Title:

Relationship between thread depth and fixation strength in cancellous bone screw

Yu Aorigele, M.D.¹, Shinji Imade, M.D., Ph.D.¹, Satoshi Furuya, Ph.D.², Koichiro Nakazawa², Kazuma Shiraishi, Ph.D.², Toshihiko Kawamura, Ph.D.³, and Yuji Uchio, M.D., Ph.D.¹

¹Department of Orthopaedic Surgery, Shimane University Faculty of Medicine, Shimane, Japan.

² Department of Manufacturing Technology, Shimane Institute for Industrial Technology, Shimane, Japan

³Division of Medical Informatics, Shimane University Faculty of Medicine, Shimane, Japan.

Address correspondence and reprints to Shinji Imade, M.D., Ph.D. Department of Orthopaedic Surgery, Shimane University Faculty of Medicine 89-1, Enya, Izumo, Shimane, 693-8501, Japan Tel: +81-853-20-2242 E-mail: imades@med.shimane-u.ac.jp

Word Count: 2994 words

Acknowledgements: None

1 Abstract

2	Background: Clarifying the effect of each parameter of screw design on its fixation
3	strength is critical <u>in the development of any type of screw</u> . The purpose of this study
4	was to clarify the relationship between the thread depth and fixation strength of metal
5	screws for cancellous bone.
6	<i>Methods:</i> Nine types of custom-made screw <u>s</u> with <u>the</u> only changed variable being the
7	thread depth were manufactured. Other elements were fixed at a major diameter of 4.5
8	mm, a thread region length of 15 mm, a pitch of 1.6 mm, and a thread width of 0.20
9	mm. The pull-out strength and insertion torque of each screw were measured for each of
10	two foam-block densities (10 or 20 pcf). The correlation between the thread depth of the
11	screw and the mechanical findings were investigated with single regression analysis.
12	Results: Regardless of the foam-block density, the pull-out strength significantly
13	increased as the thread depth increased from 0.1 mm to 0.4 mm; after that, the
14	increase was more gradual (p<0.01, respectively). The relationship between the thread
15	depth and insertion torque was similar. In addition, <u>the</u> insertion torque tended to be
16	more strongly affected by screw depth than <u>the</u> pull-out strength (2.6 times at 20 pcf
17	and 1.4 times at 10 pcf).

18 Conclusions: <u>The</u> pull-out strength of 4.5-mm-diameter metal screws in a cancellous

- 19 bone model <u>was found to be biphasic, although linearly correlated with the change</u>
- 20 in screw depth in both phases. The boundary of the correlation was 0.4 mm
- 21 regardless of the density of the bone model, with the effect of screw depth on pull-
- 22 out strength beyond that being small in comparison.
- 23 Keywords: Cancellous bone screw, Screw thread depth, Pull-out strength, Insertion
- 24 torque
- 25

26 Introduction

28	Screws are widely used as fixation devices for the surgical treatment of fractures.
29	Fractures involving the articular surface can damage the integrity of the articular
30	cartilage and articular surfaces, so <u>that</u> even simple fractures require surgical fixation to
31	reduce the rate of post-injury disability; in such cases, metal screws are more often used
32	than screw-plate systems [1]. The fixation strength of screws required for stable internal
33	fixation clearly needs to be maintained until the fracture is clinically healed [2-4]. Pull-
34	out strength is one of the most important parameters to judge the fixation strength of a
35	screw [5,6].
36	Unfortunately, there is no known "gold standard" for bone screw shape, but the
37	pull-out strength of screws tends to increase with a wider major diameter [7,8],
38	narrower pitch [9], and deeper thread depth [10,11]. The relationship between pitch and
39	thread depth is one of the most important factors; the two changes in inverse
40	relationship when other aspects of thread design (thread width, flank angle, etc.) are
41	kept uniform. In other words, a shallower thread depth is required at <u>narrower</u> pitches.
42	Therefore, "thread shape factor" (TSF) has been proposed as a concept integrating
43	both measures [12].

