IMPROVED OPERATOR MONOTONICITY OF AN INTEGRAL TRANSFORM OF POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR

Communicated by Toshihiro Nakanishi

(Received: July 6, 2022)

Abstract. For a continuous and positive function $w(\lambda), \lambda>0$ and μ a positive measure on $(0, \infty)$ we consider the following integral transform

$$
\mathcal{D}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \mu(\lambda)
$$

where the integral is assumed to exist for all T a positive operator on a complex Hilbert space H.

Let $A>0$ and assume that there exist positive numbers $d>c>0$ such that $d \geq B-A \geq c>0$, then, we show that,

$$
\mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \geq \frac{c}{d}[\mathcal{D}(w, \mu)(\|A\|)-\mathcal{D}(w, \mu)(d+\|A\|)] \geq 0
$$

As a consequence we derive that

$$
f(A) A^{-1}-f(B) B^{-1} \geq \frac{c}{d}\left(\frac{f(\|A\|)}{\|A\|}-\frac{f(d+\|A\|)}{d+\|A\|}\right) \geq 0
$$

if f is operator monotone on $[0, \infty)$ with $f(0)=0$ and

$$
\begin{aligned}
& f(A) A^{-2}-f(B) B^{-2}-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \\
& \geq \frac{c}{d}\left[\frac{f(\|A\|)}{\|A\|^{2}}-\frac{f(d+\|A\|)}{(d+\|A\|)^{2}}\right]-\frac{c f_{+}^{\prime}(0)}{\|A\|(d+\|A\|)} \geq 0
\end{aligned}
$$

provided that f is operator convex on $[0, \infty)$ with $f(0)=0$. Some examples of interest are also given.

1. Introduction

Consider a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. An operator T is said to be positive (denoted by $T \geq 0$) if $\langle T x, x\rangle \geq 0$ for all $x \in H$ and also an operator T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible. A real valued continuous function f on $(0, \infty)$ is said to be operator monotone if $f(A) \geq f(B)$ holds for any $A \geq B>0$.

[^0]We have the following representation of operator monotone functions [6], see for instance [1, p. 144-145]:

Theorem 1. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $[0, \infty)$ if and only if it has the representation

$$
\begin{equation*}
f(t)=f(0)+b t+\int_{0}^{\infty} \frac{t \lambda}{t+\lambda} d \mu(\lambda) \tag{1.1}
\end{equation*}
$$

where $b \geq 0$ and a positive measure μ on $[0, \infty)$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\lambda}{1+\lambda} d \mu(\lambda)<\infty \tag{1.2}
\end{equation*}
$$

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B) \tag{OC}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

We have the following representation of operator convex functions [1, p. 147]:
Theorem 2. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator convex in $[0, \infty)$ with $f_{+}^{\prime}(0) \in$ \mathbb{R} if and only if it has the representation

$$
\begin{equation*}
f(t)=f(0)+f_{+}^{\prime}(0) t+c t^{2}+\int_{0}^{\infty} \frac{t^{2} \lambda}{t+\lambda} d \mu(\lambda) \tag{1.3}
\end{equation*}
$$

where $c \geq 0$ and a positive measure μ on $[0, \infty)$ such that (1.2) holds.
Let A and B be strictly positive operators on a Hilbert space H such that $B-A \geq m>0$. In 2015, [4], T. Furuta obtained the following result for any non-constant operator monotone function f on $[0, \infty)$

$$
\begin{align*}
f(B)-f(A) & \geq f(\|A\|+m)-f(\|A\|) \tag{1.4}\\
& \geq f(\|B\|)-f(\|B\|-m)>0
\end{align*}
$$

If $B>A>0$, then

$$
\begin{align*}
f(B)-f(A) & \geq f\left(\|A\|+\frac{1}{\left\|(B-A)^{-1}\right\|}\right)-f(\|A\|) \tag{1.5}\\
& \geq f(\|B\|)-f\left(\|B\|-\frac{1}{\left\|(B-A)^{-1}\right\|}\right)>0
\end{align*}
$$

The inequality between the first and third term in (1.5) was obtained earlier by H. Zuo and G. Duan in [8].

By taking $f(t)=t^{r}, r \in(0,1]$ in (1.5) Furuta obtained the following refinement of the celebrated Löwner-Heinz inequality [5]

$$
\begin{align*}
B^{r}-A^{r} & \geq\left(\|A\|+\frac{1}{\left\|(B-A)^{-1}\right\|}\right)^{r}-\|A\|^{r} \tag{1.6}\\
& \geq\|B\|^{r}-\left(\|B\|-\frac{1}{\left\|(B-A)^{-1}\right\|}\right)^{r}>0
\end{align*}
$$

provided $B>A>0$.
With the same assumptions for A and B, we have the logarithmic inequality [4]

$$
\begin{align*}
\ln B-\ln A & \geq \ln \left(\|A\|+\frac{1}{\left\|(B-A)^{-1}\right\|}\right)-\ln (\|A\|) \tag{1.7}\\
& \geq \ln (\|B\|)-\ln \left(\|B\|-\frac{1}{\left\|(B-A)^{-1}\right\|}\right)>0
\end{align*}
$$

Notice that the inequalities between the first and third terms in (1.6) and (1.7) were obtained earlier by M. S. Moslehian and H. Najafi in [7].

