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Abstract. We survey geometric properties of geodesic spheres in a complex
projective space. These spheres can be regarded as the simplest examples in the
class of all real hypersurfaces isometrically immersed into this projective space.
Moreover, geodesic spheres with sufficiently big radii in this space are well-known
examples of Berger spheres.

1. Two viewpoints on geodesic spheres

We first investigate geodesic spheres in a complex projective space from the view-
point of submanifold theory. We denote by CP n(c) a complex n(≧ 2)-dimensional
complex projective space of constant holomorphic sectional curvature c(> 0), and
by M a connected real hypersurface isometrically immersed into CP n(c). Then M
has an almost contact metric structure (ϕ, ξ, η, g) induced from the Kähler structure
(J, g) of CP n(c).

Standard examples of connected real hypersurfaces in CP n(c) are homogeneous
real hypersurfaces, i.e., real hypersurfaces given as orbits under the subgroups of
the full isometry group I(CP n(c)) of the ambient space CP n(c), which is the uni-
tary group U(n+ 1). R. Takagi ([28]) classifies homogeneous real hypersurfaces of
CP n(c) and he shows that a homogeneous real hypersurface is locally congruent
to one of the six model spaces of types (A1), (A2), (B), (C), (D) and (E). Fur-
thermore, we find that the number of distinct principal curvatures of homogeneous
real hypersurfaces is 2, 3, 3, 5, 5, 5, respectively (see [29]). Every homogeneous
real hypersurface of type (A1) is congruent to a geodesic sphere G(r) of radius
r (0 < r < π/

√
c ). Note that G(r) (0 < r < π/

√
c ) is congruent to a tube of

radius (π/
√
c − r) over a totally geodesic complex hypersurface CP n−1(c).

It is known that there exist no totally umbilic real hypersurfaces in CP n(c)
and T. Cecil and P. Ryan show that every geodesic sphere is the only example of
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real hypersrfaces in CP n(c) (n ≧ 3) with at most two distinct principal curvatures
at each point (cf. [7]). This implies that a geodesic sphere is the simplest real
hypersurface of CP n(c).
We next study those geodesic spheres from the viewpoint of length spectrum.

Klingenberg ([11]) proved the following: Let M be an even dimensional compact
simply connected Riemannian manifold having the sectional curvature K with 0 <
K ≦ L on M , where L is a constant. Then the length ℓ of every closed geodesic

on M satisfies ℓ ≧ 2π/
√
L .

In this context Berger gave examples of metrics on S3 for which this inequality
does not hold. This 3-sphere is called a Berger sphere with a Riemannian metric
from a one-parameter family, which can be obtained from the standard metric by
shrinking along fibers of a Hopf fibration. Motivated by this fact, Chavel con-
structed similar metrics on higher odd-dimensional spheres.

Weinstein ([32]) gave a description of Berger and Chavel examples as geodesic
spheres G(r) (0 < r < π/

√
c ) with tan2(

√
c r/2) > 2 in CP n(c), n ≧ 2. Then

it is known that our geodesic sphere G(r) with tan2(
√
c r/2) > 2 admits a closed

geodesic, say γ on G(r) whose length is shorter than 2π/
√
L , where L is the

maximal sectional curvature of G(r). In the following, we explain this fact in
details. We see that the sectional curvature K of every geodesic sphere G(r) of
radius r (0 < r < π/

√
c ) satisfies sharp inequalities 0 < (c/4) cot2(

√
c r/2) ≦ K ≦

c + (c/4) cot2(
√
c r/2)(= L) at its each point (cf. [19]). The shape operator A

of G(r) (0 < r < π/
√
c ) (with a unit normal vector field N on G(r)) in CP n(c)

is written as: Aξ =
√
c cot(

√
c r)ξ and AX = (

√
c /2) cot(

√
c r/2)X for each

X(⊥ ξ), where ξ is the characteristic vector field on G(r) defined by ξ = −JN .
The closed geodesic γ = γ(s) is nothing but an integral curve γξ of the characteristic
vector field ξ. Since the curve γξ lies on a holomorphic line CP 1(c)(= S2(c)) as a
circle of curvature k =

√
c cot(

√
c r), it is closed with length

ℓ =
2π√
k2 + c

=
2π√

c cot2(
√
c r) + c

=
2π√
c
sin(

√
c r).

Moreover, we see easily that ∇ξξ = ϕAξ = 0, so that the curve γξ = γξ(s) is a
geodesic on G(r), where ∇ is the Riemannian connection on G(r) (0 < r < π/

√
c )

induced from the Riemannian connection ∇̃ in the ambient space CP n(c). We set

2π√
c+ c

4
cot2

(√
c r
2

) >
2π√
c
sin(

√
c r).

Then, solving the above inequality, we have tan2(
√
c r/2) > 2 and vice versa.

In this paper, geodesic spheres G(r) (0 < r < π/
√
c ) with tan2(

√
c r/2) > 2 in

CP n(c), n ≧ 2 are called Berger spheres (cf. [32]).

2. Comments on type A hypersurfaces

First of all we review fundamental terminologies on the theory of real hypersur-
faces (see [21]).
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Let M be a connected real hypersurface immersed into CP n(c), n ≧ 2 through
an isometric immersion with a unit normal local vector field N . The Riemannian
connections ∇̃ of CP n(c) and ∇ of M are related by the following formulas of
Gauss and Weingarten:

(2.1) ∇̃XY = ∇XY + g(AX, Y )N ,

(2.2) ∇̃XN = −AX

for arbitrary vector fields X and Y on M , where g is the Riemannian metric of
M induced from the standard metric of the ambient space CP n(c) and A is the
shape operator of M in CP n(c). An eigenvector of the shape operator A is called
a principal curvature vector of M in CP n(c) and an eigenvalue of A is called a
principal curvature of M in CP n(c). We set Vλ = {v ∈ TM | Av = λv} which is
called the principal distribution associated to the principal curvature λ.

