = trAtrABC + trBtrC − trABtrAC − trBC,

(I6) trABAC = trABtrAC − trBtrC + trBC.

The identities (I1)–(I4) are found in [9, 3.4]. (I5) and (I6) are derived from the rest.

3.2. Teichmüller space of twice punctured torus groups.

We fix a Fuchsian group Γ0 and a canonical generating system (A0, B0, C0, D0) of

Γ0 as in Theorem 2.1(2). Let M denote the space of all tuples (A,B,C,D) of ma-

trices in SL(2,R) such that there exists a quasiconformal automorphism w of H sat-

isfying A = wA0w
−1, B = wB0w

−1, C = wC0w
−1 and D = wD0w

−1. Two tu-

ples (A1, B1, C1, D1) and (A2, B2, C2, D2) in M are said to be equivalent if there ex-

ists a Möbius transformation h preserving H such that A2 = hA1h
−1, B2 = hB1h

−1,

C2 = hC1h
−1 and D2 = hD1h

−1, that is, as tuples of matrices, they are simultaneously

conjugate to each other in SL(2,R).

Definition 3.1. The Teichmüller space T = T1,2 of the twice punctured torus is

the space of all equivalent classes of tuples in M.

Our objective here is to give a coordinate-system of T . We will identify a point of

T1,2 with one of its representatives (A,B,C,D). Since D = C−1BAB−1A−1, we often

omit D and denote the point by (A,B,C). As before we assume that trA and trB are

positive, trC = trD = −2. Let
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a = trA, b = trB, z = trAB, u = trAC, w = trABC, (3.1)

and we define auxiliary positive parameters

t =
√
−trABA−1B−1 + 2 =

√
4 + abz − a2 − b2 − z2, (3.2)

s =
√
2− trCABC−1A−1B−1 =

√
2− tr[B−1C,AB].

If we choose E1, E2, E3 as in Theorem 2.1, then

s2 = −trCABC−1A−1B−1 + 2 = tr(E4E1E2)
2 + 2 = (trE4E1E2)

2,

t2 = −trABA−1B−1 + 2 = tr(E1E2E3)
2 + 2 = (trE1E2E3)

2.

By (2.11) and Lemma 2.2 we have t = trE1E2E3 and s = trE1E2E4 = trE3(E4DE−1
4 ).

Theorem 3.1. Each of the tuples (a, b, z, u, w) and (a, b, z, w, s) gives a global

coordinate system to the Teichmüller space T of the twice punctured torus. In other

words, Φu(A,B,C) = (a, b, z, u, w) and Φs(A,B,C) = (a, b, z, w, s) are embeddings of

T1,2 into R5. The parameters satisfy

s2 + t2 + (z + w)2 − stw = 0. (3.3)

Proof. It is known that a finite set of traces parametrizes T globally (see for

example [5], [7], [10], [12], [13], [14]). On the other hand, if G is a group generated by

(A,B,C), the trace trg of each g ∈ G is a polynomial in

(a, b, z, u, v, w) = (trA, trB, trAB, trAC,−trBC, trABC)

with integer coefficients (see [9, Lemma 3.5.1]). Here we employ −trBC instead of trBC,

because trBC < 0. By trace identities we have

−2 = trABA−1(B−1C)

= trAtrAB(B−1C) + trBtrBC−1 − trABtrAB−1C − trB(B−1C)

= au+ b(−2b+ v)− z(bu− w) + 2

= (a− bz)u+ bv − 2b2 + zw + 2. (3.4)

By (3.4)

v =
(bz − a)u+ 2b2 − zw − 4

b
. (3.5)

Hence we can omit v and conclude that (a, b, z, u, w) parametrizes T globally. The

equation (3.3) is a consequence of trace identities

s2 − 2 = −trC(AB)C−1(BA)−1

= −trCtrD−1 − trABtr(BA)−1 + trCABtrCA−1B−1 + tr[A,B]

= −4− z2 + w · trCA−1B−1 + (−t2 + 2)
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and

trCA−1B−1 = tr(E3E1)(E2E3)(E3E2E1E4) = trE3E
−1
4

= trE1E2E3trE1E2E4 − trE1E2E3E1E2E4

= st+ trE1E2E3E1E2(C
−1E3E2E1)

= st− trE1E2C
−1

= st+ trABC−1 = st− 2z − w.

From this follows

trACB = w − st, (3.6)

and then by (I3)

w − st = trACB = −av − 2z + ub+ 2ab− w. (3.7)

Solve the linear equations (3.4) and (3.7) in u and v to obtain

u =
a(4 + wz) + b(st− 2w − 2z)

t2 + z2 − 4
, v =

a(2z + 2w − st) + b(2t2 + stz − wz − 4)

t2 + z2 − 4
.

(3.8)

So we can replace u by s and conclude that (a, b, z, w, s) also parametrizes T . □

We remark that the identity (3.3) in coordinates a, b, z, u, w is

(aw − uz)2 + 4(abw + buz + 2b2 − 2au− 2wz − 4)

= (buw − b2 − u2 − w2)(abz − a2 − b2 − z2). (3.9)

We let R>2 = {x ∈ R : x > 2} and define (T, V, π) by

T =
{
(a, b, z, w, s, t) ∈ R6

>2 : t2 = 4 + abz − a2 − b2 − z2, s2 + t2 + (z + w)2 = stw
}
,

V =
{
(a, b, z, t) ∈ R4

>2 : abz − a2 − b2 − z2 = t2 − 4
}

and π : T → V is a natural projection. Each slice

Vt =
{
(a, b, z) ∈ R3

>2 : abz − a2 − b2 − z2 = t2 − 4
}

of V is homeomorphic to R2 and identified with the Teichmüller space of the hyper-

bolic torus with one totally geodesic boundary curve of length ℓ(t) satisfying t2 − 2 =

2 cosh(ℓ(t)/2) (see [16, Section 33.D].) We have V =
∪

t>2 Vt
∼= R3. For each

(a, b, z, t) ∈ V , π−1(a, b, z, t) is a branch of the hyperbola (t+2)X2 − (t− 2)Y 2 +A = 0,

where

X =
s− w√

2
− 2z√

2(t+ 2)
, Y =

s+ w√
2

− 2z√
2(t− 2)

, A =
2t2(z2 + t2 − 4)

t2 − 4
.
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Therefore T is homeomorphic to R4. Let ϖ : T1,2 → V send (A,B,C) to (a, b, z, t),

a = trA, b = trB, z = trAB and t =
√
abz − a2 − b2 − z2 + 4. For each (a, b, z, t) ∈ V ,

we fix a point (A,B,C0) in ϖ−1(a, b, z, t). We recall the Fenchel–Nielsen coordinates

for T1,2. Then all other points (A,B,C) in ϖ−1(a, b, z, t) are obtained from (A,B,C0)

by a Nielsen twist along the curve determined by the axis of ABA−1B−1. In other

words, if Hτ ∈ SL(2,R) has the same axis as ABA−1B−1 and its trace is 2 cosh(τ/2)

(−∞ < τ < ∞), then there exists a unique τ such that C = HτC0H
−1
τ . The parameter

w = trABC is a real analytic convex function of τ and tends to +∞ as τ → ±∞. This

implies that the map sending τ to the branch of hyperbola is homeomorphic. Now we

establish the well known fact that T1,2 is homeomorphic to T ∼= R4.

We conclude this section by a matrix representation of a canonical generating system

(A,B,C,D) of a twice punctured torus group described in terms of (a, b, z, w, s). It is

normalized so that C(z) = z + 1 and D fixes 0:

A =
1

P6

(
t−1(aP1 + bP2) t−2[aP3 + b(−tP2 + P4)]

a(tP1 + P3) + bP4 aP6 − t−1(aP1 + bP2)

)
,

B =
1

P6

(
t−1[aP2 + b(P1 + tP3)] t−2[a(−tP2 + P4) + bP5]

aP4 + bP3 bP6 − t−1[aP2 + b(P1 + tP3)]

)
,

C =

(
−1 −1

0 −1

)
, D =

(
−1 0

t2 −1

)
,

(3.10)

where

P1 = −2t− sz, P2 = 2s− st2 + tw + 2tz, P3 = t2 + stz − wz − z2,

P4 = −st+ 2w + 2z, P5 = −P3 + z(tP2 − P4), P6 = t2 + z2 − 4.