44	In designing screws for different purposes, it is important to know the effect
45	of individual changes in each element on the screw fixation strength. Several authors
46	have reported empirical test results on the effect of screw depth on screw fixation
47	strength [10-14], but these studies are comparisons between existing products, and the
48	other screw elements are non-uniform, suggesting only the relative effect of screw
49	depth on pullout strength. To our knowledge, no experiments have been reported with
50	only screw depth as a variable. We hypothesized that screw depth and screw fixation
51	strength are positively correlated. Therefore, our hypothesis was that there would be a
52	linear relationship between the screw thread depth and the fixation strength of the screw.
53	In order to investigate this question, we fabricated custom-made screws with the only
54	changed variable being the thread depth and conducted a demonstration test on the pull-
55	out strength. The purpose of this study was to clarify the relationship between the thread
56	depth and fixation strength of metal screws designed specifically for cancellous bone.
57	

58 Materials and Methods

59

60 Preparation of experimental screws

61	A brass (C2801) rod with a diameter of 6 mm was cut into shorter rods with
62	lengths of 50 mm using a disc grinder. Experimental screws were made from those short
63	rods using a numerical control lathe (MTS4, Nano System Solutions, Yokohama,
64	Japan). Most elements of the screw had fixed values: a total length of 40 mm, a screw
65	head length and diameter of 10 mm and 6 mm, a shaft length and major diameter of 15
66	mm and 4.5 mm, a thread region with a length of 15 mm, a pitch of 1.6 mm, and a
67	symmetrical thread with a thread width of 0.20 mm. Only the minor diameter was
68	changed from 4.3 mm to 2.7 mm in 0.2-mm increments (Fig. 1). Each minor diameter
69	was converted to a thread depth measurement and given a name from TD0.1 to TD0.9
70	(Fig. 2 A-I). <u>The</u> screw with a minor diameter of 4.3 mm was <u>called</u> TD0.1. All screws
71	were measured using a 3D multisensor measurement system (SmartScope® Vantage TM
72	450, Quality Vision International Inc., Rochester, NY). Using this system, the major
73	diameter, minor diameter, pitch, and thread width of each screw were verified and
74	recorded (Fig. 3 A-I).

75

Simulated bone

77	Polyurethane foam blocks (TANAC Co. Ltd., Gifu, Japan) with densities of 10
78	and 20 pounds per cubic foot (PCF), 0.16 and 0.32 g/cm ³ respectively, were used as
79	simulated bone. Synthetic blocks allow the researcher to minimize inter-specimen
80	variabilities respecting the regulations ASTM F1839-08, and the chosen foam densities
81	mimic those of osteoporotic bone and normal cancellous bone, respectively [5]. The
82	blocks were cut to $40 \times 20 \times 20$ mm, with 90 small blocks prepared at each density. A
83	20-mm-long hole parallel to the long axis was pre-drilled into the center of the bottom
84	surface of the block using a drilling machine. For each screw, the diameter of the pre-
85	drilled hole was the same as the screw's inner diameter.
86	
87	Pull-out test
88	To measure the fixation strengths of screws, a pull out test was performed 10
	To measure the fixation strengths of screws, a pun-out test was performed to
89	times for each screw. The screw was inserted into the <u>pre-drilled</u> hole by self-tap, up to
89 90	times for each screw. The screw was inserted into the <u>pre-drilled</u> hole by self-tap, up to 15 mm from the tip of the screw (<u>the</u> overall length of thread part). Two custom-made
89 90 91	times for each screw. The screw was inserted into the <u>pre-drilled</u> hole by self-tap, up to 15 mm from the tip of the screw (<u>the</u> overall length of thread part). Two custom-made fixtures were connected to a mechanical loading machine (model 5565, Instron, Canton,

93 the diameter of the head), and it fixed the screw head. The lower fixture <u>had</u> a 90 x 30 x

94	8 mm stainless-steel plate with an 8-mm-diameter hole in the center, and the pull-out
95	strength was measured by passing a screw through that hole and hooking the bone block
96	on the stainless-steel plate. After applying a 5-N preload, the screw pull-out test was
97	performed in the direction parallel to the screw axis at 5 mm/min as indicated by ASTM
98	F543. The pull-out strength was defined as the peak force before pull-out.
99	
100	Insertion torque
101	Each screw was inserted into the pre-drilled hole by self-tap using an automatic
102	rotating torque screw-driver (NTS-6-S10; Sugisaki Seiki, Ibaraki, Japan). As a bushing
103	support, a wood block (30 x 30 x 15 mm) with an 8-mm-diameter hole in the center
104	was installed and the screws passed through that hole. The insertion torque was
105	measured under the conditions of a load less than 10 N and 18 rpm in a rotation speed
106	and was recorded every 0.01 sec. The maximum value recorded during the initial four
107	revolutions of the specimen was selected as the value.
108	
109	Statistical analysis
110	The data were analyzed with JMP 16 (SAS Institute, Cary, NC, USA). The

relationship between the true value of the thread depth and the pull-out strength or the 111