For a continuous and positive function $w(\lambda), \lambda>0$ and μ a positive measure on $(0, \infty)$ we consider the following integral transform

$$
\mathcal{D}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \mu(\lambda),
$$

where the integral is assumed to exist for T a positive operator on a complex Hilbert space H.

Motivated by the above results, in this paper we show that

$$
\mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \geq \frac{c}{d}[\mathcal{D}(w, \mu)(\|A\|)-\mathcal{D}(w, \mu)(d+\|A\|)] \geq 0,
$$

where $A>0$ and provided that there exist positive numbers $d>c>0$ such that $d \geq B-A \geq c>0$. As a consequence, we derive the following alternative lower bound to the one provided by Furuta's result in (1.4),

$$
f(A) A^{-1}-f(B) B^{-1} \geq \frac{c}{d}\left(\frac{f(\|A\|)}{\|A\|}-\frac{f(d+\|A\|)}{d+\|A\|}\right) \geq 0
$$

if f is operator monotone on $[0, \infty)$ with $f(0)=0$ and

$$
\begin{aligned}
& f(A) A^{-2}-f(B) B^{-2}-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \\
& \geq \frac{c}{d}\left[\frac{f(\|A\|)}{\|A\|^{2}}-\frac{f(d+\|A\|)}{(d+\|A\|)^{2}}\right]-\frac{c f_{+}^{\prime}(0)}{\|A\|(d+\|A\|)} \geq 0
\end{aligned}
$$

provided that f is operator convex on $[0, \infty)$ with $f(0)=0$. Some examples of interest are also given.

2. Preliminary Facts

We have the following integral representation for the power function when $t>0$, $r \in(0,1]$, see for instance [1, p. 145]

$$
\begin{equation*}
t^{r}=\frac{\sin (r \pi)}{\pi} t \int_{0}^{\infty} \frac{\lambda^{r-1}}{\lambda+t} d \lambda . \tag{2.1}
\end{equation*}
$$

Observe that for $t>0, t \neq 1$, we have

$$
\int_{0}^{u} \frac{d \lambda}{(\lambda+t)(\lambda+1)}=\frac{\ln t}{t-1}+\frac{1}{1-t} \ln \left(\frac{u+t}{u+1}\right)
$$

for all $u>0$.
By taking the limit over $u \rightarrow \infty$ in this equality, we derive

$$
\frac{\ln t}{t-1}=\int_{0}^{\infty} \frac{d \lambda}{(\lambda+t)(\lambda+1)},
$$

which gives the representation for the logarithm

$$
\begin{equation*}
\ln t=(t-1) \int_{0}^{\infty} \frac{d \lambda}{(\lambda+1)(\lambda+t)} \tag{2.2}
\end{equation*}
$$

for all $t>0$.
Motivated by these representations, we introduce, for a continuous and positive function $w(\lambda), \lambda>0$, the following integral transform

$$
\begin{equation*}
\mathcal{D}(w, \mu)(t):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+t} d \mu(\lambda), t>0 \tag{2.3}
\end{equation*}
$$

where μ is a positive measure on $(0, \infty)$ and the integral (2.3) exists for all $t>0$.
For μ the Lebesgue usual measure, we put

$$
\begin{equation*}
\mathcal{D}(w)(t):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+t} d \lambda, t>0 \tag{2.4}
\end{equation*}
$$

Now, assume that $T>0$, then by the continuous functional calculus for selfadjoint operators, we can define the positive operator

$$
\begin{equation*}
\mathcal{D}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \mu(\lambda), \tag{2.5}
\end{equation*}
$$

where w and μ are as above. Also, when μ is the usual Lebesgue measure, then

$$
\begin{equation*}
\mathcal{D}(w)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \lambda \tag{2.6}
\end{equation*}
$$

for $T>0$.
If we take μ to be the usual Lebesgue measure and the kernel $w_{r}(\lambda)=\lambda^{r-1}$, $r \in(0,1]$, then

$$
\begin{equation*}
t^{r-1}=\frac{\sin (r \pi)}{\pi} \mathcal{D}\left(w_{r}\right)(t), t>0 \tag{2.7}
\end{equation*}
$$

We define the upper incomplete Gamma function as [9]

$$
\Gamma(a, z):=\int_{z}^{\infty} t^{a-1} e^{-t} d t
$$

which for $z=0$ gives Gamma function

$$
\Gamma(a):=\int_{0}^{\infty} t^{a-1} e^{-t} d t \text { for } \operatorname{Re} a>0 .
$$