It is well-known that M has an almost contact metric structure induced from the
Kähler structure (J, g) of the ambient space CP n(c). That is, we have a quadruple
(ϕ, ξ, η, g) defined by

g(ϕX, Y ) = g(JX, Y ), ξ = −JN and η(X) = g(ξ,X) = g(JX,N ).

Then they satisfy

ϕ2X = −X + η(X)ξ, η(ξ) = 1 and g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for all vectors X,Y ∈ TM . It is known that these equations imply that ϕξ = 0
and η(ϕX) = 0. In the following, we call ϕ, ξ and η the structure tensor, the
characteristic vector and the contact form on M , respectively.

It follows from (2.1), (2.2), ∇̃J = 0 and JX = ϕX + η(X)N that

(2.3) (∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ,

(2.4) ∇Xξ = ϕAX.

Indeed, for the second equality, we get

∇Xξ = −∇X(JN ) = −∇̃X(JN ) + g(AX, JN )N

= −J∇̃XN + g(AX, JN )N = JAX − g(JAX,N )N = ϕAX.

For the first, we see

(∇Xϕ)Y = ∇X(ϕY )− ϕ∇XY = ∇X(JY − η(Y )N )− ϕ∇XY

= ∇̃X(JY − η(Y )N )− g(AϕY,X)N − ϕ∇XY

= J(∇XY + g(AX, Y )N )−X(η(Y ))ξ + η(Y )AX

− g(AϕY,X)N − ϕ∇XY

= ϕ∇XY + g(∇XY, ξ)N − g(AX, Y )ξ − g(∇XY, ξ)N
− g(Y, ϕAX)N + η(Y )AX − g(AϕY,X)N − ϕ∇XY

= η(Y )AX − g(AX, Y )ξ.
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Denoting the curvature tensor of M by R, we have the equation of Gauss given by

g((R(X,Y )Z,W ) = (c/4){g(Y, Z)g(X,W )− g(X,Z)g(Y,W )(2.5)

+ g(ϕY, Z)g(ϕX,W )− g(ϕX,Z)g(ϕY,W )− 2g(ϕX, Y )g(ϕZ,W )}
+ g(AY,Z)g(AX,W )− g(AX,Z)g(AY,W ).

The following is called the equation of Codazzi:

(∇XA)Y − (∇YA)X = (c/4)(η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ).

Let K be the sectional curvature of M . That is, K is defined by K(X,Y ) =
g(R(X,Y )Y,X), where X and Y are orthonormal vectors on M . Then it follows
from (2.5) that

(2.6) K(X,Y ) = (c/4)
(
1 + 3g(ϕX, Y )2

)
+ g(AX,X)g(AY, Y )− g(AX, Y )2.

We usually call M a Hopf hypersurface if the characteristic vector ξ of M is a
principal curvature vector at each point of M . Type (A) hypersurfaces are the
simplest examples of Hopf hypersurfaces.

In the following, we study type (A) hypersurfaces. Here, type (A) hypersurfaces
mean either homogeneous real hypersurfaces of type (A1) or type (A2). They are

(A1): a geodesic sphere G(r) (0 < r < π/
√
c ) in CP n(c), n ≧ 2,

(A2): a tube T
ℓ(r) of radius r (0 < r < π/

√
c ) around a totally geodesic complex

submanifold CP ℓ(c) (1 ≦ ℓ ≦ n− 2) in CP n(c), n ≧ 3.
The shape operator A of type (A1) hypersurface is expressed in Section 1. The

tangent bundle TM of type (A2) hypersurface is decomposed as: TM = {ξ}R ⊕
Vλ1 ⊕Vλ2 , where Aξ =

√
c cot(

√
c r)ξ, dimVλ1 = 2n−2ℓ−2(≧ 2), dimVλ2 = 2ℓ(≧

2), λ1 = (
√
c /2) cot(

√
c r/2) and λ2 = −(

√
c /2) tan(

√
c r/2).

Type (A) hypersurfaces have many common geometric properties. For examples,
we know

Theorem 1 ([15, 20, 25]). For a connected real hypersurface M in CP n(c), n ≧ 2,
the following local statements hold:
(1) The length of the derivative of the shape operator A of each real hypersurface
M in CP n(c), n ≧ 2 satisfies ∥∇A∥2 ≧ (c2/4)(n − 1). In particular, ∥∇A∥2 =
(c2/4)(n− 1) holds on M if and only if M is of type (A).
(2) A real hypersurface M in CP n(c), n ≧ 2 is of type (A) if and only if the
equality ϕA = Aϕ holds on M , where ϕ and A are the structure tensor and the
shape operator of M , respectively.
(3) A real hypersurface M in CP n(c), n ≧ 2 is of type (A) if and only if the
characteristic vector field ξ is Killing, that is, Lξg = 0 holds on M , where L is the
Lie derivative on M .
(4) A real hypersurface M in CP n(c), n ≧ 2 is of type (A) if and only if every
geodesic γ = γ(s) on M is mapped to a curve having constant the first curvature

κ1 = ∥∇̃γ̇ γ̇∥ along γ, where ∇̃ is the Riemannian connection on CP n(c). In this
case, κ1 depends on the choice of γ.