- 112 insertion torque on each screw was analyzed using simple regression analysis. *P*-values
- 113 less than 0.05 were considered to indicate significance.
- 114

115	Results
116	
117	Screw size
118	The mean values of the constant elements were 4.514 ± 0.026 mm in major
119	diameter, 1.592±0.001 mm in pitch, and 0.213±0.001 mm in thread width. The minor
120	diameter of each screw was machined with an accuracy of 0.06 mm. Details are shown
121	in Table 1. There were no unintended thread breaks or cracks after the experiment.
122	
123	Pull-out strength
124	The pull-out strength significantly increased from TD0.1 to TD0.4; after that, it
125	largely plateaued, regardless of the density of the simulated bone (Fig. 5). The mean
126	pull-out strength and stiffness of each screw are shown in Table 2.
127	Based on the above results, we divided the graph into two parts. Part A was from
128	TD0.1 to TD0.4 and Part B was from TD0.4 to TD0.9. In the scatter plot of the true
129	values of the thread depth and the pull-out strengths, a prediction formula was
130	established for each part. In all parts, a significant positive correlation was found
131	between the thread depth and the pull-out strength (Fig. 6-A,B). In the 20-pcf foam, the
132	coefficient of part A was 1386, but that of part B was 97, which was only 7% of part A

133 (Fig. 6-A). In the 10-pcf foam, the coefficient of part A was 443, but that of part B was
134 86, which was 19% of part A (Fig. 6-B).

135

136 Insertion torque

137 Insertion torques could be measured for all screws in the 20-pcf foam. The scatter plot of the true value of the screw depths and insertion torques was similar to the scatter 138 139 plot of the screw pull-out strengths. From TD0.4 to TD0.9, there was a mild correlation 140 between the thread depth and the insertion torque (Fig.7-A). On the other hand, for the 141 10-pcf foam, the insertion torques for TD0.1, TD0.2 and TD0.3 could not be measured 142 because the torque generated was below the detection power of the measuring machine. 143 In the measurable range, there was a mild correlation between thread depth and 144 insertion torque, as with the 20-pcf foam (Fig.7-B). 145 146 *Relationship between pull-out strength and insertion torque* 147 For the pull-out strength and insertion torque from TD0.4 to TD0.9, the rate of 148 increase per 0.1-mm thread depth from each baseline (constant term) was calculated. At 149 20 pcf, the pull-out strength increased by about 1.7% and the insertion torque increased by about 4.4%, and the effect on the insertion torque was appr. 2.6 times higher than 150

- 151 that on the pull-out strength. At 10 pcf, the pull-out strength increased by about 5.5%,
- and the insertion torque increased by about 7.7%; the effect on the insertion torque was
- approx. 1.4 times higher than that on the pull-out strength.

155 **Discussion**

157	As we predicted, a linear relationship was found between the screw thread depth
158	and the fixation strength of the screws. Additionally, this relationship was biphasic: the
159	pull-out strength increased significantly from a thread depth of 0.1 mm to 0.4 mm and
160	then more gradually after that. The relationship between the insertion torque and the
161	pull-out strength also showed a similar relationship to thread depth, but it seemed to be
162	more greatly affected by the thread depth than was the pull-out strength.
163	Many studies have been conducted on factors related to screw fixation strength.
164	In general, there is a consensus that screws that are thicker in diameter, greater in
165	length, and with a higher TSF tend to have a greater screw fixation strength. Among
166	them, TSF is a complex factor calculated as the relationship between the mean thread
167	depth and the pitch, given by
168	TSF = (0.5 + 0.57735 d/p),
169	where d is the thread depth, and p is the pitch of the screw [12]. A deeper thread depth
170	and a narrower pitch leads to greater screw fixation strength in the calculation. In other

- 171 words, these two factors have a contradictory relationship. Therefore, the relationship
- between the screw fixation strength when the thread depth and screw pitch are

individually changed is an important piece of information when considering the optimalscrew shape.

There are two main methods for studying screws: empirical testing and finiteelement methods (FEM) analysis.