To calculate the following matrices, we use (3.3) to reduce entries of matrices so that no

terms are multiples of stw.

AB =

(
−s/t (st− z − w)/t2

−z − w z + s/t

)
,

A−1B−1 =

(
s/t− st+ w + 2z (−2st+ st3 + w − t2w + z − 2t2z)/t2

−st+ z + w −s/t+ st− z − w

)
,

ABC =

(
s/t (z + w)/t2

z + w −s/t+ w

)
,

CABC−1A−1B−1 =

(
1− 2s2 − stz + s(w + z)/t 2s2 + stz − 2s(z + w)/t− s2/t2

−s(s+ tz) 1 + s2 + stz − s(w + z)/t

)
.
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4. Mapping class group.

4.1. Mapping class group and its generators.

Let MC = MC1,2 denote the mapping class group of the twice punctured torus.

Each element of MC acts on the twice punctured torus group as an outer automorphism.

We employ a generating system (ω1, ω2, ω3, ω4) of MC from [3]. We describe ω by the

change of canonical generators (up to simultaneous conjugation) caused by ω:

ω1(a, b, c, d) = (ab−1, b, c, d),

ω2(a, b, c, d) = (a, ba, c, d),

ω3(a, b, c, d) = (b−1ca, b, c, b−1cdc−1b),

ω4(a, b, c, d) = (a, b, d, d−1cd).

From these expressions we can verify that

ω1ω3 = ω3ω1, ω1ω4 = ω4ω1, ω2ω4 = ω4ω2, (4.1)

ω1ω2ω1 = ω2ω1ω2, ω3ω2ω3 = ω2ω3ω2. (4.2)

Relations in (4.1) arise from that Dehn twists along disjoint simple loops are commuta-

tive. Those in (4.2) are the braid relations. Both (ω3ω4)
2 and (ω4ω3)

2 send (a, b, c, d) to

(b−1(ab−2)b, b, b−1cb, b−1db). Since we ignore a difference by an inner automorphism,

ω2
1 = (ω3ω4)

2 = (ω4ω3)
2. (4.3)

4.2. Permutations of “Weierstrass points”.

Let Γ and G be the groups in (2.1) and (2.2). Let π : H → M = H/Γ be the

canonical projection, where M is a twice punctured torus. Let wj ∈ M denote the

projection under π of the fixed point of ej for j = 1, 2, 3, 4. The mapping class

ζ0 = ω1ω2ω3ω4ω3ω2ω1

induces an involution of M fixing the set W = {w1, w2, w3, w4} pointwise. Moreover ζ0
commutes with all elements of MC (see Section 5.1). Therefore, each ω ∈ MC preserves

W and defines an element σ = τ(ω) of the permutation group S4 such that ω(w) = wσ(i).

Let γ(g) denote the projection of the axis of a hyperbolic element g of Γ. Since a = e1e3,

the geodesic loop γ(a) passes w1 and w3. Likewise γ(b) for b = e3e2 passes w2 and w3,

γ(ab) for ab = e1e2 passes w1 and w2. Since

ab−1 = e1 · e−1
3 e2e3, b = (e−1

3 e2e3) · e3,

γ(ab−1) passes w1 and w2, and γ(b) passes w2 and w3. Hence ω1 fixes each of w1 and

w4 and interchanges w2 and w3. So ω1 induces the permutation (1)(2, 3)(4). Likewise

a = e3 · e−1
3 e1e3, ba = e−1

3 e1e3 · e−1
3 e−1

1 e2e1e3,

b−1ca = e−1
1 e4e1 · e3, b = e3 · e2,

a = e1 · e3, b = e3 · e2.
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give rise to

τ(ω1) = (1)(2, 3)(4), τ(ω2) = (1, 3)(2)(4), τ(ω3) = (1, 4)(2)(3), τ(ω4) = 1. (4.4)

4.3. Mapping classes as rational transformations.

The trace identities yield rational representations of Gervais generators:

ω1∗(a, b, z, u, w) = (ab− z, b, a, bu− w, u), (4.5)

ω−1
1∗ (a, b, z, u, w) = (z, b, bz − a,w, bw − u), (4.6)

ω2∗(a, b, z, u, w) = (a, z, az − b, u, zu+ 2b− v), (4.7)

ω−1
2∗ (a, b, z, u, w) = (a, ab− z, b, u, aw − 2b− zu+ v), (4.8)

ω3∗(a, b, z, u, w) = (bu− w, b, u,−2bu+ uv − z,−2bw − bz + vw + a), (4.9)

ω−1
3∗ (a, b, z, u, w) = (−2z + st− w, b,−2bz + vz − u, z, bz − a), (4.10)

ω4∗(a, b, z, u, w) = (a, b, z, b(st− w)− zv + u,−2z − w + st), (4.11)

and

ω−1
4∗ (a, b, z, u, w) =

(
a, b, z,−4a+ b(w−st)+(t2−3)u+vz,−st+(t2−1)w−2z

)
, (4.12)

where t and v are given in (3.2) and (3.5). By the first equation in (3.8)

st =
u(abz − a2 − b2)− a(4 + wz)

b
+ 2w + 2z.

So each entry of (4.5)–(4.12) is a rational function of (a, b, z, u, w). We obtain (4.5)–(4.12)

as in the following way: Since ω1(A,B,C) = (AB−1, B, C),

ω1∗(a, b, z, u, w) =
(
trAB−1, trB, tr(AB−1)B, tr(AB−1)C, tr(AB−1)BC

)
= (ab− z, b, a, bu− w, u).

From this we obtain (4.6). Since ω2(A,B,C) = (A,BA,C),

ω2∗(a, b, z, u, w) =
(
a, z, trA(BA), u, trA(BA)C

)
.

From trC = −2, trBC = −v and the trace identity (I6),

trA(BA) = trAtrAB − trA−1BA = az − b,

trA(BA)C = trABtrAC − trBtrC + trBC = zu+ 2b− v.

Since ω−1
2 (A,B,C) = (A,BA−1, C),

ω−1
2∗ (a, b, z, u, w) =

(
a, trBA−1, trA(BA−1), u, trA(BA−1)C

)
.

We have trBA−1 = trBtrA−1 − trAB = ab− z and by (I5)

trA(BA−1)C = trAtrABC + trBtrC − trABtrAC − trBC = aw − 2b− zu+ v.
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Since ω3(A,B,C) = (B−1CA,B,C),

ω3∗(a, b, z, u, w) = (trB−1CA, b, u, trB−1CAC, trB−1CABC).

By using the trace identities, we have

trB−1CA = trBtrCA− trBCA = bu− w,

trB−1CAC = trB−1CtrAC − trBA = (−2b+ v)u− z,

trB−1CABC = trBCB−1CA = trBtrBC2A+ trCtrCA− trBCtrBCA− trC2A

= b(trCtrBCA− trAB)− 2u+ vw − (trCtrAC − trA)

= −2bw − bz + vw + a.

Since ω−1
3 (A,B,C) = (C−1BA,B,C),

ω−1
3∗ (a, b, z, u, w) = (trC−1BA, b, trC−1BAB, z, trC−1BABC).

By using (3.6) and the trace identities, we have

trC−1BA = trCtrAB − trCBA = −2z − (w − st),

trC−1BAB = trC−1BtrAB − trCA = (−2b+ v)z − u,

trC−1BABC = trAB2 = bz − a.

Since ω4(A,B,C) = (A,B,D), where D = C−1BAB−1A−1,

ω4∗(a, b, z, u, w) = (a, b, z, trAD, trABD).

By using the trace identities, we have

trAD = trBA−1B−1C = trAtrBB−1C − trBAB−1C

= −2a− (trBtrBAC + trAtrC − trBAtrBC − trAC)

= −b(w − st)− zv + u,

trABD = trA−1B−1C = trC−1BA = −2z − (w − st).

Since ω−1
4 (A,B,C) = (A,B,CDC−1),

ω−1
4∗ (a, b, z, u, w) = (a, b, z, trACDC−1, trABCDC−1).