In some sense Theorem 1 shows that it is not so easy to distinguish between
hypersurfaces of type (A1) and type (A2). Inspired by this result, we pay particular
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attention to geometric properties which discriminate hypersurfaces of type (A1)
from those of type (A2). It follows from (2.6) that

Proposition 1 ([19]). For a homogeneous real hypersurface M in CP n(c) we have
the following:
(1) M is of type (A1) if and only if M has positive sectional curvature K at its
each point. In this case, M has sharp inequalities

0 < (c/4) cot2(
√
c r/2) ≦ K ≦ c+ (c/4) cot2(

√
c r/2).

(2) M is of type (A2) if and only if the minimal sectional curvature of M is null.
Here, M has sharp inequalities

0 ≦ K ≦ c+ (c/4)max{cot2(
√
c r/2), tan2(

√
c r/2)}.

(3) There exist no homogeneous real hypersurfaces all of whose sectional curvatures
are nonpositive.

We next observe the extrinsic shape of geodesics on type (A) hypersurfaces in
CP n(c), n ≧ 2. In this paper for a submanifold Mn in a Riemannian manifold

M̃n+p through an isometric immersion, a curve γ on Mn is called an extrinsic
geodesic if the curve γ, considered as a curve in the ambient space, is a geodesic in

M̃n+p. Needless to say, such a curve γ is also a geodesic on the submanifold Mn.
We compute the number of extrinsic geodesics on type (A) hypersurfaces in a

complex projective space.

Proposition 2 ([26]). For a type (A) hypersurface we find the following:
(1) A geodesic sphere G(r) (0 < r < π/(2

√
c )) has no extrinsic geodesics;

(2) A geodesic sphere G(r) (π/(2
√
c ) ≦ r < π/

√
c ) has just one congruent class

of extrinsic geodesics up to isometries on this sphere;
(3) Every type (A2) hypersurface M has uncountably infinite congruent classes of
extrinsic geodesics up to isometries on this sphere.

We here recall the congruence theorem for geodesics γ on a type (A) hypersurface
M . For a geodesic γ = γ(s) on M we denote by ργ(s) := g(γ̇(s), ξγ(s)) the structure
torsion of the curve γ. Note that the structure torsion ργ is constant along γ.
Indeed, from (2.4), Theorem 1(2), the symmetry of A and the skew-symmetry of
ϕ we find

γ̇ργ = γ̇
(
g(γ̇(s), ξγ(s))

)
= g(γ̇,∇γ̇ξ) = g(γ̇, ϕAγ̇)(2.7)

= g(γ̇, Aϕγ̇) = −g(ϕAγ̇, γ̇) = 0,

so that ργ is a constant with −1 ≦ ργ ≦ 1. Next, for a geodesic γ = γ(s) on a type
(A) hypersurface M we denote by κγ(s) := g(Aγ̇(s), γ̇(s)) the normal curvature of
the curve γ. The normal curvature κγ is also constant. In fact, from Theorem 1(4)
we see γ̇κγ = γ̇(g(Aγ̇, γ̇)) = g((∇γ̇A)γ̇, γ̇) = 0. By using these two invariants ργ
and κγ, the congruence theorem for geodesics can be described as follows:

Lemma 1 ([26]). (1) Two geodesics γ1, γ2 on G(r) (0 < r < π/
√
c ) are congruent

by isometries of this sphere if and only if |ργ1| = |ργ2|.
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(2) Two geodesics γ1, γ2 on a type (A2) hypersurface M are congruent by isometries
of M if and only if |ργ1| = |ργ2| and κγ1 = κγ2.

Using the notion of the structure torsion ργ(s) := g(γ̇(s), ξγ(s)) for a geodesic
γ = γ(s) on a real hypersurface M in CP n(c), n ≧ 2, we give a geometric meaning
of the equality ϕA = Aϕ in Theorem 1(2).

Proposition 3. For a connected real hypersurface M isometrically immersed into
CP n(c), n ≧ 2 the following two conditions are mutually equivalent:

(1) The equality ϕA = Aϕ holds on M , where ϕ and A are the structure tensor
and the shape operator of M , respectively;

(2) The structure torsion ργ of every geodesic γ = γ(s) on M is constant along
the curve γ.

Proof. (1) =⇒ (2): See (2.7).
(2) =⇒ (1): We see that

0 = γ̇ργ = γ̇(g(γ̇, ξ)) = g(γ̇, ϕAγ̇) = (1/2)g((ϕA− Aϕ)γ̇, γ̇)

holds for each geodesic γ on M , which implies that g((ϕA − Aϕ)X,X) = 0 for
every vector X of M . This, together with a fact that ϕA−Aϕ is symmetric, yields
that g((ϕA−Aϕ)X,Y ) = 0 for every X,Y ∈ TM . Hence we get Condition (1). □

At the end of this section we consider the exterior derivative dη of the contact
form η on a real hypersurface M in CP n(c), n ≧ 2, which is given by

(2.8) dη(X,Y ) := (1/2){X(η(Y ))− Y (η(X))− η([X,Y ])} for all X,Y ∈ TM.

By (2.4) and (2.8) we have

dη(X,Y ) =
1

2
g((ϕA+ Aϕ)X,Y ).

This implies that dη = 0, i.e., the contact form η is closed if and only if the equality
ϕA + Aϕ = 0 holds on M . However there does not exist such a real hypersurface
M in CP n(c), n ≧ 2 (see [21]).