177 With regard to empirical testing, Chapman et al. tested the pullout strengths of 12 178 types of commercially available cancellous bone screws (thread depth range; 0.50-1.75 179 mm) and reported that the experimental pullout force was highly correlated to the 180 predicted pullout force, which is controlled by the major diameter of the screw, the 181 length of the engagement of the thread, and the TSF [12]. Migliorati et al. investigated 182 the maximum insertion torque and pull-out strength of three types of commercial 183 temporary anchorage devices (thread depth range; 0.114-0.345 mm) and concluded that 184 they are statistically related to the depth of the thread of the screw and to TSF [11]. 185 Additionally, Falco et al. measured the effects of implant macro-geometry (thread depth 186 range; 0.25-0.35 mm) on primary stability and found that a deeper thread was advantageous [10]. These findings indicated that the TSF or thread depth affected the 187 188 screw fixation strength. However, in these past studies, other factors such as major 189 diameter, pitch, and so on were not uniform, and the investigated range of the thread depth were narrow; therefore, the true effect of thread depth on screw fixation strength 190

191 has been unknown.

192	In contrast, FEM analysis can exclude other factors deliberately and hence can
193	theoretically isolate the effect of thread depth on fixation strength. Some previous
194	studies have described the stress distribution of implants with different thread depths
195	using FEM analysis [15-17]. To summarize these results, FEM analyses have suggested
196	that a screw depth of around 0.4 mm is the optimum value in terms of stress dispersion.
197	However, FEM analysis has been found to have limitations as a screw design tool
198	because it is prone to errors due to subtle differences in methodology and can produce
199	misleading results [18,19].
200	Abuhussein et al. reviewed the factors that may affect implant stability, and
201	showed that implants with smaller pitch, more threads, deeper threads, a decreased
202	thread helix angle, a longer implant and/or a wider diameter may be beneficial for
203	stability, but also emphasized that the effect of a single feature could be washed out by
204	those of other elements of the design for any selected implant [20]. Therefore, in order
205	to accurately understand the effect of thread depth on screw fixation strength, an
206	empirical study in which the screw depth is the only variable and other factors are kept
207	as uniform as possible seemed ideal. To our knowledge, our study is the first empirical
208	study to investigate the effect of thread depth as a single variable in metal screws for

209	cancellous bone. Our results were almost consistent with those of the previous
210	literature [10-12]. In other words, we confirmed that the deeper the screw depth, the
211	greater the strength of the screw fixation, a relationship that becomes especially
212	pronounced in the osteoporosis model. In addition, what we newly found was a change
213	in the linear relation after a thread depth of 0.4 mm. As mentioned above, previous
214	works performing FEM analyses have shown that a thread depth of around 0.4 mm
215	may be optimal, and we believe that our results are consistent with this.
216	When loading the pull-out stress to the screw, breakage typically happens on the
217	bone adjacent to the major diameter surface of <u>the</u> screw [8,21]. The effect of the
218	captured bone volume into the screw thread is theoretically small if the breakage under
219	pull-out load happens without slipping of the thread. We believe that the increase in
220	screw fixation strength with increasing thread depth in this situation is probably the
221	result of stress distribution against the pull-out load. Ryu et al. reported that thread depth
222	is more critical than other factors for dissipating peak stresses within the bone [22]. Ting
223	et al. investigated the pull-out strength and gripping volume (simulated bone mass
224	captured by the screw thread) and concluded from statistical analysis that there was a
225	potential correlation between gripping volume and pull-out strength [23]. In the present
226	study, similar results were obtained for TD 0.4 to TD 0.9. Conversely, shallower

227	threads (TD0.1 to TD0.3) may not be able to capture the opposite bone sufficiently and
228	will slip before being broken. We consider that this is the reason why the correlation
229	between thread depth and screw fixation strength is biphasic in our results. The stiffness
230	of the shallower thread screw in our study was lower, and this fact seemed to support
231	the above theory.