By using the trace identities, we have

trACDC−1 = trCDC−1A = trCtrCDA+ trDtrA− trCDtrCA− trAD

= −2trBA−1B−1 − 2trA− tr[A,B]trAC − trBA−1B−1C

= −4a+ (t2 − 2)u− (trAtrBB−1C − trBAB−1C)

= −2a+ (t2 − 2)u+ (trBtrBAC + trAtrC − trBAtrBC − trAC)

= −4a+ (t2 − 2)u+ b(w − st) + zv − u,



1233(239)

Teichmüller space and the mapping class group of the twice punctured torus 1233

trABCDC−1 = trCDC−1AB = trCtrCDAB + trDtrAB − trCDtrCAB − trABD

= −2trA−1B−1 − 2trAB − tr[A,B]trABC − trA−1B−1C

= −4z + (t2 − 2)w − (trCtrAB − trACB)

= −4z + (t2 − 2)w − (−2z − (w − st)).

5. Mapping classes of finite order.

5.1. Mapping classes of finite order.

A mapping class ζ of finite order acts as a holomorphic automorphism on a Riemann

surface R homeomorphic to a twice punctured torus [6]. We define

ζ0 = ω1ω2ω3ω4ω3ω2ω1, ζ1 = ω1ω
−1
4 ω−1

3 , ζ2 = ω2
1ω2ω3,

ζ3 = ω1ω2ω3ω4, ζ4 = ω1ω2ω3, ζ5 = ω2ω3ω4.
(5.1)

In this section we complete the following table.

ζ order

ζ0 2 (0; 2, 2, 2, 2,∞) 1 +

ζ1 2 (1;∞) (1, 4)(2, 3) +

ζ2 3 (0; 3,∞,∞) (1, 4, 3)(2) −
ζ3 4 (0; 4, 4,∞) (1, 4, 2, 3) +

ζ4 4 (0; 2,∞,∞) (1, 4, 2, 3) −
ζ5 6 (0; 2, 6,∞) (1, 4, 3)(2) +

The third column of the table shows the orbifold type of R/⟨ζ⟩, or the signature of a

Fuchsian group K such that H/K = R/⟨ζ⟩. We will verify this in Section 5.2. The fourth

column shows the images under τ : MC → S4. This follows from (4.4). The sign (+) in

the fifth column means that ζ interchanges the two punctures and (−) means otherwise.

Note that among ω1, ω2, ω3 and ω4, only ω4 interchanges the punctures. The element

ζ0 satisfies ζ20 = 1 and belongs to the center of MC (see Section 5.2).

Lemma 5.1.

ζ0 = ζ35 , (5.2)

ζ1 = ω1ω
−1
2 ζ−2

3 ω2ω
−1
1 · ζ0 = ω−1

4 ω2ζ
−2
4 ω−1

2 ω4 · ζ0, (5.3)

ζ2 = ω−1
3 ω2

1ζ
2
5ω

−2
1 ω3. (5.4)

Proof. We obtain (5.2) by

ζ35 = ω2ω3ω4ω2ω3ω4ω2ω3ω4 = ω2ω3ω2ω4ω3ω4ω2ω3ω4

= ω3ω2(ω3ω4)
2ω2ω3ω4 = ω3ω2ω

2
1ω2ω3ω4 = ω3ω2ω1ζ0ω

−1
1 ω−1

2 ω−1
3

= ζ0.

In this calculation, to the underlined parts (4.1)–(4.3) are applied. The last equation is

due to the fact that ζ0 is in the center of MC. The equations of (5.3) follow from
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ζ23 = (ω1ω2ω3ω4)
2 = ζ0ω

−1
1 ω−1

2 ω−1
3 ω1ω2ω3ω4

= ω−1
1 ω−1

2 ω1 · ω−1
3 ω2ω3ω4ζ0 = ω2ω

−1
1 ω−1

2 · ω2ω3ω
−1
2 ω4ζ0

= ω2ω
−1
1 ω3ω4ω

−1
2 ζ0

= ω2ω
−1
1 ζ−1

1 ω1ω
−1
2 ζ0

and

ζ24 = ω1ω2ω3ω1ω2ω3 = ω1ω2ω1ω3ω2ω3 = ω1ω2ω1ω2ω3ω2

= ω2
1ω2ω1ω3ω2 = ω4ω3ω4ω3ω2ω1ω3ω2

= ω4ω
−1
2 ω−1

1 ζ0ω3ω2 = ω−1
2 ω4ω

−1
1 ω3ω2ζ0

= ω−1
2 ω4(ω3ω4ω

−1
1 )ω−1

4 ω2ζ0

= ω−1
2 ω4ζ

−1
1 ω−1

4 ω2ζ0.

We obtain (5.4) by

ζ25 = ω2ω3ω4ω2ω3ω4 = ω2ω3ω2ω4ω3ω4

= ω3ω2(ω3ω4)
2 = ω−2

1 ω2
1ω3ω2ω3ω

−1
3 ω2

1

= ω−2
1 ω3ζ2ω

−1
3 ω2

1 . □

5.2. Finite extensions of twice punctured torus groups.

We denote by T (g; ν1, ν2, . . . , νk) the Teichmüller space of the Fuchsian groups with

signature (g; ν1, ν2, . . . , νk) (2 ≤ ν1 ≤ ν2 ≤ · · · ≤ νk ≤ ∞). As before we write T =

T1,2 = T (1;∞,∞) and also T1,1 = T (1;∞) the Teichmüller space of the once punctured

torus. If g = 0 we write T (ν1, ν2, . . . , νk) instead of T (0; ν1, ν2, . . . , νk). The Teichmüller

space T (p, q, r) of a triangle group consists of a single point of the conjugacy class of

a Fuchsian group with presentation ⟨L,M,N : Lp = Mq = Nr = LMN = 1⟩. If, for

example, r = ∞, N in this notation is parabolic and we omit Nr = 1. We have an

identification

T (2, p,∞) = T (p, p,∞). (5.5)

We find the fixed point sets {x ∈ T : ζj(x) = x}. We take ζ2 = ω2
1ω2ω3 as an exam-

ple. The mapping class ζ2 sends (A,B,C) to (B−1A−1C−1, CA,C) (up to simultaneous

conjugation) and yields a rational mapping ζ2∗(a, b, z, u, w) = (w, u, b, z, b−1(buz − au−
zw − 4)). Solving the equations(

w, u, b, z,
buz − au− zw − 4

b

)
= (a, b, z, u, w)

and (3.9), we obtain a unique fixed point (a, b, z, u, w) = (5, 4, 4, 4, 5) of ζ2∗ and from

(3.8)

t =
√

abz − a2 − b2 − z2 + 4 = 3
√
3, s = 3

√
3.
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Substituting (a, b, z, w, s) = (5, 4, 4, 5, 3
√
3) to the matrix representation (3.10) we obtain

the fixed point of ζ2 represented by a canonical generating system (A,B,C) of a Fuchsian

group Γ1. (A, B and C in Section 5.2.3 below are replaced by their conjugates so that

their entries are integers.) Since (B−1A−1C−1, CA,C) differs from (A,B,C) by an inner

automorphism, there exists a matrix M ∈ SL(2,R) such that

B−1A−1C−1 = M−1AM, CA = M−1BM, C = M−1CM.

These equations determine M uniquely up to sign. We obtain an extension Γ2 of Γ1 by

adding M to it. In Section 5.2.3 we give also the signature and a canonical generating

system of Γ2. Similar arguments apply to other cases in Sections 5.2.1–5.2.6.

5.2.1. ζ0 = ω1ω2ω3ω4ω3ω2ω1.

Since ζ0 sends (A,B,C,D) to (A−1, B−1, B−1A−1DAB,A−1B−1CBA) induced

from the inner automorphism (E1, E2, E3, E4) → (E3E1E
−1
3 , E3E2E

−1
3 , E3E3E

−1
3 ,

E3E4E
−1
3 ) of the group with signature (2, 2, 2, 2,∞), we see that ζ20 = 1, ζ0 belongs

to the center of MC and fixes all points of T ([4], [15]). The map

ι : (E1, E2, E3, E4, D) → (A,B,C) = (E1E3, E3E2, E3E2E1E4) (5.6)

in Theorem 2.1 gives a homeomorphism ι : T (2, 2, 2, 2,∞)
∼=−→ T1,2.