So it is natural to recall the following:

Lemma 2 ([21]). Suppose that a connected real hypersurface M in CP n(c), n ≧ 2
satisfies the derivative of the contact form η on M : dη(X,Y ) = kg(ϕX, Y ) for
all X,Y ∈ TM with nonzero constant k. Then M is locally congruent to either
a geodesic sphere G(r) (0 < r < π/

√
c ) or a homogeneous real hypersurface of

type (B), that is, it is realized as a tube of radius r (0 < r < π/(2
√
c )) around a

totally real totally geodesic n-dimensional real projective space RP n(c/4) of constant
sectional curvature c/4.

3. Characterization of geodesic spheres

We first recall the notion of circles in Riemannian geometry (cf. [24]). A smooth
real curve γ = γ(s) parametrized by its arclength s in a Riemannian manifold
M endowed with Riemannian connection ∇ is called a circle of curvature k if it
satisfies ∇γ̇ γ̇ = kY, ∇γ̇Y = −kγ̇ with some nonnegative constant k and a unit
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vector field Y along γ. We may regard a geodesic as a circle of null curvature. It
is well-known that a smooth real curve γ = γ(s) parametrized by its arclength is a
circle if and only if it satisfies ∇γ̇∇γ̇ γ̇ = −k2γ̇ with some nonnegative constant k
and that the circle γ = γ(s) can be defined for −∞ < s < ∞ when M is complete.

Next, standing on the ambient space CP n(c), n ≧ 2, we observe the extrinsic
shape of some geodesics on geodesic spheres G(r), (0 < r < π/

√
c ). For every

point p of G(r) and each unit vector v(∈ TpG(r)) orthogonal to the characteristic
vector ξp we take the geodesic γ = γ(s) on G(r) with initial condition that γ(0) = p
and γ̇(0) = v. Then it follows from the constancy of the structure torsion ργ :=
g(γ̇, ξ) for the curve γ that γ̇(s) is orthogonal to ξγ(s) for each s ∈ (−∞,∞),
so that the shape operator A of G(r) satisfies Aγ̇(s) = (

√
c /2) cot(

√
c r/2)γ̇(s).

This, together with (2.1) and (2.2), yields that ∇̃γ̇ γ̇ = (
√
c /2) cot(

√
c r/2)N and

∇̃γ̇N = −(
√
c /2) cot(

√
c r/2)γ̇. Hence we get the following:

Proposition 4 ([18]). Every geodesic γ = γ(s) on G(r) (0 < r < π/
√
c ) satisfy-

ing that the initial vector γ̇(0) is perpendicular to the characteristic vector ξγ(0) is
mapped to a circle of the same positive curvature which is independent of the choice
of γ.

Motivated by Proposition 4, we consider the following two conditions on the
extrinsic shape of geodesics on real hypersurfaces M :

(ES1) At each point p of M , there exist orthonormal vectors v1, v2, . . . , v2n−2 ∈
TpM orthogonal to ξp satisfying the following:

(i) geodesics γi = γi(s) (1 ≦ i ≦ 2n − 2) on M with γi(0) = p and γ̇i(0) = vi
are mapped to circles of positive curvature in CP n(c),

(ii) geodesics γij = γij(s) (1 ≦ i < j ≦ 2n − 2) on M with γij(0) = p and

γ̇ij(0) = (vi+vj)/
√
2 are mapped to circles of positive curvature in CP n(c).

(ES2) At each point p of M , there exist orthonormal vectors v1, v2, . . . , v2n−2 ∈
TpM orthogonal to ξp satisfying that geodesics γi = γi(s) (1 ≦ i ≦ 2n − 2) on M
with γi(0) = p and γ̇i(0) = vi are mapped to circles of the same positive curvature
in CP n(c).

Weakening Condition (ES2), we also consider the following condition:
(ES2’) At each point p of M , there exist orthonormal vectors v1, v2, . . . , v2n−2 ∈

TpM orthogonal to ξp satisfying that geodesics γi = γi(s) (1 ≦ i ≦ 2n − 2) on M
with γi(0) = p and γ̇i(0) = vi are mapped to circles of positive curvature in CP n(c).
The difference between Conditions (ES2) and (ES2’) is that the curvatures of circles
are the same or not. Note that Condition (ES2’) is related to a characterization of
all homogeneous real hypersurfaces of types (A1), (A2), (B), (C), (D) and (E) in
CP n(c).

Theorem 2 ([2, 6, 10]). For a connected real hypersurface M in CP n(c), n ≧ 2,
M is locally congruent to a homogeneous real hypersurface in this ambient space if
and only if M satisfies Condition (ES2′).

Combining Conditions (ES1), (ES2), (ES2’) with Propositions 1, 2 and Lemma
2, we establish the following:
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Theorem 3 ([16, 18, 26]). For a connected real hypersurface M in CP n(c), n ≧ 2,
the following four conditions are mutually equivalent:

(1) M is locally congruent to a geodesic sphere G(r) (0 < r < π/
√
c );

(2) M satisfies Condition (ES2) and has at most one congruent class of extrin-
sic geodesics with respect to the full isometry group I(M) of M ;

(3) M satisfies Condition (ES2′) and has positive sectional curvature K on M ;
(4) M has nonnegative sectional curvature K on M and the exterior derivative

dη of the contact form η on M satisfies dη(X,Y ) = kg(ϕX, Y ) for all
X,Y ∈ TM with some nonzero constant k.