232	In our study, the rate of increase in pull-out strength per 0.1 mm thread depth at
233	thread <u>depths of</u> 0.4 mm or more was 5.5% in the osteoporosis model (10 pcf), which
234	was about three times that of the normal bone model (20 pcf), 1.7%. Addevico et al
235	clarified that the density of the host site was the main factor influencing the pull-out
236	strength of the screw [5]. Falco et al. reported that large thread implant designs appeared
237	more suitable in case of poor bone density or inadequate bone amount in order to reach
238	high mechanical anchorage [10]. The reasons for this are not clear, and we believe this
239	is a matter that needs further investigation. In any case, the effect of the thread depth on
240	the pull-out strength changed significantly with TD0.4 as the boundary, independent of
241	bone density. On the other hand, the insertion torque tended to increase as the thread
242	depth increased compared to the pull-out strength. This result is consistent with
243	previous reports [5] and can be explained by the fact that the area of contact between the
244	bone and the screw surface increases with the increase in thread depth; as a result, the

245	frictional force increases. In terms of clinical relevance, these findings are useful in
246	orthopedic screw design, in cases for example where it is important to increase the
247	strength of the screw itself and reduce the insertion torque while maintaining
248	screw fixation strength. These may be especially important in the design of screws
249	made of bioabsorbable materials whose strength properties are inferior to those of
250	<u>metals.</u>
251	Our study has some limitations. First, the study was conducted under one
252	condition with only the minor diameter as a variable. If the numerical value of any other
253	element changes, the required thread depth may also change. It is necessary in the future
254	to conduct additional research to see whether similar results are obtained when the
255	major diameter or pitch are changed. Second, only one-time pull-out tests were
256	performed in the long axis direction of the screw in this study; the evaluation did not
257	consider factors such as repetitive load and shear load. After the screw is inserted into
258	living bone, various stresses other than those measured in this study may be
259	<u>concentrated on the screw. Furthermore, the simulated bone models in this study</u>
260	were a uniform material whereas real bone is a combination of cortical and
261	cancellous bone; a more realistic simulation material is a goal for future studies.
262	This study was performed according to the provisions of ASTM0543 as much as

263	possible. A similar method was used in previously published research on screw-fixing
264	strength [5,6]. The mechanical characteristics of screws on various conditions
265	would be useful for clinical application, and in the future we hope to investigate
266	them using experimental animals in addition to in-vitro experiments. Third, brass,
267	which is not appropriate for medical devices, was used as the screw material in this
268	study because of its ease of machinability, ensuring accuracy of the intended thread
269	depths. Titanium alloy (Ti-6Al-4V-ELI), the most common metal for bone screw, has a
270	tensile strength of 932 MPa and a Young's modulus of 109.8 GPa [24]; those of brass
271	(C2801) are 333-578 MPa and 105 GPa [25]. The tensile strength of titanium alloy is
272	greater than that of brass, but the Young's modulus values are almost the same. In
273	addition, the tensile strength and elastic modulus of the simulated bone used in this
274	study were 5.72 MPa and 202.8 MPa in 20-pcf foam, and 2.08 MPa and 60.6 MPa in
275	10-pcf foam, which were overwhelmingly lower than those of metal. Therefore,
276	although our study is an experiment using brass, we think the results are applicable to
277	actual bone-fixation situations. However, we believe that additional experiments using
278	medical metals such as stainless steel and titanium are necessary for clinical application.
279	In conclusion, the pull-out strength of 4.5-mm-diameter metal screws in a
280	cancellous bone model was found to be biphasic, although linearly correlated with the

- change in screw depth in both phases. The boundary of the correlation was 0.4 mm
- regardless of the density of the bone model, <u>with</u> the effect of screw depth on the pull-
- 283 out strength **<u>beyond that being</u>** small in comparison.
- 284

285 **Conflicts of Interest**

- 286 This research was not supported by any specific grant from funding agencies in the
- 287 public, commercial, or not-for-profit sectors.

289 References

290	1.	Tsuyoshi Fujii, Mitsuaki Noda, Takayoshi Yamakawa, Minoru Doita. Percutaneous
291		reduction of a displaced femoral intercondylar fracture assisted with arthroscopy
292		and fluoroscopy. J Trauma. 2008 Mar;64(3): 834-837.
293	2.	Loukachov VV, Birnie MFN, Dingemans SA, Jong VM, Schepers T. Percutaneous
294		intramedullary screw fixation of distal fibula fractures: a case series and systematic
295		review. J Foot Ankle Surg. 2017 Sep-Oct;56(5):1081–1086.
296	3.	Mudgal CS, Jupiter JB. Plate and screw design in fractures of the hand and wrist.
297		Clin Orthop Relat Res. 2006 Apr;445:68–80.
298	4.	Nherera L, Trueman P, Horner A, Watson T, Johnstone A. Comparison of a twin
299		interlocking derotation and compression screw cephalomedullary nail (InterTAN)
300		with a single screw derotation cephalomedullary nail (proximal femoral nail
301		antirotation): a systematic review and meta-analysis for intertrochanteric fractures.
302		J Orthop Surg Res. 2018 Mar 2;13(1):46.
303	5.	Addevico F, Morandi M, Scaglione M, Solitro F. Screw insertion torque as
304		parameter to judge the fixation. Assessment of torque and pull-out strength in
305		different bone densities and screw-pitches. Clin Biomech (Bristol, Avon). 2020
306		Feb;72:130-135.