5.2.2. ζ1 = ω1ω
−1
4 ω−1

3 .

We show the following inclusions

T (2, 2, 2,∞)
ι1−→∼= T1,1

ι2 ∩ ι3 ∩
T (2, 2, 2, 2,∞)

ι−→∼= T1,2
(5.7)

with the embeddings

(S, T, U, V )
ι1−→ (P,Q,R) = (SU,−UT,−V 2)

ι2 ↓ (5.8)

(E1, E2, E3, E4, D) = (S, TUT,U, V TU,−V 2),

(P,Q,R)
ι3−→ (A,B,C,D) = (P,Q2, QRQ−1, R) (5.9)

and ι as in (5.6). As is well known, the Teichmüller space T1,1 is identified with

M =
{
(x, y, z) : x, y, z > 2, x2 + y2 + z2 = xyz

}
by the map

(P,Q,R) 7→ (x, y, z) = (trP, trQ, trPQ)
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and also identified with T (2, 2, 2,∞) by ι1 ([17], [4], [15]). The point of T (2, 2, 2,∞)

associated to (x, y, z) ∈ M is the conjugacy class of (S, T, U, V ) such that

S =

(
0 −1

1 0

)
,

T =
1√

x2 − 4

(
2 y − z(x−

√
x2 − 4)/2

y − z(x+
√
x2 − 4)/2 −2

)
,

U =

(
0 (x−

√
x2 − 4)/2

−(x+
√
x2 − 4)/2 0

)
,

V =
1√

x2 − 4

(
x−

√
x2 − 4 (xy − 2z − y

√
x2 − 4)/2

(xy − 2z + y
√
x2 − 4)/2 −x−

√
x2 − 4

)
.

(5.10)

The conjugacy class of (E1, E2, E3, E4) = (S, TUT,U, V TU) is a point of T (2, 2, 2, 2,∞).

Compare this and (2.7). The point of T1,1 associated to (x, y, z) ∈ M is the conjugacy

class of (P,Q,R) = (SU,−UT,−V 2) with

P =

(
(x+

√
x2 − 4)/2 0

0 (x−
√
x2 − 4)/2

)
,

Q =
1√

x2 − 4

(
z − y(x−

√
x2 − 4)/2 x−

√
x2 − 4

x+
√
x2 − 4 −z + y(x+

√
x2 − 4)/2

)
,

R =
1√

x2 − 4

(
2x−

√
x2 − 4 xy − 2z − y

√
x2 − 4

xy − 2z + y
√
x2 − 4 −2x−

√
x2 − 4

)
.

(5.11)

Since the action of ζ1(A,B,C,D) = (C−1BAB−1, B,BDB−1, C) restricted to ι3(T1,1) is

ζ1(ι3(P,Q,R)) = Q(P,Q2, QRQ−1, R)Q−1 = Qι3(P,Q,R)Q−1,

ζ1 fixes each point of ι3(T1,1). If we identify T1,1 with M and T1,2 with Φu(T1,2), ι3(x, y, z)
is expressed by

(a, b, z, u, w) = ι3(x, y, z) = (trP, trQ2, trPQ2, trPQRQ−1, trPQ3RQ−1)

= (x, y2 − 2, yz − x, 4yz − 3x, 3x− 4xy2 − 7yz + 4y3z).

But if we replace ι3 by ω4∗ι3, then ι3 has a simpler form

ι3(x, y, z) = (x, y2 − 2, yz − x, x, yz − x)

and, if we identify T1,2 with Φs(T1,2), from (3.8) the s-coordinate is 2z.

Remark. The triangle group G(2, 4,∞) = ⟨L,M,N : L2 = M4 = LMN = 1⟩ has
a matrix representation such that
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L =

(
0 −1

1 0

)
, M =

(
1/
√
2 −1 + 1/

√
2

1 + 1/
√
2 1/

√
2

)
,

N =

(
−1 + 1/

√
2 1/

√
2

−1/
√
2 −1− 1/

√
2

)
.

(5.12)

Let S = L, T = M3LM and U = −M2. Then S, T and U are all elliptic of order 2 and

STU = −S−1N2S is parabolic with trace −2. The map ι4(L,M,N) = (S, T, U) gives

an embedding ι4 : T (2, 4,∞) = T (4, 4,∞) → T (2, 2, 2,∞).

The triangle group G(2, 3,∞) = ⟨L,M,N : L2 = M3 = LMN = 1⟩ has a matrix

representation such that

L =

(
0 −1

1 0

)
, M =

(
−(5 +

√
5)/10 (−5 +

√
5)/5

(5 +
√
5)/5 (−5 +

√
5)/10

)
,

N =

(
−1 +

√
5/5 −(5−

√
5)/10

(5 +
√
5)/10 −1−

√
5/5

)
.

Let S = L, T = −MLM−1 and U = −M2LM−2. Then S, T and U are all elliptic of

order 2 and STU = N−3 is parabolic with trace −2. The map ι5(L,M,N) = (S, T, U)

gives an embedding ι5 : T (2, 3,∞) = T (3, 3,∞) → T (2, 2, 2,∞).

5.2.3. ζ2 = ω2
1ω2ω3.

The triangle group G(3,∞,∞) = ⟨L,M,N : L3 = LMN = 1⟩ has a matrix repre-

sentation such that

L =

(
−8 19

−3 7

)
, M =

(
−1 1

0 −1

)
, N =

(
−10 27

−3 8

)
.

Let A = M2L, B = L−2M−1 and C = M−3. Then

A =

(
−2 5

−3 7

)
, B =

(
8 −11

3 −4

)
, C =

(
−1 −3

0 −1

)
, (5.13)

and Γ = ⟨A,B,C⟩ is a twice punctured torus group with

D = C−1BAB−1A−1 =

(
−1 0

9 −1

)
.

The mapping class ζ2 sends (A,B,C) to (B−1A−1C−1, CA,C). The inner automorphism

under conjugation by M yields B−1A−1C−1 = M−1AM , CA = M−1BM and C =

M−1CM . Hence (A,B,C) is a fixed point of ζ2. The map ι6(L,M,N) = (A,B,C) gives

an embedding ι6 : T (3,∞,∞) → T1,2.
Since Γ ⊂ SL(2,Z), x1 = (trA, trB, trAB, trAC, trABC) = (5, 4, 4, 4, 5) and hence

all points of the MC-orbit of x1 are positive integer solutions of the equation (3.9).
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5.2.4. ζ3 = ω1ω2ω3ω4.

If L,M,N are the matrices in (5.12), then (L−1ML,M,−N2) is a canonical gener-

ating system of a triangle group with signature (0; 4, 4,∞). However, instead of it, we

consider the triangle group G(4, 4,∞) = ⟨L,M,N : L4 = M4 = LMN = 1⟩, where

L =

(
4
√
2 −5

√
2

5/
√
2 −3

√
2

)
, M =

( √
2 −

√
2

1/
√
2 0

)
, N =

(
−5 8

−2 3

)
.

The group Γ generated by A = ML−1, B = M−1L and C = M3LMLM2, where

A =

(
−1 2

−3 5

)
, B =

(
5 −6

1 −1

)
, C =

(
−1 −8

0 −1

)
,

is a twice punctured torus group with

D = C−1BAB−1A−1 =

(
−1 0

4 −1

)
.

The mapping class ζ3 sends (A,B,C) to (B−1, DA,D). The inner automorphism under

conjugation by M yields B−1 = M−1AM , DA = M−1BM and D = M−1CM . Hence

(A,B,C) is a fixed point of ζ3. The map ι7(L,M,N) = (A,B,C) gives an embedding

ι7 : T (4, 4,∞) → T1,2.
Since Γ ⊂ SL(2,Z), x2 = (trA, trB, trAB, trAC, trABC) = (4, 4, 10, 20, 70) and

hence all points of the MC-orbit of x2 are positive integer solutions of the equation

(3.9).