As immediate consequences of Theorem 3 we get the following which are char-
acterizations of Berger spheres:

Proposition 5 ([12]). Let M be a connected real hypersurface of CP n(c), n ≧ 2
through an isometric immersion. Then M is locally congruent to a Berger sphere,
namely a geodesic sphere G(r) (0 < r < π/

√
c ) with tan2(

√
c r/2) > 2, with respect

to the full isometry group U(n + 1) of the ambient space CP n(c) if and only if at
each point p of M there exists an orthonormal basis v1, v2, . . . , v2n−2, ξp of TpM
such that all geodesics γi = γi(s) (1 ≦ i ≦ 2n − 2) with initial condition that
γi(0) = p and γ̇i(0) = vi are mapped to circles of the same positive curvature k(p)
with k(p) <

√
c /(2

√
2 ) in the ambient space CP n(c), where ξp is the characteristic

vector of M at p ∈ M . In this case, the function k = k(p) on M is automatically
constant with k = (

√
c /2) cot(

√
c r/2).

Proposition 6 ([12]). Let M be a connected real hypersurface of CP n(c), n ≧ 2
through an isometric immersion. Then M is locally congruent to a Berger sphere
if and only if M satisfies the following two conditions.

(1) There exists a positive constant k with k <
√
c /(2

√
2 ) such that the ex-

terior derivative dη of the contact form on M satisfies either dη(X,Y ) =
kg(ϕX, Y ) for all X,Y ∈ TM or dη(X,Y ) = −kg(ϕX, Y ) for all X,Y ∈
TM , where g and ϕ are the Riemannian metric and the structure tensor on
M , respectively.

(2) There exists a point x of M satisfying that every sectional curvature of M
at x is positive.

In the statement of Proposition 6, if we remove Condition (2), this proposition
does not hold. The Berger sphere and a certain homogeneous real hypersurface of
type (B) satisfy Proposition 6(1). The following lemma is worth mentioning.

Lemma 3. Let G(r) be a geodesic sphere of radius r (0 < r < π/
√
c ) in

CP n(c), n ≧ 2 and L be the maximal sectional curvature of this sphere. Then
the following three conditions are mutually equivalent:

(1) The radius r satisfies an inequality tan2(
√
c r/2) > 2;

(2) The sectional curvature K of G(r) satisfies sharp inequalities δL ≦ K ≦ L
for some δ ∈ (0, 1/9) at its each point;

(3) The length of every integral curve of the characteristic vector field ξ on G(r)

is shorter than 2π/
√
L .
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Needless to say, for each geodesic sphere G(r) (0 < r < π/
√
c ) in CP n(c), n ≧ 2

every integral curve of the characteristic vector field ξ on G(r) is a geodesic.
We here recall the work of Li, Vrancken and and Wang ([14]), which gives a

characterization of three dimensional Berger spheres as Lagrangian submanifolds
of CP 3. They show the following (for details, see Theorem 1.2 in [14]): Let ι be
a Lagrangian isometric immersion from an open part of one of the homogeneous
3-manifolds into a complex space form M3(c)(= CP 3(c), CH3(c) or C3). Then
c > 0 and ι is minimal and M3 is locally congruent to the Berger sphere.

4. Length spectrum of geodesic spheres

Using the structure torsion ργ for a geodesic γ on G(r) in CP n(c), n ≧ 2, we see
that the curve γ is closed or not. Moreover, when the curve γ is closed, we find its
length which is denoted by length(γ).

Theorem 4 ([4]). Let γ be a geodesic on a geodesic sphere G(r) of radius r (0 <
r < π/

√
c ) in CP n(c), n ≧ 2.

(1) If the structure torsion of γ is ±1, then γ is closed and its length is
(2π/

√
c ) sin(

√
c r).

(2) If γ has null structure torsion, then γ is also closed and its length is
(4π/

√
c ) sin(

√
c r/2).

(3) When the structure torsion of γ is of the form sin θ (0 < |θ| < π/2), it is
closed if and only if

sin θ =
±q

sin(
√
c r/2)

√
p2 tan2(

√
c r/2) + q2

with some relatively prime positive integers p and q with q < p tan2(
√
c r/2).

In this case, its length is

length(γ) =


(4π/

√
c )

√
p2 sin2(

√
c r/2) + q2 cos2(

√
c r/2)

if pq is even,

(2π/
√
c )

√
p2 sin2(

√
c r/2) + q2 cos2(

√
c r/2)

if pq is odd.

When we study the length spectrum of geodesics on a Riemannian manifold
N , in order to avoid the influence of the action of the isometry group of N , we
consider the moduli space of geodesics under the action of isometries. The moduli
space Geod(N) of geodesics on N is the quotient space of the set of all geodesics
on N under the congruency relation. We call a smooth curve σ open if it is not
closed. For convenience we set length(σ) = ∞ for an open curve σ. We define the
length spectrum LN : Geod(N) → R ∪ {∞} of N by LN([γ]) = length(γ), where
[γ] denotes the congruent class containing a geodesic γ. We also call the image
Lspec(N) = LN(Geod(N))∩R the length spectrum of N . For example, the length
spectrum of a standard unit sphere is Lspec(Sm) = {2π}.
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As a direct consequence of Theorem 4, for a geodesic sphere G(r) of radius r in
CP n(4), we can see that

Lspec(G(r)) = {π sin 2r} ∪ {2π sin r}

∪

{
2π

√
p2 sin2 r + q2 cos2 r

∣∣∣∣∣ p and q are relatively prime
positive integers which satisfy
pq is even and q < p tan2 r

}

∪

{
π

√
p2 sin2 r + q2 cos2 r

∣∣∣∣∣ p and q are relatively prime
positive integers which satisfy
pq is odd and q < p tan2 r

}
.