We have the integral representation [10]

$$
\begin{equation*}
\Gamma(a, z)=\frac{z^{a} e^{-z}}{\Gamma(1-a)} \int_{0}^{\infty} \frac{t^{-a} e^{-t}}{z+t} d t \tag{2.8}
\end{equation*}
$$

for $\operatorname{Re} a<1$ and $|\operatorname{ph} z|<\pi$.
Now, we consider the weight $w_{-a_{e^{-}}}(\lambda):=\lambda^{-a} e^{-\lambda}$ for $\lambda>0$. Then by (2.8) we have

$$
\begin{equation*}
\mathcal{D}\left(w_{.-a} e^{-\cdot}\right)(t)=\int_{0}^{\infty} \frac{\lambda^{-a} e^{-\lambda}}{t+\lambda} d \lambda=\Gamma(1-a) t^{-a} e^{t} \Gamma(a, t) \tag{2.9}
\end{equation*}
$$

for $a<1$ and $t>0$.
For $a=0$ in (2.9) we get

$$
\begin{equation*}
\mathcal{D}\left(w_{e^{-\cdot}}\right)(t)=\int_{0}^{\infty} \frac{e^{-\lambda}}{t+\lambda} d \lambda=\Gamma(1) e^{t} \Gamma(0, t)=e^{t} E_{1}(t) \tag{2.10}
\end{equation*}
$$

for $t>0$, where

$$
\begin{equation*}
E_{1}(t):=\int_{t}^{\infty} \frac{e^{-u}}{u} d u \tag{2.11}
\end{equation*}
$$

Let $a=1-n$, with n a natural number with $n \geq 0$, then by (2.9) we have

$$
\begin{align*}
\mathcal{D}\left(w_{\cdot n-1} e^{-\cdot}\right)(t) & =\int_{0}^{\infty} \frac{\lambda^{n-1} e^{-\lambda}}{t+\lambda} d \lambda=\Gamma(n) t^{n-1} e^{t} \Gamma(1-n, t) \tag{2.12}\\
& =(n-1)!t^{n-1} e^{t} \Gamma(1-n, t)
\end{align*}
$$

If we define the generalized exponential integral [11] by

$$
E_{p}(z):=z^{p-1} \Gamma(1-p, z)=z^{p-1} \int_{z}^{\infty} \frac{e^{-t}}{t^{p}} d t
$$

then

$$
t^{n-1} \Gamma(1-n, t)=E_{n}(t)
$$

for $n \geq 1$ and $t>0$.
Using the identity [11, Eq 8.19.7], for $n \geq 2$

$$
E_{n}(z)=\frac{(-z)^{n-1}}{(n-1)!} E_{1}(z)+\frac{e^{-z}}{(n-1)!} \sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}
$$

we get

$$
\begin{align*}
& \mathcal{D}\left(w_{\cdot n-1} e^{-}\right)(t) \tag{2.13}\\
& =(n-1)!e^{t} E_{n}(t) \\
& =(n-1)!e^{t}\left[\frac{(-t)^{n-1}}{(n-1)!} E_{1}(t)+\frac{e^{-t}}{(n-1)!} \sum_{k=0}^{n-2}(n-k-2)!(-t)^{k}\right] \\
& =\sum_{k=0}^{n-2}(-1)^{k}(n-k-2)!t^{k}+(-1)^{n-1} t^{n-1} e^{t} E_{1}(t)
\end{align*}
$$

for $n \geq 2$ and $t>0$.
If $T>0$, then we have

$$
\begin{equation*}
\mathcal{D}\left(w_{--a} e^{--}\right)(T)=\int_{0}^{\infty} \lambda^{-a} e^{-\lambda}(t+\lambda)^{-1} d \lambda=\Gamma(1-a) T^{-a} \exp (T) \Gamma(a, T) \tag{2.14}
\end{equation*}
$$

for $a<1$.
In particular,

$$
\begin{equation*}
\mathcal{D}\left(w_{e^{-}}\right)(T)=\int_{0}^{\infty} e^{-\lambda}(T+\lambda)^{-1} d \lambda=\exp (T) E_{1}(T) \tag{2.15}
\end{equation*}
$$

and, for $n \geq 2$

$$
\begin{align*}
& \mathcal{D}\left(w_{\cdot n-1} e^{-\cdot}\right)(T) \tag{2.16}\\
& =\int_{0}^{\infty} \lambda^{n-1} e^{-\lambda}(T+\lambda)^{-1} d \lambda \\
& =\sum_{k=0}^{n-2}(-1)^{k}(n-k-2)!T^{k}+(-1)^{n-1} T^{n-1} \exp (T) E_{1}(T),
\end{align*}
$$

where $T>0$.
For $n=2$, we also get

$$
\begin{equation*}
\mathcal{D}\left(w \cdot e^{-\cdot}\right)(T)=\int_{0}^{\infty} \lambda e^{-\lambda}(T+\lambda)^{-1} d \lambda=1-T \exp (T) E_{1}(T) \tag{2.17}
\end{equation*}
$$

for $T>0$.
We consider the weight $w_{(\cdot+a)^{-1}}(\lambda):=\frac{1}{\lambda+a}$ for $\lambda>0$ and $a>0$. Then, by simple calculations, we get

$$
\begin{equation*}
\mathcal{D}\left(w_{(\cdot+a)^{-1}}\right)(t):=\int_{0}^{\infty} \frac{1}{(\lambda+t)(\lambda+a)} d \lambda=\frac{\ln t-\ln a}{t-a} \tag{2.18}
\end{equation*}
$$

for all $a>0$ and $t>0$ with $t \neq a$.
From this, we get

$$
\ln t=\ln a+(t-a) \mathcal{D}\left(w_{(\cdot+a)^{-1}}\right)(t)
$$

for all $t, a>0$.