307	6.	Ricci WM, Tornetta P 3rd, Petteys T, Gerlach D, Cartner J, Walker Z, et al. A
308		comparison of screw insertion torque and pullout strength. J Orthop Trauma. 2010
309		Jun;24(6): 374-378.
310	7.	Hou SM, Hsu CC, Wang JL, Chao CK, Kin J. Mechanical tests and finite element
311		models for bone holding power of tibial locking screws. Clin Biomech (Bristol,
312		Avon). 2004 Aug;19(7):738-745.
313	8.	Zhang QH, Tan SH, Chou SM. Investigation of fixation screw pull-out strength on
314		human spine. J Biomech. 2004 Apr;37(4):479-485.
315	9.	Gausepohl T, Möhring R, Pennig D, Koebke J. Fine thread versus coarse thread. A
316		comparison of the maximum holding power. Injury. 2001 Dec;32 Suppl 4: SD1-7.
317	10.	Falco A, Berardini M, Trisi P. Correlation Between Implant Geometry, Implant
318		Surface, Insertion Torque, and Primary Stability: In Vitro Biomechanical Analysis.
319		Int J Oral Maxillofac Implants. 2018 Jul/Aug;33(4):824-830.
320	11.	Migliorati M, Benedicenti S, Signori A, Drago S, Cirillo P, Braberis F, et al. Thread
321		shape factor: evaluation of three different orthodontic miniscrews stability. Eur J
322		Orthod. 2013 Jun;35(3):401-405.
323	12.	Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D.
324		Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng.

1996 Aug; 118(3):391-398. 325

326	13.	Lee SY, Kim SJ, An HW, Kim HS, Ha DG, Ryo KH, et al. The effect of thread
327		depth on the mechanical properties of the dental implant. J Adv Prosthodont. 2015
328		Apr;7(2):115-121.
329	14.	Sun SP, Lee DW, Yun JH, Park KH, Park KB, Moon IS. Effects of thread depth in
330		the neck area on peri-implant hard and soft fissues: an animal study. J Periodontol.
331		2016 Nov;87(11):1360-1368.
332	15.	Ao J, Li T, Liu Y, Ding Y, Wu G, Hu K, et al. Optimal design of thread height and
333		width on an immediately loaded cylinder implant: A finite element analysis.
334		Comput Biol Med. 2010 Aug;40(8): 681-686.
335	16.	Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, et al. Evaluation of
336		design parameters of osseointegrated dental implants using finite element analysis.
337		J Oral Rehabil. 2002 Jun;29(6), 565-574.
338	17.	Kong L, Hu K, Li D, Song Y, Yang J, Wu Z, et al. Evaluation of the cylinder
339		implant thread height and width: a 3-dimensional finite element analysis. Int J Oral
340		Maxillofac Implants. 2008 Jan-Feb;23(1), 65-74.
341	18.	Lewis GS, Mischler D, Wee H, Reid JS, Varga P. Finite element analysis of fracture
342		fixation. Curr Osteoporos Rep. 2021 Aug;19(4):403-416.

343	19.	Steiner JA, Ferguson SJ, van Lenthe GH. Computational analysis of primary
344		implant stability in trabecular bone. J Biomech. 2015 Mar 18;48(5):807-815.
345	20.	Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon
346		implant osseointegration. Clin Oral Implants Res. 2010 Feb;21(2),129-136.
347	21.	Wang Y, Mori R, Ozoe M, Nakai T, Uchio Y. Proximal half angle of the screw
348		thread is critical design variable affecting the pull-out strength of cancellous bone
349		screws. Clin Biomech (Bristol, Avon). 2009 Nov;24(9), 781-785.
350	22.	Ryu HS, Namgung C, Lee JH, Lim YJ. The influence of thread geometry on
351		implant osseointegration under immediate loading: a literature review. J Adv
352		Prosthodont. 2014 Dec;6(6):547-554.
353	23.	Ting CC, Hsu KJ, Hsiao SY, Chen CM. The correlation among gripping volume,
354		insertion torque, and pullout strength of micro-implant. J Dent Sci. 2020
355		Dec;15(4):500-504.
356	24.	The Japan Institute of Metals and Materials. Metals Handbook 4th Edition. Tokyo:
357		Maruzen Co., Ltd., 1982, p942.
358	25.	The Japan Society of Mechanical Engineers. JSME Mechanical Engineer's
359		Handbook Design. Tokyo: Maruzen Co., Ltd. 2006, p96.
360		