Therefore we obtain the following.

Theorem 5 ([4]). On a geodesic sphere G(r) (0 < r < π/
√
c ) in CP n(c), there

exist countably infinite congruent classes of closed geodesics. Moreover the length
spectrum Lspec(G(r)) of G(r) is a discrete unbounded subset in the real line R.

For a length spectrum λ ∈ Lspec(N) we call the cardinality mN(λ) of the set
L−1

N (λ) the multiplicity of λ. When the multiplicity of a length spectrum is 1 we
say it is simple. Clearly for a geodesic sphere G(r) in a complex projective space,
we see by the expression of Lspec(G(r)) that mG(r)(λ) < ∞ at each λ. We here
study the first, the second and the third length spectrum, that is, the minimum,
the second minimum and the third minimum of the length spectrum.

Proposition 7 ([4]). Let G(r) be a geodesic sphere of radius r (0 < r < π/
√
c ) in

CP n(c).

(1) The first length spectrum of G(r) is (2π/
√
c ) sin(

√
c r), which is the length

of geodesics with structure torsion ±1. It is simple.
(2) The second length spectrum of G(r) is also simple. When 0 < r ≦ π/(2

√
c ),

it is (4π/
√
c ) sin(

√
c r/2), which is the length of geodesics with null struc-

ture torsion. When π/(2
√
c ) < r < π/

√
c , it is 2π/

√
c , which is the length

of geodesics with structure torsion ± cot(
√
c r/2).

(3) The third length spectrum is also simple. When π/(2
√
c ) < r < π/

√
c , it

is (4π/
√
c ) sin(

√
c r/2), which is the length of geodesics with null structure

torsion. When
√
2m− 1 ≦ cot(

√
c r/2) <

√
2m+ 1 (m = 1, 2, . . .), in

particular, 0 < r ≦ π/(2
√
c ), it is (2π/

√
c )

√
4m(m+ 1) sin2(

√
c r/2) + 1,

which is the length of geodesics with structure torsion
±1/

(
sin(

√
c r/2)

√
(2m+ 1)2 tan2(

√
c r/2) + 1

)
.

Every length spectrum except the first one we find the following lemma of Klin-
genberg’s type holds, which is well-known for some geometers.

Corollary 1 ([4]). Let G(r) be a geodesic sphere of radius r (0 < r < π/
√
c )

in CP n(c). Except geodesics with structure torsion ±1, every geodesic γ on G(r)

satisfies length(γ) > 4π/
√
c
(
4 + cot2(

√
c r/2)

)
.
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Length spectrum is of course not necessarily simple. For example when M is a
geodesic sphere of radius π/4 in CP n(4), we have

Lspec(M) = {π,
√
2 π,

√
5 π,

√
10 π,

√
13 π,

√
17 π, 5π,

√
26 π,

√
29 π

√
34 π,

√
37 π,

√
41 π,

√
50 π,

√
53 π,

√
58 π,

√
61 π,

√
65 π,

√
73 π, . . .}

and the multiplicity of
√
65 π is two; it is the common length of geodesics of

structure torsions 3/
√
65 and 7/

√
65 . Every spectrum which is smaller than

√
65 π

is simple.

Theorem 6 ([4]). Let G(r) be a geodesic sphere of radius r (0 < r < π/
√
c ) in

CP n(c).

(1) If tan2(
√
c r/2) is irrational, then every length spectrum of G(r) is simple.

(2) If tan2(
√
c r/2) is rational, then the multiplicity of each length spectrum

of G(r) is finite. But it is not uniformly bounded; lim supλ→∞mG(r)(λ) =
∞. In this case, the growth order of mG(r) is not so rapid. It satisfies
limλ→∞ λ−δmG(r)(λ) = 0 for arbitrary positive δ.

This theorem guarantees that on a geodesic sphere of radius r with irrational
tan2(

√
c r/2) in a complex projective space, two closed geodesics are congruent

if and only if they have the same length. On the other hand, if tan2(
√
c r/2) is

rational, this theorem shows that we can not classify congruent classes of geodesics
only by their length.

Finally we make mention of the growth of the number of congruent classes of
geodesics with respect to their length spectrum for a geodesic sphere in a complex
projective space. For a Riemannian manifold N we denote by nN(λ) the cardinality
of the set {[γ] ∈ Geod(N) | LN([γ]) ≦ λ}.

Theorem 7 ([4]). For a geodesic sphere G(r) of radius r (0 < r < π/
√
c ) in

CP n(c) we have

lim
λ→∞

nG(r)(λ)

λ2
=

3c
√
c r

8π4 sin(
√
c r)

.

The following problem is still open.

Problem 1. Find a geometric meaning of the equality

lim
r→0

lim
λ→∞

nG(r)λ

λ2
=

3c

8π4
.

Remark. On the other hand, it is easy to find a geometric meaning of the equality

lim
r→π/

√
c
lim
λ→∞

nG(r)λ

λ2
= ∞

because of a fact that lim
r→π/

√
c
G(r) = CP n−1(c).
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5. Appendixes

Let M denote a connected real hypersurface isometrically immersed into CP n(c),
n ≧ 2. Then M has two almost contact metric structures (ϕ, ξ, η, g) associated
to a local unit normal vector N on M and (ϕ,−ξ,−η, g) associated to −N (see
Section 2). So it is natural that we call a real hypersurface M Sasakian if M
satisfies either (∇Xϕ)Y = g(X,Y )ξ − η(Y )X for all X,Y ∈ TM or (∇Xϕ)Y =
−g(X,Y )ξ + η(Y )X for all X,Y ∈ TM (see Theorem 6.3 in [5]). A Sasakian
manifold is called a Sasakian space form of constant ϕ-sectional curvature c if the
sectional curvature K(u, ϕu) := g(R(u, ϕu)ϕu, u) satisfies K(u, ϕu) = c for each
unit vector u orthogonal to ξ.