5.2.5. ζ4 = ω1ω2ω3.

The triangle group G(2,∞,∞) = ⟨L,M,N : L2 = LMN = 1⟩ has a matrix repre-

sentation such that

L =

(
1 −1

2 −1

)
, M =

(
−1 −1

0 −1

)
, N =

(
−1 0

2 −1

)
.

Let A = L−1M−2, B = M3LM−1 and C = −M4. Then

A =

(
−1 3

−2 5

)
, B =

(
7 −11

2 −3

)
, C =

(
−1 −4

0 −1

)
,

and Γ = ⟨A,B,C⟩ is a twice punctured torus group with

D = C−1BAB−1A−1 =

(
−1 0

8 −1

)
.

The mapping class ζ4 sends (A,B,C) to (B−1, CA,C). The inner automorphism under

conjugation by M−1 yields B−1 = MAM−1, CA = MBM−1 and C = MCM−1. Hence

(A,B,C) is a fixed point of ζ4. The map ι8(L,M,N) = (A,B,C) gives an embedding

ι8 : T (2,∞,∞) = T (∞,∞,∞) → T1,2.
Since Γ ⊂ SL(2,Z), x3 = (trA, trB, trAB, trAC, trABC) = (4, 4, 6, 4, 10) and hence

all points of the MC-orbit of x3 are positive integer solutions of the equation (3.9).
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5.2.6. ζ5 = ω2ω3ω4.

The triangle group G(2, 6,∞) = ⟨L,M,N : L2 = M6 = LMN = 1⟩ has a matrix

representation such that

L =

(
0 −1/

√
3√

3 0

)
, M =

(√
3 −1/

√
3√

3 0

)
, N =

(
−1 0

−3 −1

)
.

Let A = M−1L−1M−1LM2, B = ML−1M2 and C = (ML)3. Then

A =

(
−2 1

−15 7

)
, B =

(
5 −2

3 −1

)
, C =

(
−1 −3

0 −1

)
,

and Γ = ⟨A,B,C⟩ is a twice punctured torus group with

D = C−1BAB−1A−1 = (LM)3 =

(
−1 0

9 −1

)
.

The mapping class ζ5 sends (A,B,C) to (B−1DA,DA,D). The inner automorphism

under conjugation by M yields B−1DA = M−1AM , DA = M−1BM and D = M−1CM .

Hence (A,B,C) is a fixed point of ζ5.

Let P = M−2, Q = M2L−1M−1 and R = (PQ)−1 = ML. Then (P,Q,R) is a

canonical generating system of a triangle group with signature (3,∞,∞). So we can

identify T (2, 6,∞) with T (3,∞,∞).

Remark. As a point of T , (A,B,C,D) is sent by ω4ω
−1
2 to the point given in

(5.13). More precisely, if

(Ã, B̃, C̃, D̃) = (A,BA−1, D,D−1CD) = ω4ω
−1
2 (A,B,C,D),

and

U =

(
0 1/

√
3

−
√
3 3

√
3

)
,

then (U−1ÃU, U−1B̃U, U−1C̃U, U−1D̃U) is identical with (A,B,C,D) in (5.13).

6. Examples.

6.1. Isometric spheres.

The matrix representations (3.10) can be extended to SL(2,C). Using (3.10) or

their conjugates in SL(2,C) we show some examples of Kleinian groups. We identify a

matrix

A =

(
a b

c d

)
of SL(2,C) with the Möbius transformation
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A(z) =
az + b

cz + d
.

The matrix A acts also on the 3-dimensional hyperbolic space H3 = {ζ = z + tj : t > 0}
(in the space of quaternions) by the Poincaré extension (see Beardon [1, Chapter 4]). Its

action can be described by

A(z + jt) =
(az + b)(cz + d) + ac̄t2 + tj

|cz + d|2 + |c|2t2

[1, (4.1.4)]. If c ̸= 0, we denote by I(A) the isometric sphere of A, the Euclidean sphere

with center −d/c and radius 1/|c|. Isometric spheres have following properties:

(1) A(I(A)) = I(A−1).

(2) It holds that

I(M1AM2) = I(AM2) = M−1
2 (I(A)) (6.1)

for Euclidean motions

M1 =

(
α1 µ1

0 β1

)
, M2 =

(
α2 µ2

0 β2

)
,

∣∣∣∣α1

β1

∣∣∣∣ = ∣∣∣∣α2

β2

∣∣∣∣ = 1.

6.2. The Poincaré polyhedron theorem.

The Poincaré polyhedron theorem provides conditions for a polyhedron D in H3 to

be a fundamental domain of a Kleinian group. Assume that for each side s of D there is

a side s′ of D and gs ∈ PSL(2,C) satisfying
(i) gs(s) = s′.

(ii) gs′ = g−1
s .

(iii) gs(D) ∩D = ∅.
This gs is called a side pairing transformation. Let D̄ denote the closure of D in H3. For

two points z and w of D̄, define an equivalence relation z ∼ w by that z = w or there

is a side pairing transformation g such that g(z) = w. Let p : D̄ → D∗ = D̄/ ∼ be the

projection to the quotient space. The fourth condition is:

(iv) For each z ∈ D∗, p−1(z) is a finite set.

Let e1, e2, . . . , ek be distinct edges of D. Assume that ej is on the boundary of two sides

sj and s′j ofD and that a side-pairing transformation gj sends s
′
j to sj+1 for i = 1, 2, . . . , k

with sk+1 = s1. Then σ = {e1, e2, . . . , ek} is called a cycle of edges and h = gk ◦ · · · ◦ g1
the cycle transformation. The next condition is

(v) For each cycle transformation h, there is a positive integer t such that ht = 1.

For an edge e, let α(e) be the dihedral angle at e measured from inside D. For a cycle

of edges σ = {e1, e2, . . . , ek}, let α(σ) = α(e1) + α(e2) + · · · + α(ek). Then we need the

following condition

(vi) For each cycle of edges σ, α(σ) =
∑k

m=1 α(em) = 2π/t for some positive

integer t.

The last condition is

(vii) D∗ is complete.



1241(247)

Teichmüller space and the mapping class group of the twice punctured torus 1241

Let x = x1, x2, . . . , xk be points in C̄ = C ∪ {∞} such that (a) two sides sj and s̃j of D

are tangent at xj , (b) s̃j+1 = gsj (sj) and (c) xj+1 = gsj (xj), where xk+1 = x1. Then x

is called an infinite edge and h = gk ◦ · · · ◦ g1 the infinite cycle transformation at x. If D

is finite sided and every infinite cycle transformation at every infinite edge is parabolic,

then we can omit condition (vii) because it is a consequence of conditions (i)–(vi) ([8,

Proposition IV.I.6]).

Theorem 6.1 (the Poincaré polyhedron theorem [8, Theorem IV.H.11]). If con-

ditions (i)–(vii) are satisfied, then the group G generated by side pairing transformations

is a discrete group, that is, a Kleinian group and D is a fundamental domain for G.

In the following, we let S(a, r) denote the sphere {ζ : |ζ − a| = r}. If E ∈ SL(2,C)
is elliptic, its fixed point set Fix(E) is a hyperbolic line in H3.

6.3. Examples.

Example 1. We consider the mapping class φ1 = ω2ω
−1
3 ω1ω2:

(A,B,C,D) →
(
C−1BAB−1, BA(C−1BAB−1), C, C−1BADA−1B−1C

)
.

Let G1 be the group generated by

A =

(
i −i√
3− i −

√
3

)
, B =

(
2
√
3 + i −(1/2)(

√
3 + 3i)√

3 + i −i

)
,

C =

(
−1 −2

0 −1

)
, D =

(
−1 0

−2(1 +
√
3i) −1

)
.