361	Figure Captions
362	
363	Fig. 1. Schema of screw design.
364	
365	Fig. 2. Macro images of each screw. Images A to I represent TD0.1 to TD0.9.
366	Commonly used cancellous bone screws have a thread depth around 0.7 mm, as in
367	image G.
368	
369	Fig. 3. Micro images of each screw thread. Images A to I represent TD0.1 to TD0.9. <u>The</u>
370	scale bar on the upper right indicates 0.2 mm.
371	
372	Fig. 4. Pictures of custom-made fixtures. A) A simulated bone block with the screw
373	inserted was placed under a stainless-steel plate with an 8-mm-diameter hole, and the
374	screw protruded upward from the hole. B) The upper fixture was divided into two parts,
375	and the screws were sandwiched between them.
376	
377	Fig. 5. Box plot of maximum pull-out strength for each screw.
378	

379	Fig. 6-A. Scatter plot of maximum pull-out strength for each screw thread depth (true
380	value) with single regression analysis on 20-pcf foam. The plot was analyzed by
381	dividing it into part A and part B with \underline{a} thread depth of 0.4 mm as the boundary.
382	
383	Fig. 6-B. Scatter plot of maximum pull-out strength for each screw thread depth (true
384	value) with single regression analysis on 10-pcf foam. It was analyzed as in the case of
385	Fig. 6-A.
386	
387	Fig. 7-A. Scatter plot of maximum insertion torque for each screw thread depth (true
388	value) with single regression analysis on 20-pcf foam. Thread depths of 0.4 mm and
389	more were analyzed.
390	
391	Fig. 7-B. Scatter plot of maximum insertion torque for each screw thread depth (true
392	value) with single regression analysis in 10-pcf foam. It was analyzed as in Fig.7-A.
393	
394	Table 1. Details of element values for each screw.
395	
396	Table 2. Details of pull-put strength and stiffness for each screw.

MaD, Major diameter; MiD, Minor diameter; TD, Thread depth; P, Pitch; TW, Thread width

Figure6A

Figure7A

	TD0.1	TD0.2	TD0.3	TD0.4	TD0.5	TD0.6	TD0.7	TD0.8	TD0.9
MaD	4.528	4.505	4.525	4.520	4.537	4.555	4.499	4.484	4.476
MiD	4.333	4.133	3.957	3.744	3.542	3.399	3.130	2.952	2.734
UD	0.097	0.186	0.284	0.388	0.497	0.578	0.685	0.766	0.871
Ρ	1.594	1.593	1.593	1.592	1.591	1.591	1.592	1.592	1.592
ML	0.212	0.210	0.210	0.218	0.215	0.222	0.215	0.214	0.207
	ion diamoto		diamoth	TD Th.		D D:45.6. TV	U Thursd	144	[mm]

MaD, Major diameter; MiD, Minor diameter; TD, Thread depth; P, Pitch; TW, Thread width

Table 1

Table2

2
e
q
<u>n</u>

'PS, Pull-out strength [N]; **S, Stiffness [N/mm]

		TD0.1	TD0.2	TD0.3	TD0.4	TD0.5	TD0.6	TD0.7	TD0.8	TD0.9
20 pcf										
*	Ave.	180	394	528	597	609	597	678	645	628
	SD	17	36	24	31	14	26	36	29	23
، ا * ا ر ا	Ave.	534	892	1195	1336	1257	1338	1348	1420	1339
	SD	126	228	111	151	144	165	164	72	142
10 pcf										
	Ave.	54	113	139	189	199	203	213	221	227
	SD	4	٢	15	٢	S	×	4	13	٢
	Ave.	247	322	311	414	372	331	412	354	376
	SD	69	99	96	121	80	70	70	84	48

Click here to access/download;Table;Table 2.pdf ≛