In pp. 114-115 of [5], we find a standard construction of Sasakian space forms.
But, in general all Sasakian space forms M(c) (c ̸= 1) can be realized as totally
η-umbilic real hypersurfaces in nonflat complex space forms (= CP n(c), CHn(c))
(see [4]). The following is the unique existence theorem of Sasakian space forms.

Lemma 4 ([31]). For any two simply connected complete Sasakian manifolds of
constant ϕ-sectional curvature c, there exists an isomorphism between them which
preserves their almost contact metric structures.

We obtain easily the following:

Proposition 8 ([1]). For a connected real hypersurface M isometrically immersed
into CP n(c), n ≧ 2, the following are mutually equivalent:
(1) M is a Sasakian manifold;
(2) M is a Sasakian space form of constant ϕ-sectional curvature d, where d is
automatically expressed as d = c+ 1;
(3) The shape operator A of M is written either AX = −X + (c/4)η(X)ξ for all
X,Y ∈ TM or AX = X − (c/4)η(X)ξ for all X,Y ∈ TM ;
(4) M is locally congruent a geodesic sphere G(r) (0 < r < π/

√
c ) with

(
√
c /2) cot(

√
c r/2) = 1 in CP n(c).

By virtue of the works ([3, 4]) and Lemma 4 we find

Theorem 8. Let M(c) be a complete simply connected Sasakian space form of
constant ϕ-sectional curvature c(> 1). Suppose that c is irrational. Then for any
closed geodesics γ1 = γ1(s) and γ2 = γ2(s) on M(c) they are congruent by some
isometry on this space if and only if they have the same common length.

We next recall a fact that an isometric immersion f of a Kähler manifold with
Kähler structure J into a Euclidean sphere has parallel second fundamental form
σ if and only if σ is J-invariant , i.e., σ(JX, JY ) = σ(X,Y ) holds for each vector
X, Y on M (cf. [9, 13, 22]). Motivated by this fact, for a real hypersurface M
isometrically immersed into CP n(c), n ≧ 2 we consider the following condition
concerning ϕ-invariance of the shape operator A of M .

The shape operator A of M is called ϕ-invariant if A satisfies

g(AϕX, ϕY ) = g(AX, Y ), i.e., σ(ϕX, ϕY ) = σ(X,Y )
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for all vectors X and Y on M . We classify real hypersurfaces M having ϕ-invariant
shape operator A in CP n(c), n ≧ 2 and give a geometric meaning such hypersurfces
M by observing the extrinsic shape of some geodesics and integral curves of ξ on
M .

Theorem 9 ([17]). Let M be a connected real hypersurface of CP n(c), n ≧ 2
through an isometric immersion. Then the following conditions (1), (2) and (3)
are mutually equivalent:

(1) M is locally congruent to a homogeneous real hypersurface of type (A) of
radius π/(2

√
c ). That is, M is locally congruent to either a geodesic sphere

G(π/(2
√
c )) or a tube T ℓ(π/(2

√
c )) around a totally geodesic CP ℓ(c) (1 ≦

ℓ ≦ n− 2) in the ambient space CP n(c).
(2) The shape operator A of M is ϕ-invariant.
(3) M satisfies both of Condition (ES2) in Section 3 and a condition that there

exists at least one integral curve of the characteristic vector field ξ of M
which is mapped to a geodesic in CP n(c).

At the end of this paper, as an application of the theory of real hypersurfaces in
CP n(c) we shall discuss some homogeneous submanifolds in Euclidean sphere. We
shall explain an idea to construct a certain class of (Riemannian) submanifolds in a
sphere. We denote by (M, ιM) a real hypersurface M of CP n(c), n ≧ 2 through an
isometric immersion ιM : M → CP n(c). In the following, we regard real hypersur-
faces M in CP n(c) as submanifolds of the sphere Sn(n+2)−1((n+1)c/(2n)) through
f1 ◦ ιM , where f1 is the first standard (parallel equivariant) minimal embedding of
CP n(c) into Sn(n+2)−1((n+ 1)c/(2n)).

We here give the definition and fundamental geometric properties of f1. The
embedding f1 is defined by eigenfunctions of the first eigenvalue of the Laplacian ∆
on CP n(c) (for details, see [8, 30]). In submanifold theory, this minimal embedding
f1 is well-known as the only example of a minimal full immersion with parallel
second fundamental form of a complex projective space endowed with Fubini-Study
metric into a Euclidean sphere. The inner product of the first normal space of f1
is given by

⟨σ1(X,Y ), σ1(Z,W )⟩ = −(c/(2n))⟨X,Y ⟩⟨Z,W ⟩+ (c/4)(⟨X,W ⟩⟨Y, Z⟩(5.1)

+ ⟨X,Z⟩⟨Y,W ⟩+ ⟨JX,W ⟩⟨JY, Z⟩+ ⟨JX,Z⟩⟨JY,W ⟩).
Here, σ1 is the second fundamental form of the embedding f1. Equation (5.1) yields
the following properties of f1:

(i) f1 is minimal;
(ii) σ1(JX, JY ) = σ1(X,Y ) for allX, Y ∈ TCP n(c) (namely, σ1 is J-invariant);

(iii) ∥σ1(X,X)∥ =
√

(n− 1)c/(2n) for each unit vector X on CP n(c) (that is,

f1 is
√

(n− 1)c/(2n) -isotropic (cf. [27])).