These matrices satisfy ABA−1B−1CD = I, where I is the unit matrix. Let

M =

(
−1 −ω

0 −1

)
, ω =

1

2
(−1 +

√
3i). (6.2)

Then

M−1AM = C−1BAB−1, M−1BM = BAC−1BAB−1,

M−1CM = C, M−1DM = C−1BADA−1B−1C.
(6.3)

Let Γ1 = ⟨M⟩ ⋉ G1 be the group defined by (6.3). We list isometric spheres of some

elements of Γ1 and some planes orthogonal to the complex plane:



1242(248)

1242 T. Nakanishi

I(A−1) = S

(
ω

2
,
1

2

)
, I(A) = S

(
ω

2
+ 1,

1

2

)
,

I(MB) = S

(
ω

2
+

1

2
,
1

2

)
, I(B−1M−1) = S

(
ω

2
+

3

2
,
1

2

)
,

I(CA) = S

(
ω

2
+ 1,

1

2

)
, I(A−1C−1) = S

(
ω

2
+ 2,

1

2

)
,

I(MBA−1) = S

(
ω +

1

2
,
1

2

)
, I(AB−1M−1) = S

(
ω +

3

2
,
1

2

)
I(BA−1M) = S

(
1

2
,
1

2

)
, I(M−1AB−1) = S

(
3

2
,
1

2

)
,

I(C) = {ζ = z + jt : Im (zω̄) = 0}, I(C−1) =
{
ζ = z + jt : Im ((z − 1)ω̄) = 0

}
,

I(M) = {ζ = z + jt : Im z = 0}, I(M−1) = {ζ = z + jt : Im z = Im ω}.

(6.4)

Note that I(C) is the vertical plane passing through 0 and ω, I(M) is the vertical plane

passing through 0 and 2, I(C−1) = C(I(C)) and I(M−1) = M(I(M)). For convenience,

we refer to them as the isometric spheres of C, M , C−1 and M−1, respectively. Let R
denote the region bounded by these isometric spheres. Figure 6.1 depicts the faces of R.

We denote by si the face labeled as in Figure 6.1:

s1 ⊂ I(A−1), s2 ⊂ I(MB), s3 ⊂ I(A), s4 ⊂ I(A) = I(CA),

s5 ⊂ I(MB−1M−1), s6 ⊂ I(A−1C−1), s7 ⊂ I(MBA−1), s8 ⊂ I(AB−1M−1),

s9 ⊂ I(BA−1M), s10 ⊂ I(M−1AB−1), s11 ⊂ I(C), s12 ⊂ I(C−1),

s13 ⊂ I(M), s14 ⊂ I(M), s15 ⊂ I(M−1), s16 ⊂ I(M−1).

Side-pairings of R are as follows:

{s1, s3;A−1}, {s2, s5;MB}, {s4, s6;CA}, {s7, s8;MBA−1},
{s9, s10;BA−1M}, {s11, s12;C}, {s13, s15;M}, {s14, s16;M}.

Here {si, sj , P} means P (si) = sj . The subgroup generated by the side pairing transfor-

mations equals Γ1, since B = M−1(MB).

Figure 6.1. A bird’s-eye view of isometric spheres (left). Faces s11, s12, . . . ,

s16 are on vertical planes.

We define Euclidean motions
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S =

(
1 1

0 1

)
, T =

(
−i (2 + ω)i

0 i

)
, U =

(
−i (1 + ω)i

0 i

)
.

Then we have

SAS−1 = A−1C−1, SBS−1 = M−1CB−1M−1, SCS−1 = C, SMS−1 = M,

TAT−1 = CA, TBT−1 = AB−1CA, TCT−1 = C−1, TMT−1 = M−1,

UAU−1 = A−1, UBU−1 = MC−1MB, UCU−1 = C−1, UMU−1 = M−1.

Thus SΓ1S
−1 = TΓ1T

−1 = UΓ1U
−1 = Γ1 and hence Γ1 is invariant under the translation

S(z) = z + 1, the rotation T (z) = −z + (2 + ω) about 1 + ω/2 through the angle π and

the rotation U(z) = −z + (1 + ω) about (1 + ω)/2 through the angle π. This accounts

for symmetries shown in Figure 6.1.

We will find cycles of edges. Let si,j = sj,i be the common edge of si and sj . For

example, σ1 = {s2,1, s3,9, s10,5} is a cycle of R. Since A−1(s1) = s3, BA−1M(s9) = s10
and B−1M−1(s5) = s2, the cycle transformation is B−1M−1 ◦ BA−1M ◦ A−1, which

equals 1 by (6.3). We identify two cycles σ and σ′ if σ′ is a cyclic permutation of σ or of

σ with reversed order. Then all cycles of edges and cycle transformations of R are

σ1 = {s2,1, s3,9, s10,5}, B−1M−1 ◦BA−1M ◦A−1 = 1,

σ2 = {s2,9, s10,6, s4,5}, B−1M−1 ◦A−1C−1 ◦BA−1M = 1,

σ3 = {s5,6, s4,8, s7,2}, MB ◦AB−1M−1 ◦A−1C−1 = 1,

σ4 = {s5,8, s7,1, s3,2}, MB ◦A−1 ◦AB−1M−1 = 1,

σ5 = {s1,11, s12,6, s4,3}, A ◦A−1C−1 ◦ C = 1,

σ6 = {s9,13, s15,7, s8,16, s14,10}, M−1AB−1 ◦M−1 ◦MBA−1 ◦M = 1.

Note that σ1 and σ3 are equivalent under T and so are σ2 and σ4.

The condition (vi) in Section 6.2 is satisfied by each cycle since

α(σ1) = α(s1,2) + α(s3,9) + α(s10,5) = 2π/3 + 2π/3 + 2π/3 = 2π,

α(σ5) = α(s1,11) + α(s12,6) + α(s4,3) = π/2 + π/2 + π = 2π,

α(σ6) = α(s9,13) + α(s15,7) + α(s8,16) + α(s14,10) = π/2 + π/2 + π/2 + π/2 = 2π,

and that α(σ2) = α(σ3) = α(σ4) = 2π follows from α(σ1) = 2π and the symmetries

S, T and U . Since R has finitely many sides, the other conditions (i) through (vi) in

Section 6.2 are satisfied. The condition (vii) is satisfied by Proposition IV.I.6 in [8].

The Poincaré polyhedron theorem concludes that Γ1 is a Kleinian group and has R as a

fundamental polyhedron.

Example 2. We consider φ2 = ω2
2ω

−1
3 ω1ω

2
2 :

(A,B,C,D) → (C−1BAB−1, BA2(C−1BAB−1)2, C, C−1BA2DA−2B−1C).

Let a be a root of a6 − 4a4 +16 = 0 such that a = (−1.721433 · · · )+ (0.352201 · · · )i. We

have a4 − 2a2 − 4 = ia3. Let G2 be the group generated by
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A =

(
(1/8)a3(a2 − 2) −(1/16)a3(a2 − 2)

−2a −(1/8)a(a− 2)(a+ 2)(a2 + 2)

)
,

B =

(
−(1/8)ia(a4 + 6a2 − 8) −(1/16)ia(a4 − 4a2 − 8)

−ia3 −(1/8)ia(a− 2)(a+ 2)(a2 + 2)

)
,

C =

(
−1 −1

0 −1

)
, D =

(
−1 0

a4 − 8 −1

)
.

If

M =

(
1 ω

0 1

)
,

where

ω =
1

8
a2(2− a2), (6.5)

then

M−1AM = C−1BAB−1, M−1BM = BA2(C−1BAB−1)2,

M−1CM = C, M−1DM = C−1BA2DA−2B−1C.
(6.6)

Figure 6.2. A bird’s-eye view of isometric spheres (left).

Let Γ2 = ⟨M⟩⋉G2 be the group defined by (6.6). We define Euclidean motions

S =

(
1 1/2

0 1

)
, T =

(
−i (1 + ω)i

0 i

)
, U =

(
−i (1/2 + ω)i

0 i

)
.

Then we have

SAS−1 = A−1C−1, SBS−1 = M−1CB−1M−1, SCS−1 = C, SMS−1 = M,

TAT−1 = CA, TBT−1 = A2B−1(CA)2, TCT−1 = C−1, TMT−1 = M−1,

UAU−1 = A−1, UBU−1 = M2C−1B, UCU−1 = C−1, UMU−1 = M−1

and thus SΓ2S
−1 = TΓ2T

−1 = UΓ2U
−1 = Γ2. Hence Γ2 is invariant under the transla-

tion S(z) = z+1/2, the rotation T (z) = −z+(1+ω) about (1+ω)/2 through the angle
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π and the rotation U(z) = −z + (1/2 + ω) about (1/2 + ω)/2 through the angle π. This

accounts for symmetries shown in Figure 6.2.