If $T>0$, then

$$
\begin{align*}
\ln T & =\ln a+(T-a) \mathcal{D}\left(w_{(\cdot+a)^{-1}}\right)(t) \tag{2.19}\\
& =\ln a+(T-a) \int_{0}^{\infty} \frac{1}{(\lambda+a)}(\lambda+T)^{-1} d \lambda .
\end{align*}
$$

Let $a>0$. Assume that either $0<T<a$ or $T>a$, then by (2.19) we get

$$
\begin{equation*}
(\ln T-\ln a)(T-a)^{-1}=\int_{0}^{\infty} \frac{1}{(\lambda+a)}(\lambda+T)^{-1} d \lambda . \tag{2.20}
\end{equation*}
$$

We can also consider the weight $w_{\left(.2+a^{2}\right)^{-1}}(\lambda):=\frac{1}{\lambda^{2}+a^{2}}$ for $\lambda>0$ and $a>0$. Then, by simple calculations, we get

$$
\begin{aligned}
\mathcal{D}\left(w_{\left(\cdot 2+a^{2}\right)^{-1}}\right)(t) & :=\int_{0}^{\infty} \frac{1}{(\lambda+t)\left(\lambda^{2}+a^{2}\right)} d \lambda \\
& =\frac{\pi t}{2 a\left(t^{2}+a^{2}\right)}-\frac{\ln t-\ln a}{t^{2}+a^{2}}
\end{aligned}
$$

for $t>0$ and $a>0$.
For $a=1$ we also have

$$
\mathcal{D}\left(w_{(\cdot 2+1)^{-1}}\right)(t):=\int_{0}^{\infty} \frac{1}{(\lambda+t)\left(\lambda^{2}+1\right)} d \lambda=\frac{\pi t}{2\left(t^{2}+1\right)}-\frac{\ln t}{t^{2}+1}
$$

for $t>0$.
If $T>0$ and $a>0$, then

$$
\begin{align*}
& \frac{\pi}{2 a} T\left(T^{2}+a^{2}\right)^{-1}-(\ln T-\ln a)\left(T^{2}+a^{2}\right)^{-1} \tag{2.21}\\
& =\int_{0}^{\infty} \frac{1}{\left(\lambda^{2}+a^{2}\right)}(\lambda+T)^{-1} d \lambda
\end{align*}
$$

and, in particular,

$$
\begin{equation*}
\frac{\pi}{2} T\left(T^{2}+1\right)^{-1}-\left(T^{2}+1\right)^{-1} \ln T=\int_{0}^{\infty} \frac{1}{\left(\lambda^{2}+1\right)}(\lambda+T)^{-1} d \lambda . \tag{2.22}
\end{equation*}
$$

In the following, whenever we write $\mathcal{D}(w, \mu)$ we mean that the integral from (2.3) exists and is finite for all $t>0$.

Lemma 1. For all $A, B>0$ we have the representation

$$
\begin{align*}
& \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \tag{2.23}\\
& =\int_{0}^{\infty}\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} d s\right) \\
& \times w(\lambda) d \mu(\lambda) .
\end{align*}
$$

Proof. Observe that, for all $A, B>0$

$$
\begin{equation*}
\mathcal{D}(w, \mu)(B)-\mathcal{D}(w, \mu)(A)=\int_{0}^{\infty} w(\lambda)\left[(\lambda+B)^{-1}-(\lambda+A)^{-1}\right] d \mu(\lambda) . \tag{2.24}
\end{equation*}
$$

Let $T, S>0$. The function $f(t)=-t^{-1}$ is operator monotone on $(0, \infty)$, operator Gâteaux differentiable and the Gâteaux derivative is given by

$$
\begin{equation*}
\nabla f_{T}(S):=\lim _{t \rightarrow 0}\left[\frac{f(T+t S)-f(T)}{t}\right]=T^{-1} S T^{-1} \tag{2.25}
\end{equation*}
$$

for $T, S>0$.
Consider the continuous function f defined on an interval I for which the corresponding operator function is Gâteaux differentiable on the segment $[C, D]$: $\{(1-t) C+t D, t \in[0,1]\}$ for C, D selfadjoint operators with spectra in I. We consider the auxiliary function defined on $[0,1]$ by

$$
f_{C, D}(t):=f((1-t) C+t D), t \in[0,1] .
$$

Then we have, by the properties of the Bochner integral, that

$$
\begin{equation*}
f(D)-f(C)=\int_{0}^{1} \frac{d}{d t}\left(f_{C, D}(t)\right) d t=\int_{0}^{1} \nabla f_{(1-t) C+t D}(D-C) d t \tag{2.26}
\end{equation*}
$$

If we write this equality for the function $f(t)=-t^{-1}$ and $C, D>0$, then we get the representation

$$
\begin{equation*}
C^{-1}-D^{-1}=\int_{0}^{1}((1-t) C+t D)^{-1}(D-C)((1-t) C+t D)^{-1} d t \tag{2.27}
\end{equation*}
$$