Thus we obtain a family of submanifolds {(M2n−1, f1 ◦ ιM)} in the sphere. This
class contains some homogeneous submanifolds of Sn(n+2)−1((n+1)c/(2n)), that is,
they are expressed as orbits of some subgroups of the isometry group SO(n(n+2))
of the ambient sphere. Indeed, if we take a homogeneous real hypersurface M of
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CP n(c), the immersion f1 ◦ ιM gives a homogeneous submanifold M of the sphere,
so that M has constant mean curvature, i.e., the length of the mean curvature
vector of M is constant. However, the second fundamental form of the immersion
f1 ◦ ιM is not parallel for each real hypersurface M of CP n(c) (cf. [9]). So, it is
natural to pose the following problem:

Problem 2. Classify submanifold (M, f1◦ιM) of Sn(n+2)−1((n+1)c/(2n)) satisfying
that the immersion f1 ◦ ιM has parallel mean curvature vector with repect to the
normal connection.

The following is an answer to Problem 2:

Lemma 5 ([23]). Let M be a connected real hypersurface of CP n(c), n ≧ 2 through
an isometric immersion ιM and f1 : CP n(c) → Sn(n+2)−1((n + 1)c/(2n)) be the
first standard minimal embedding. Then M is locally congruent to the geodesic
sphere G(r) with tan2(

√
c r/2) = 2n + 1 in CP n(c) if and only if the immersion

f1 ◦ ιM : M → Sn(n+2)−1((n + 1)c/(2n)) has parallel mean curvature vector with
respect to the normal connection. Moreover, this submanifold (M, f1 ◦ ιM) is locally
homogeneous in this ambient sphere.

In order to establish our Theorem 10 we need the following two lemmas:

Lemma 6 ([23]). The geodesic sphere G(r) with tan2(
√
c r/2) = 2n + 1 is a

Sasakian manifold with respect to the almost contact metric structure induced from
the Kähler structure (J, g) on CP n(c), n ≧ 2 if and only if c = 8n + 4. Fur-
thermore, this geodesic sphere is a Sasakian space form of constant ϕ-sectional
curvature 8n+ 5.

Lemma 7 ([23]). We consider the following isometric embedding f̃ of the geodesic
sphere G(r) (0 < r < π/

√
c ) with tan2(

√
c r/2) = 2n + 1 in CP n(c), n ≧ 2 into

an N(≧ n(n + 2) − 1)-dimensional sphere SN(c̃) of constant sectional curvature
c̃(≦ (n+ 1)c/(2n)).

(1) When N > n(n+ 2)− 1, f̃ is given by

f̃ = ι ◦ (f1 ◦ ιG(r)) : G(r)
f1◦ιG(r)−→ Sn(n+2)−1((n+ 1)c/(2n))

ι−→ SN(c̃),

where ι is a totally umbilic embedding, so that (n+ 1)c/(2n) ≧ c̃.

(2) When N = n(n+2)−1, f̃ is nothing but f1◦ιG(r), so that (n+1)c/(2n) = c̃.

Then our geodesic sphere is homogeneous in SN(c̃) and has nonzero parallel mean
curvature vector with respect to the normal connection in this sphere.

Therefore, in view of Lemmas 5, 6 and 7 we establish the following:

Theorem 10 ([23]). (1) For each of c > 0, n(≧ 2), N > n(n+2)−1 and c̃ ≦ (n+
1)c/(2n), there exists a (2n−1)-dimensional submanifold M in an N-dimensional
sphere SN(c̃) of constant sectional curvature c̃, which has the following properties:

(A) M is a homogeneous submanifold which has nonzero parallel mean curvature
vector with respect to the normal connection in SN(c̃);
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(B) M is a Berger sphere. Here, this means that M is an odd dimensional
compact simply connected Riemannian manifold having the property that
all sectional curvatures of M lie in the interval [δK,K] with some constant

δ ∈ (0, 1/9) but it has a closed geodesic whose length is shorter than 2π/
√
K,

where K is a positive constant.
(C) When c = 8n + 4, M is a Sasakian space form of constant ϕ-sectional

curvature 8n+5.

(2) For each of c > 0, n(≧ 2), when N = n(n+ 2)− 1, there exists also a (2n−1)-
dimensional submanifold M in an N-dimensional sphere SN(c̃) of constant sec-
tional curvature c̃ = (n+ 1)c/(2n), which has the above properties (A), (B), (C).

We finally pose the following open problem:

Problem 3. Let f1 be a mimimal parallel full immersion of a complex n-

dimensional compact Hermitian symmetric space M̃n into a Euclidean sphere

S2n+p(c̃). If there exists a real hypersurface (M2n−1, ιM2n−1) of M̃n satisfying that
the corresponding submanifold (M2n−1, f1◦ιM2n−1) has parallel mean curvature vec-
tor with respect to the normal connection in the ambient sphere S2n+p(c̃), is our

Hermitian symmetric space M̃n holomorphically isometric to a complex projective
space CP n(c), n ≧ 2 of constant holomorphic sectional curvature c = 2nc̃/(n + 1)
and p = n2 − 1?
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