Let R denote the region bounded by the isometric spheres

I(A−1) = S

(
ω

2
,

1

2|a|

)
, I(A) = S

(
ω + 1

2
,

1

2|a|

)
,

I(A−1C−1) = S

(
ω

2
+ 1,

1

2|a|

)
, I(BA−2) = S

(
ω +

1

4
,
1

4

)
,

I(MA2B−1M−1) = S

(
ω +

3

4
,
1

4

)
, I(M−1BA−2M) = S

(
1

4
,
1

4

)
,

I(A2B−1) = S

(
3

4
,
1

4

)
, I(BA−1) = S

(
3a2 − a4

8
,

2

|a|4

)
,

I(AB−1M−1) = S

(
4 + 3a2 − a4

8
,

2

|a|4

)
, I(MBA) = S

(
4− a2

8
,

2

|a|4

)
,

I(A−1B−1M−1) = S

(
8− a2

8
,

2

|a|4

)
, I(B) = S

(
ω

2
+

1

4
,

1

|a|3

)
,

I(MB−1M−1) = S

(
ω

2
+

3

4
,

1

|a|3

)
and the planes orthogonal to the complex plane

I(C) =
{
z + tj : Im (zω̄) = 0

}
, I(C−1) =

{
z + tj : Im ((z − 1)ω̄) = 0

}
,

I(M) =
{
z + tj : Im (z) = 0

}
, I(M−1) =

{
z + tj : Im (z − ω) = 0

}
.

For convenience we call I(C) the isometric sphere of C, and so on. Since

SMBAS−1 = CB−1M−1A−1C−1, TMBAT−1 = AB−1M−1,

UMBAU−1 = MC−1BA−1,

we have

S(I(MBA)) = I(B−1M−1A−1), T (I(MBA)) = I(AB−1M−1),

U(I(MBA)) = I(BA−1).

The faces si of R labeled as in Figure 6.2 are:

s1 ⊂ I(A−1), s2 ⊂ I(A), s3 ⊂ I(A) = I(CA), s4 ⊂ I(A−1C−1),

s5 ⊂ I(BA−2), s6 ⊂ I(MA2B−1M−1), s7 ⊂ I(M−1BA−2M), s8 ⊂ I(A2B−1),

s9 ⊂ I(BA−1), s10 ⊂ I(AB−1M−1), s11 ⊂ I(MBA), s12 ⊂ I(A−1B−1M−1),

s13 ⊂ I(B), s14 ⊂ I(MB−1M−1), s15 ⊂ I(C), s16 ⊂ I(C−1),

s17 ⊂ I(M), s18 ⊂ I(M), s19 ⊂ I(M−1), s20 ⊂ I(M−1).

Side-pairings of R are:
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{s1, s2;A−1}, {s3, s4;CA}, {s5, s6;MBA−2}, {s7, s8;BA−2M},
{s9, s10;MBA−1}, {s11, s12;MBA}, {s13, s14;MB}, {s15, s16;C},
{s17, s19;M}, {s18, s20;M}.

Here again {si, sj , P} means P (si) = sj . Let si,j = sj,i be the common edge of si and

sj . The cycles of edges and cycle transformations of R are

σ1 = {s7,11, s12,3, s4,8}, M−1A2B−1 ◦ CA ◦MBA = 1,

σ2 = {s1,11, s12,8, s7,2}, A ◦M−1A2B−1 ◦MBA = 1,

σ3 = {s10,6, s5,1, s2,9}, MBA−1 ◦A−1 ◦A2B−1M−1 = 1,

σ4 = {s4,10, s9,5, s6,3}, CA ◦MBA−2 ◦AB−1M−1 = 1,

σ5 = {s11,13, s14,3, s4,12}, A−1B−1M−1 ◦ CA ◦MB = 1,

σ6 = {s2,13, s14,10, s9,1}, A−1 ◦AB−1M−1 ◦MB = 1,

σ7 = {s9,13, s14,4, s3,10}, AB−1M−1 ◦A−1C−1 ◦MB = 1,

σ8 = {s1,13, s14,12, s11,2}, A ◦A−1B−1M−1 ◦MB = 1,

σ9 = {s1,15, s16,4, s3,2}, A ◦A−1C−1 ◦ C = 1,

σ10 = {s7,17, s19,5, s6,20, s18,8}, M−1A2B−1 ◦M−1 ◦MBA−2 ◦M = 1.

We will verify that each cycle satisfies the condition (vi) in Section 6.2. Let S1 = {ζ :

|ζ − c1| = r1} and S2 = {ζ : |ζ − c2| = r2} be two spheres with c1, c2 ∈ C and D be

the region {ζ : |ζ − c1| > r1, |ζ − c2| > r2}. If S1 and S2 meets, then the dihedral angle

between them measured from inside D is π − arg Φ(S1, S2), where

Φ(S1, S2) = r21 + r22 − d2 +
√
∆(d, r1, r2), (6.7)

with d = |c1 − c2| and

∆(d, r1, r2) = (d+ r1 + r2)(d− r1 + r2)(d+ r1 − r2)(d− r1 − r2).

For the cycle σ1,

α(s7,11) = π − arg Φ
(
I(M−1BA−2M), I(MBA)

)
,

α(s12,3) = π − arg Φ
(
I(A−1B−1M−1), I(CA)

)
,

α(s4,8) = π − arg Φ
(
I(A−1C−1), I(A2B−1)

)
.

If S1 = I(M−1BA−2M) and S2 = I(MBA), then d = |a2 − 2|/8 = 1/|a|3, since a2 − 2 =

8i/a3, r1 = 1/4 and r2 = 2/|a|4, and hence

Φ1 = Φ
(
I(M−1BA−2M), I(MBA)

)
=

1

16x8

(
x8 + 43 − 42x2 +

√
∆
)
,

where x = |a| and

∆ = (x− 2)(x+ 2)(x3 − 2x2 + 4x− 4)(x3 + 2x2 + 4x+ 4)(x4 − 4x+ 8)(x4 + 4x+ 8).
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If S1 = I(A−1B−1M−1) and S2 = I(A), then d = |a4 − 4a2 + 8|/16 = 4/|a|5, since
a4 − 4a2 + 8 = 64i/a5, r1 = 2/|a|4 and r2 = 1/(2|a|), and hence

Φ2 = Φ
(
I(A−1B−1M−1), I(A)

)
=

1

4x10

(
x8 − 43 + 42x2 +

√
∆
)
.

If S1 = I(A−1C−1) and S2 = I(A2B−1), then d = |a4 − 2a2 − 4|/16 = |a|3/16, since
a4 − 2a2 − 4 = ia3, r1 = 1/2|a| and r2 = 1/4, and hence

Φ3 = Φ
(
I(A−1C−1), I(A2B−1)

)
=

1

16x2

(
−x8 + 43 + 42x2 +

√
∆
)
.

Therefore arg(Φ1Φ2Φ3) = arg(−213x10) = π and we have

α(σ1) = 3π − arg(Φ1Φ2Φ3) = 2π.

By using the symmetries S, T and U we have also α(σ2) = α(σ3) = α(σ4) = 2π.

For the cycle σ5,

α(s11,13) = π − arg Φ
(
I(MBA), I(B)

)
,

α(s14,3) = π − arg Φ
(
I(MB−1M−1), I(CA)

)
,

α(s4,12) = π − arg Φ
(
I(A−1C−1), I(A−1B−1M−1)

)
.

If S1 = I(MBA) and S2 = I(B), then d = |a2 − 2|2/16 = 4/|a|6, since a2 − 2 = 8i/a3,

r1 = 2/|a|4 and r2 = 1/|a|3, and hence

Φ1 = Φ
(
I(MBA), I(B)

)
=

1

x12

(
−42 + 4x4 + x6 +

√
∆
)
,

where x = |a| and

∆ = (−4− 2x2 + x3)(4− 2x2 + x3)(−4 + 2x2 + x3)(4 + 2x2 + x3).