Now, if we take in (2.27) $C=\lambda+B, D=\lambda+A$, then

$$
\begin{align*}
& (\lambda+B)^{-1}-(\lambda+A)^{-1} \tag{2.28}\\
& =\int_{0}^{1}((1-t)(\lambda+B)+t(\lambda+A))^{-1}(A-B) \\
& \times((1-t)(\lambda+B)+t(\lambda+A))^{-1} d t \\
& =\int_{0}^{1}(\lambda+(1-t) B+t A)^{-1}(A-B)(\lambda+(1-t) B+t A)^{-1} d t
\end{align*}
$$

and by (2.24) we derive

$$
\begin{aligned}
& \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \\
& =\int_{0}^{\infty}\left(\int_{0}^{1}(\lambda+(1-t) B+t A)^{-1}(B-A)(\lambda+(1-t) B+t A)^{-1} d t\right) \\
& \times w(\lambda) d \mu(\lambda),
\end{aligned}
$$

which, by the change of variable $t=1-s$, gives (2.23).

Remark 1. By making use of the examples provided above, we can infer the following identities for $A, B>0$,
(2.29) $\quad A^{r-1}-B^{r-1}$

$$
\begin{aligned}
& =\frac{\sin (r \pi)}{\pi} \int_{0}^{\infty} \lambda^{r-1} \\
& \times\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} d s\right) d \lambda
\end{aligned}
$$

and

$$
\begin{align*}
& \Gamma(1-a)\left[A^{-a} \exp (A) \Gamma(a, A)-B^{-a} \exp (B) \Gamma(a, B)\right] \tag{2.30}\\
& =\int_{0}^{\infty} \lambda^{-a} e^{-\lambda} \\
& \times\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} d s\right) d \lambda
\end{align*}
$$

for $a<1$.
In particular,

$$
\begin{align*}
& \exp (A) E_{1}(A)-\exp (B) E_{1}(B) \tag{2.31}\\
& =\int_{0}^{\infty} e^{-\lambda} \\
& \times\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} d s\right) d \lambda
\end{align*}
$$

and

$$
\begin{align*}
& B \exp (B) E_{1}(B)-B \exp (B) E_{1}(B) \tag{2.32}\\
& =\int_{0}^{\infty} \lambda e^{-\lambda} \\
& \times\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} d s\right) d \lambda .
\end{align*}
$$

Let $a>0$. Assume that either $0<A, B<a$ or $A, B>a$, then

$$
\begin{align*}
& (\ln A-\ln a)(A-a)^{-1}-(\ln B-\ln a)(B-a)^{-1} \tag{2.33}\\
& =\int_{0}^{\infty} \frac{1}{(\lambda+a)} \\
& \times\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} d s\right) d \lambda .
\end{align*}
$$

3. Main Results

Our first main result is as follows:

Theorem 3. Let $A>0$ and assume that there exist positive numbers $d>c>0$ such that

$$
\begin{equation*}
d \geq B-A \geq c>0 \tag{3.1}
\end{equation*}
$$

then
(3.2) $\mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \geq \frac{c}{d}[\mathcal{D}(w, \mu)(\|A\|)-\mathcal{D}(w, \mu)(d+\|A\|)] \geq 0$.

Proof. Since $B-A \geq c$, then by multiplying both sides with $(\lambda+s B+(1-s) A)^{-1}$, we get

$$
\begin{aligned}
& (\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} \\
& \geq c(\lambda+s B+(1-s) A)^{-2}
\end{aligned}
$$

for all $s \in[0,1]$ and $\lambda>0$.
By integration over $s \in[0,1]$ we get

$$
\begin{aligned}
& \int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} d s \\
& \geq c \int_{0}^{1}(\lambda+s B+(1-s) A)^{-2} d s
\end{aligned}
$$

for all $\lambda>0$.
If we multiply this inequality with $w(\lambda)$ and integrate, then we get

$$
\begin{align*}
& \int_{0}^{\infty} w(\lambda) \tag{3.3}\\
& \times\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} d s\right) d \mu(\lambda) \\
& \geq c \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-2} d s\right) d \mu(\lambda) .
\end{align*}
$$

Since $A \leq\|A\|$, then

$$
\begin{aligned}
\lambda+s B+(1-s) A & =\lambda+A+s(B-A) \leq \lambda+\|A\|+s d \\
& =\lambda+(1-s)\|A\|+s(d+\|A\|)
\end{aligned}
$$

for all $s \in[0,1]$ and $\lambda>0$, which implies that

$$
(\lambda+s B+(1-s) A)^{-1} \geq(\lambda+(1-s)\|A\|+s(d+\|A\|))^{-1}
$$

and

$$
\begin{equation*}
(\lambda+s B+(1-s) A)^{-2} \geq(\lambda+(1-s)\|A\|+s(d+\|A\|))^{-2} \tag{3.4}
\end{equation*}
$$

for all $s \in[0,1]$ and $\lambda>0$.

From (3.4) we get by integration twice the inequality

$$
\begin{align*}
& \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-2} d s\right) d \mu(\lambda) \tag{3.5}\\
& \geq \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}(\lambda+(1-s)\|A\|+s(d+\|A\|))^{-2} d s\right) d \mu(\lambda)(\geq 0) \\
& =\frac{1}{d} \int_{0}^{\infty} w(\lambda)\left[\int_{0}^{1}(\lambda+(1-s)\|A\|+s(d+\|A\|))^{-1}(d+\|A\|-\|A\|)\right. \\
& \left.\times(\lambda+(1-s)\|A\|+s(d+\|A\|))^{-1} d s\right] d \mu(\lambda) \\
& =\frac{1}{d}[\mathcal{D}(w, \mu)(\|A\|)-\mathcal{D}(w, \mu)(d+\|A\|)] \geq 0(\text { by }(2.23)) .
\end{align*}
$$

By utilizing (3.3) and (3.5) we obtain

$$
\begin{aligned}
& \int_{0}^{\infty} w(\lambda) \\
& \times\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A)(\lambda+s B+(1-s) A)^{-1} d s\right) d \mu(\lambda) \\
& \geq \frac{c}{d}[\mathcal{D}(w, \mu)(\|A\|)-\mathcal{D}(w, \mu)(d+\|A\|)]
\end{aligned}
$$

which by the representation (2.23) gives (3.2).
Its is well known that, if $P \geq 0$, then

$$
|\langle P x, y\rangle|^{2} \leq\langle P x, x\rangle\langle P y, y\rangle
$$

for all $x, y \in H$.
Therefore, if $T>0$, then

$$
\begin{aligned}
0 & \leq\langle x, x\rangle^{2}=\left\langle T^{-1} T x, x\right\rangle^{2}=\left\langle T x, T^{-1} x\right\rangle^{2} \\
& \leq\langle T x, x\rangle\left\langle T T^{-1} x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle
\end{aligned}
$$

for all $x \in H$.
If $x \in H,\|x\|=1$, then

$$
1 \leq\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle \leq\langle T x, x\rangle \sup _{\|x\|=1}\left\langle x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\|T^{-1}\right\|,
$$

which implies the following operator inequalities

$$
\begin{equation*}
\left\|T^{-1}\right\|^{-1} \leq T \leq\|T\| \tag{3.6}
\end{equation*}
$$

Corollary 1. Assume that $A>0$ and $B-A>0$. Then

$$
\begin{align*}
& \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \geq \frac{1}{\|B-A\|\left\|(B-A)^{-1}\right\|} \tag{3.7}\\
& \times[\mathcal{D}(w, \mu)(\|A\|)-\mathcal{D}(w, \mu)(\|B-A\|+\|A\|)] \\
& \geq 0
\end{align*}
$$

The proof follows by (3.2) since, by (3.6),

$$
0<\left\|(B-A)^{-1}\right\|^{-1} \leq B-A \leq\|B-A\|
$$

We can state the following result for operator monotone functions on $[0, \infty)$:
Proposition 1. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator monotone function on $[0, \infty)$. If $A, B>0$ satisfy condition (3.1), then

$$
\begin{align*}
& f(A) A^{-1}-f(B) B^{-1}-f(0)\left(A^{-1}-B^{-1}\right) \tag{3.8}\\
& \geq \frac{c}{d}\left(\frac{f(\|A\|)}{\|A\|}-\frac{f(d+\|A\|)}{d+\|A\|}\right)-\frac{c f(0)}{\|A\|(d+\|A\|)} \geq 0 .
\end{align*}
$$

If $f(0)=0$, then we have the simpler inequality

$$
\begin{equation*}
f(A) A^{-1}-f(B) B^{-1} \geq \frac{c}{d}\left(\frac{f(\|A\|)}{\|A\|}-\frac{f(d+\|A\|)}{d+\|A\|}\right) \geq 0 . \tag{3.9}
\end{equation*}
$$

Proof. If $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator monotone, then by (1.1)

$$
\frac{f(t)-f(0)}{t}-b=\mathcal{D}(\ell, \mu)(t), t>0
$$

for some positive measure μ, where $\ell(\lambda)=\lambda, \lambda>0$.
By the inequality (3.2) we have

$$
\begin{aligned}
& {[f(A)-f(0)] A^{-1}-[f(B)-f(0)] B^{-1}} \\
& \geq \frac{c}{d}\left[\frac{f(\|A\|)-f(0)}{\|A\|}-\frac{f(d+\|A\|)-f(0)}{d+\|A\|}\right] \geq 0
\end{aligned}
$$

which is equivalent to (3.8).
Corollary 2. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator monotone function on $[0, \infty), A>0$ and $B-A>0$. Then

$$
\begin{align*}
& f(A) A^{-1}-f(B) B^{-1}-f(0)\left(A^{-1}-B^{-1}\right) \tag{3.10}\\
& \geq \frac{1}{\left\|(B-A)^{-1}\right\|\|B-A\|}\left(\frac{f(\|A\|)}{\|A\|}-\frac{f(\|B-A\|+\|A\|)}{\|B-A\|+\|A\|}\right) \\
& -\frac{f(0)}{\|A\|\left\|(B-A)^{-1}\right\|(\|B-A\|+\|A\|)} \\
& \geq 0
\end{align*}
$$