If S1 = I(MB−1M−1) and S2 = I(CA), then d = 1/4, r1 = 1/|a|3 and r2 = 1/(2|a|),
and hence

Φ2 = Φ
(
I(MB−1M−1), I(CA)

)
=

1

42x6

(
42 + 4x4 − x6 +

√
∆
)
.

If S1 = I(A−1C−1) and S2 = I(A−1B−1M−1), then d = |4a2 − a4|/16 = 1/|a|2, since
a2 − 4 = −16/a4, r1 = 1/2|a| and r2 = 2/|a|4, and hence

Φ3 = Φ
(
I(A−1C−1), I(A−1B−1M−1)

)
=

1

4x8

(
42 + x6 − 4x4 +

√
∆
)
.

Therefore arg(Φ1Φ2Φ3) = arg(−8x−16) = π and we have

α(σ5) = 3π − arg(Φ1Φ2Φ3) = 2π.

By using the symmetries we have also α(σ6) = α(σ7) = α(σ8) = 2π. For the cycles σ9
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and σ10,

α(σ9) = α(s1,15) + α(s16,4) + α(s3,2) = π/2 + π/2 + π = 2π,

and

α(σ10) = α(s7,17) + α(s19,5) + α(s6,20) + α(s18,8) = π/2 + π/2 + π/2 + π/2 = 2π.

(Note that s15, s16, . . . , s20 are planes vertical to C.) By the Poincaré polyhedron the-

orem we conclude that the subgroup generated by the side-pairing transformations is

a Kleinian group. Since C, CA, M and MB are side-pairing transformations and

A = C−1(CA), B = M−1(MB), this group coincides with Γ2.

Example 3. Let

A =

(
−1 2i

2i 3

)
, B =

(
3i 2− i

2 + i −2i

)
,

C =

(
−1 −1

0 −1

)
, D =

(
−1 + 2i 1

4 −1− 2i

)
.

The group Γ3 generated by A,B and C is a subgroup of PSL(2,Z[i]) and hence a Kleinian

group. Besides C and D, the matrices A,

BA−1B−1 =

(
3− 2i −4

−2i −1 + 2i

)
and CD = [B,A] =

(
−3− 2i 2i

−4 1 + 2i

)
are also parabolic. Although ABA−1B−1CD = I holds, Γ3 is not a faithful representa-

tion of the twice punctured torus group, for B2AC and BABC are elliptic of order 2.

Let

M =

(√
2 −i

√
2

0 1/
√
2

)
and replace γ ∈ Γ3 by MγM−1. So

A =

(
1 0

i 1

)
, B =

(
1 + i −2

1 + i/2 −1

)
,

C =

(
−1 −2

0 −1

)
, D =

(
−1− 2i 2

2 −1 + 2i

)
.

Let ℓ1 be the imaginary axis, ℓ2 the vertical line through 1 and ℓ3 the real axis. The

limit set of Γ3 is symmetric in the lines ℓ1, ℓ2 and ℓ3. To see this, let R1(z) = −z̄,

R2(z) = −z̄ + 2 and R3(z) = z̄ be the reflections in ℓ1, ℓ2 and ℓ3, respectively. If

M =
(
a b
c d

)
, the Möbius transformations Jk(M) = Rj ◦ M ◦ R−1

j for j = 1, 2, 3 is

represented by

J1(M) =

(
ā −b̄

−c̄ d̄

)
, J2(M) =

(
ā− 2c̄ −2ā− b̄+ 4c̄+ 2d̄

−c̄ 2c̄+ d̄

)
,
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−2i

2i

−1 1
0

Figure 6.3. A part of the limit set of Γ3.

J3(M) =

(
ā b̄

c̄ d̄

)
.

We have

J1(A) = A, J1(B) = C−1A−1B−1C, J1(C) = C−1,

J2(A) = BAB−1, J2(B) = A−1B−1, J2(C) = C−1,

and

J3(A) = A−1, J3(B) = CAC−1B, J3(C) = C.

Hence Γ3 is invariant under J1, J2 and J3. Let

N =

(
1/

√
2 −i

√
2

0
√
2

)
.

Then

NB2ACN−1 =

(
0 1

−1 0

)
, NCN−1 =

(
−1 −1

0 −1

)
.

Thus the subgroup K1 = ⟨B2A,C⟩ is a conjugate of the modular group Γ0 = PSL(2,Z)
in PSL(2,C), and so is the subgroup K2 = ⟨BAB,C⟩ = J1J3(K1). The region of

discontinuity of K1 is the union of Ω+(K1) = {z : Im (z) > 2} and its reflection in the

line Im z = 2, and that of K2 is the union of Ω−(K2) = {z : Im (z) < −2} and its

reflection in the line Im z = −2. Figure 6.4 shows orthogonal projections of isometric

spheres:

I(B2AC) = S(2i, 2), I(BABC) = S(−2i, 2),

I(B2AB) = S(1, 1), I(C−1B2ABC) = S(−1, 1),

I(C−1) = {ζ = z + tj : Re z = −1}, I(C) = {ζ = z + tj : Re z = 1}.
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We call I(C) and I(C−1) the isometric spheres of C and C−1 for convenience.

1 2

3
4

56

7
8

4i

−4i

1 + (2 +
√
3)i

3+9i
5

0

1 2

3
4

56

7
8

9 10

3+9i
5

0

1 2

3
4

56

7
8

9 10

Figure 6.4. A bird’s-eye view of isometric spheres (left).

Let R denote the region bounded by these planes and si (i = 1, 2, . . . , 10) the face

of R labeled as in Figure 6.4: s1, s2 ⊂ I(B2AC), s3, s4 ⊂ I(B2AB), s5, s6 ⊂ I(BABC),

s7, s8 ⊂ I(C−1B2ABC), s9 ⊂ I(C−1), s10 ⊂ I(C). If si,j = sj,i denote the common edge

of si and sj , then

s1,2 ⊂ Fix(B2AC), s3,4 ⊂ Fix(B2AB), s2,10 ⊂ Fix(B2A).

Here note that B2AC and B2AB are elliptic of order 2 and B2A is of order 3. It can

be shown by using symmetry that other edges are also in the fixed point sets of elliptic

elements. Side-pairings of R are as follows:

{s1, s2;B2AC}, {s3, s4;B2AB}, {s5, s6;BABC},
{s7, s8;C−1B2ABC}, {s9, s10;C}.

Here, again {si, sj , P} means P (si) = sj . The subgroup of Γ3 generated by the side-

pairing transformations is identical with Γ3 because

B = (B2AB)C(BABC)−1, A = B−2(B2AC)C−1.

The cycles of edges for R are:

σ1 = {s1,2}, σ2 = {s3,4}, σ3 = {s5,6}, σ4 = {s7,8},
σ5 = {s1,9, s10,2}, σ6 = {s5,10, s9,6},
σ7 = {s2,3, s4,5, s6,7, s8,1}.

Dihedral angles at the edges are:
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α(s1,2) = α(s3,4) = α(s5,6) = α(s7,8) = π,

α(s1,9) = α(s2,10) = α(s5,10) = α(s6,9) = π/3,

α(s2,3) = α(s4,5) = α(s6,7) = α(s1,8) = π/2.

Hence, by Poincaré polyhedron theorem, R is a fundamental polyhedron for Γ3. The

closure of R in {ζ = z + tj : t ≥ 0} meets C in the sets D+ ∪D−, where

D± =
{
z : −1 ≤ Re z ≤ 1,±(Im z) > 2, |z − (±2i)| ≥ 2

}
,

and D+ is a fundamental set for K1 and D− is a fundamental set for K2. Therefore, if

Ω(Γ3) denotes the region of discontinuity for Γ3, then

Ω(Γ3)/Γ3 = Ω+(K1)/K1 ∪ Ω−(K2)/K2.

Each of its two components is an orbifold of type (0; 2, 3,∞). Although Γ3 and PSL(2,Z)
are not conjugate in PSL(2,C), we have an isometry Ω(Γ3)/Γ3

∼= (C− R)/PSL(2,Z).

Figures 6.1–6.4 are produced by Wolfram Mathematica.
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