If $f(0)=0$, then

$$
\begin{align*}
& f(A) A^{-1}-f(B) B^{-1} \tag{3.11}\\
& \geq \frac{1}{\left\|(B-A)^{-1}\right\|\|B-A\|}\left(\frac{f(\|A\|)}{\|A\|}-\frac{f(\|B-A\|+\|A\|)}{\|B-A\|+\|A\|}\right) \geq 0 .
\end{align*}
$$

In the case of operator convex functions, we have:

Proposition 2. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator convex function on $[0, \infty)$. If $A, B>0$ satisfy condition (3.1), then

$$
\begin{align*}
& f(A) A^{-2}-f(B) B^{-2}-f(0)\left(A^{-2}-B^{-2}\right)-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \tag{3.12}\\
& \geq \frac{c}{d}\left[\frac{f(\|A\|)}{\|A\|^{2}}-\frac{f(d+\|A\|)}{(d+\|A\|)^{2}}\right]-\frac{c f(0)(d+2\|A\|)}{\|A\|^{2}(d+\|A\|)^{2}} \\
& -\frac{c f_{+}^{\prime}(0)}{\|A\|(d+\|A\|)} \\
& \geq 0
\end{align*}
$$

If $f(0)=0$, then

$$
\begin{align*}
& f(A) A^{-2}-f(B) B^{-2}-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \tag{3.13}\\
& \geq \frac{c}{d}\left[\frac{f(\|A\|)}{\|A\|^{2}}-\frac{f(d+\|A\|)}{(d+\|A\|)^{2}}\right]-\frac{c f_{+}^{\prime}(0)}{\|A\|(d+\|A\|)} \geq 0 .
\end{align*}
$$

Proof. If $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator convex function on $[0, \infty)$, then by (1.3) we have that

$$
\frac{f(t)-f(0)-f_{+}^{\prime}(0) t}{t^{2}}-c=\mathcal{D}(\ell, \mu)(t),
$$

for some positive measure μ, where $\ell(\lambda)=\lambda, \lambda>0$.
By the inequality (3.2) we have

$$
\begin{aligned}
& {\left[f(A)-f(0)-f_{+}^{\prime}(0) A\right] A^{-2}-\left[f(B)-f(0)-f_{+}^{\prime}(0) B\right] B^{-2}} \\
& \geq \frac{c}{d}\left[\frac{f(\|A\|)-f(0)-f_{+}^{\prime}(0)\|A\|}{\|A\|^{2}}\right. \\
& \left.-\frac{f(d+\|A\|)-f(0)-f_{+}^{\prime}(0)(d+\|A\|)}{(d+\|A\|)^{2}}\right] \\
& \geq 0
\end{aligned}
$$

which is equivalent to (3.12).
Corollary 3. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator convex function on $[0, \infty), A>0$ and $B-A>0$. Then

$$
\begin{align*}
& f(A) A^{-2}-f(B) B^{-2}-f(0)\left(A^{-2}-B^{-2}\right)-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \tag{3.14}\\
& \geq \frac{1}{\left\|(B-A)^{-1}\right\|\|B-A\|}\left[\frac{f(\|A\|)}{\|A\|^{2}}-\frac{f(\|B-A\|+\|A\|)}{(\|B-A\|+\|A\|)^{2}}\right] \\
& -\frac{f(0)(\|B-A\|+2\|A\|)}{\left\|(B-A)^{-1}\right\|\|A\|^{2}(\|B-A\|+\|A\|)^{2}} \\
& -\frac{f_{+}^{\prime}(0)}{\left\|(B-A)^{-1}\right\|\|A\|(\|B-A\|+\|A\|)} \\
& \geq 0 .
\end{align*}
$$

If $f(0)=0$, then

$$
\begin{align*}
& f(A) A^{-2}-f(B) B^{-2}-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \tag{3.15}\\
& \geq \frac{1}{\left\|(B-A)^{-1}\right\|\|B-A\|}\left[\frac{f(\|A\|)}{\|A\|^{2}}-\frac{f(\|B-A\|+\|A\|)}{(\|B-A\|+\|A\|)^{2}}\right] \\
& -\frac{f_{+}^{\prime}(0)}{\left\|(B-A)^{-1}\right\|\|A\|(\|B-A\|+\|A\|)} \\
& \geq 0 .
\end{align*}
$$

4. Some Examples

In this section we give some example of the above general inequalities that hold for some particular operator monotone or operator convex functions of interest.

If we take $f(t)=t^{r}, r \in(0,1]$ in (3.9), then we get

$$
\begin{equation*}
A^{r-1}-B^{r-1} \geq \frac{c}{d}\left(\|A\|^{r-1}-(d+\|A\|)^{r-1}\right)>0 \tag{4.1}
\end{equation*}
$$

provided $A, B>0$ satisfy condition (3.1).
If $A>0$ and $B-A>0$, then

$$
\begin{align*}
& A^{r-1}-B^{r-1} \tag{4.2}\\
& \geq \frac{1}{\left\|(B-A)^{-1}\right\|\|B-A\|}\left[\|A\|^{r-1}-(\|B-A\|+\|A\|)^{r-1}\right] \geq 0 .
\end{align*}
$$

If we take $f(t)=-\ln (t+1)$, which is operator convex on $[0, \infty)$, then by (3.13) we get

$$
\begin{align*}
& B^{-2} \ln (B+1)-A^{-2} \ln (A+1)+A^{-1}-B^{-1} \tag{4.3}\\
& \geq \frac{c}{d}\left[\frac{\ln (d+\|A\|+1)}{(d+\|A\|)^{2}}-\frac{\ln (\|A\|+1)}{\|A\|^{2}}\right]+\frac{c}{\|A\|(d+\|A\|)} \geq 0,
\end{align*}
$$

provided that $A, B \geq 0$ and satisfy condition (3.1).
If $A \geq 0$ and $B-A>0$, then

$$
\begin{align*}
& B^{-2} \ln (B+1)-A^{-2} \ln (A+1)+A^{-1}-B^{-1} \tag{4.4}\\
& \geq \frac{1}{\left\|(B-A)^{-1}\right\|\|B-A\|}\left[\frac{\ln (\|B-A\|+\|A\|+1)}{(\|B-A\|+\|A\|)^{2}}-\frac{\ln (\|A\|+1)}{\|A\|^{2}}\right] \\
& +\frac{1}{\left\|(B-A)^{-1}\right\|\|A\|(\|B-A\|+\|A\|)} \\
& \geq 0
\end{align*}
$$

Assume that $A, B>0$ and satisfy condition (3.1) for $d>c>0$, then

$$
\begin{align*}
& A^{-a} \exp (A) \Gamma(a, A)-B^{-a} \exp (B) \Gamma(a, B) \tag{4.5}\\
& \geq \frac{c}{d}\left[\|A\|^{-a} \exp (\|A\|) \Gamma(a,\|A\|)\right. \\
& \left.-(d+\|A\|)^{-a} \exp (d+\|A\|) \Gamma(a, d+\|A\|)\right] \\
& \geq 0
\end{align*}
$$

for $a<1$.
In particular, we have

$$
\begin{align*}
& \exp (A) E_{1}(A)-\exp (B) E_{1}(B) \tag{4.6}\\
& \geq \frac{c}{d}\left[\exp (\|A\|) E_{1}(\|A\|)-\exp (d+\|A\|) E_{1}(d+\|A\|)\right] \geq 0
\end{align*}
$$

and

$$
\begin{align*}
& B \exp (B) E_{1}(B)-A \exp (A) E_{1}(A) \tag{4.7}\\
& \geq \frac{c}{d}\left[(d+\|A\|) \exp (d+\|A\|) E_{1}(d+\|A\|)-\|A\| \exp (\|A\|) E_{1}(\|A\|)\right] \\
& \geq 0
\end{align*}
$$

Let $a>0$. Assume that $A, B>a$ and there exists $d>c>0$ such that (3.1) holds, then by (2.20) we get

$$
\begin{align*}
& (\ln A-\ln a)(A-a)^{-1}-(\ln B-\ln a)(B-a)^{-1} \tag{4.8}\\
& \geq \frac{c}{d}\left[(\ln \|A\|-\ln a)(\|A\|-a)^{-1}\right. \\
& \left.-(\ln (d+\|A\|)-\ln a)(d+\|A\|-a)^{-1}\right] \\
& \geq 0
\end{align*}
$$

The interested author may state other similar inequalities by using the examples of operator monotone functions from [2], [3] and the references therein.

Acknowledgement. The author would like to thank the anonymous referee for valuable comments that have been implemented in the final version of the manuscript.

References

[1] R. Bhatia, Matrix Analysis. Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii +347 pp. ISBN: 0-387-94846-5.
[2] J. I. Fujii, Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998) 301-306.
[3] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation, Linear Algebra Appl. 429 (2008) 972-980.
[4] T. Furuta, Precise lower bound of $f(A)-f(B)$ for $A>B>0$ and non-constant operator monotone function f on $[0, \infty)$. J. Math. Inequal. 9 (2015), no. 1, 47-52.
[5] E. Heinz, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann. 123 (1951) 415438.
[6] K. Löwner, Über monotone MatrixFunktionen, Math. Z. 38 (1934) 177-216.
[7] M. S. Moslehian, H. Najafi, An extension of the Löwner-Heinz inequality, Linear Algebra Appl., 437 (2012), 2359-2365.
[8] H. Zuo, G. Duan, Some inequalities of operator monotone functions. J. Math. Inequal. 8 (2014), no. 4, 777-781.
[9] Incomplete Gamma and Related Functions, Definitions, Digital Library of Mathematical Functions, NIST. [Online https://dlmf.nist.gov/8.2].
[10] Incomplete Gamma and Related Functions, Integral Representations, Digital Library of Mathematical Functions, NIST. [Online https://dlmf.nist.gov/8.6].
[11] Generalized Exponential Integral, Digital Library of Mathematical Functions, NIST. [Online https://dlmf.nist.gov/8.19\#E1].
S. S. Dragomir: Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

Email address: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir
S. S. Dragomir: DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

[^0]: 1991 Mathematics Subject Classification. 47A63, 47A60.
 Key words and phrases. Operator monotone functions, Operator convex functions, Operator inequalities, Löwner-Heinz inequality. Logarithmic operator inequalities.

