

Title

Systemic Immune-Inflammation Index Predicts Overall Survival in Patients with Gastric Cancer: a Propensity Score-Matched Analysis

Author(s)

Noriyuki Hirahara, Yoshitsugu Tajima, Takeshi Matsubara, Yusuke Fujii, Shunsuke Kaji, Yasunari Kawabata, Ryoji Hyakudomi, Tetsu Yamamoto, Yuki Uchida, Takahito Taniura

Journal

Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract 25(5)

Published 2020 Jun 30

URL https://doi.org/10.1007/s11605-020-04710-7

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

1	Article Type: Original Article
2	Title: Systemic immune-inflammation index predicts overall survival in patients with
3	gastric cancer: A propensity score-matched analysis
4	
5	Short title: SII for gastric cancer
6	
7	Authors: Noriyuki Hirahara, Yoshitsugu Tajima, Takeshi Matsubara, Yusuke Fujii,
8	Shunsuke Kaji, Yasunari Kawabata, Ryoji Hyakudomi, Tetsu Yamamoto, Yuki Uchida,
9	and Takahito Taniura
10	
11	Affiliation: Department of Digestive and General Surgery, Shimane University Faculty
12	of Medicine
13	
14	Research Support: This study received no external sources of funding.
15	
16	Conflict of interest: None Declared
17	
18	Corresponding author: Name: Noriyuki Hirahara

19	Department of Digestive and General Surgery, Shimane University Faculty of
20	Medicine
21	89-1 Enya-cho, Izumo, Shimane 693-8501, Japan
22	Tel: +81-853-20-2232 Fax: +81-853-20-2229 E-mail: norinorihirahara@yahoo.co.jp
23	
24	Co-authors' email addresses:
25	Yoshitsugu Tajima, email: ytajima@med.shimane-u.ac.jp
26	Takeshi Matsubara, email: nanadai@med.shimane-u.ac.jp
27	Yusuke Fujii, email: yuusuke@med.shimane-u.ac.jp
28	Shunsuke Kaji, email: s.kaji@med.shimane-u.ac.jp
29	Yasunari Kawabata, email: batayan5@med.shimane-u.ac.jp
30	Ryoji Hyakudomi, email: hyakuryo@med.shimane-u.ac.jp
31	Tetsu Yamamoto, email: t2t2@med.shimane-u.ac.jp
32	Yuki Uchida, email: yuchida@med.shimane-u.ac.jp
33	Takahito Taniura, email: taniura@med.shimane-u.ac.jp
34	
35	Author Contributions
36	NH was the lead author, and conceived this study. TM, YK, YF, SK, TY, RH, YU and
37	TT collected data, performed analysis, and drafted the manuscript. YT reviewed paper

 $\mathbf{2}$

and technique of surgery. All authors read and approved the final manuscript.

stract

40 Background

41	The systemic immune inflammation index (SII), integrated by peripheral
42	lymphocyte, neutrophil, and platelet counts, is used as an objective biomarker that
43	reflects the balance between host inflammatory and immune response status in cancer
44	patients. Herein, we examined the prognostic significance of SII in gastric cancer
45	patients.
46	Methods
47	We retrospectively reviewed data of 415 patients who underwent curative
48	laparoscopic gastrectomy using propensity score-matched (PSM) analysis. The
49	prognostic value of SII was compared between two groups based on SII values: low SII
50	group (SII < 661.9) and high SII group (SII \ge 661.9).
51	Results
52	In multivariate analysis, American Society of Anesthesiologists physical status
53	(ASA-PS) (p <0.001), tumor differentiation (p =0.019), pathological stage (p =0.046),
54	carcinoembryonic antigen (CEA) level (p <0.001), SII (p =0.006), and operative
55	procedure ($p=0.009$) were independent prognostic factors of overall survival (OS) in the
56	overall PSM cohort. The log-rank test demonstrated that patients with a high SII had

57	significantly	y worse OS	than did th	ose with lov	V SII (p=0.002).
					V /

58	In age-stratified subgroups analysis (<65/≥65 years), multivariate analysis revealed
59	that ASA-PS (p <0.001), tumor differentiation (p =0.019), CEA level (p =0.008), SII
60	($p=0.013$), and operative procedure ($p=0.026$) were independent prognostic factors of
61	OS in the elderly group. Similarly, elderly patients with a high SII had significantly
62	worse OS than did those with a low SII ($p=0.009$).
63	Meanwhile, SII was not an independent prognostic factor of OS, and no significant
64	association was observed between SII and OS in non-elderly patients.
65	Conclusions
66	SII was an independent prognostic indicator in gastric cancer patients, especially in
67	the elderly population.
68	
69	
70	Key words: gastric cancer, systemic immune-inflammation index, overall survival
71	
72	

73 Introduction

74	Tumor-related systemic inflammation plays a crucial role in the development and
75	metastasis of tumor cells by shielding circulating tumor cells from immune system
76	recognition and subsequent destruction [1,2]. In addition, systemic immune-
77	inflammatory response has been generally considered to affect cancer
78	microenvironment that enables tumor cell proliferation, invasion, and migration and
79	decreases in response to anticancer agents [3].
80	Previous studies have revealed that several inflammation-related biomarkers,
81	including the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio
82	(PLR), where the NLR and PLR comprise two types of inflammatory cells, were
83	associated with cancer cell behavior and patient survival [4,5]. The systemic immune
84	inflammation index (SII), a novel immunonutritional biomarker integrated by the
85	peripheral lymphocyte, neutrophil, and platelet counts, has recently been a more
86	objective and attractive biomarker that reflects the balance between host inflammatory
87	and immune response status in patients with various types of cancer [6].
88	Gastric cancer, one of the most common malignant tumors of the digestive tract, is
89	the major leading cause of cancer-related death worldwide [7]. Despite improvements in
90	early detection, surgical treatment, chemotherapy, and molecular targeted therapy, the

91	prognosis has been unfavorable over the past decade [8]. In addition, a heterogeneous
92	clinical course is frequently observed even among gastric cancer patients with the same
93	pathological stage or age population. Further studies are thus needed to identify more
94	specific and sensitive prognostic biomarkers that enable us to predict prognosis, select
95	patients with the worst prognosis, and determine optimal individualized therapeutic
96	strategies.
97	To our knowledge, few previous studies have addressed the role of SII in gastric
98	cancer. In the present study, we examined the prognostic significance of SII in patients
99	with gastric cancer.
100	
101	Materials and Methods
102	Patients
103	We retrospectively reviewed medical records of 415 consecutive patients who
104	underwent curative laparoscopic gastrectomy with R0 resection for histologically
105	confirmed gastric adenocarcinoma between January 2010 and December 2017 at our
106	institution. R0 resection was defined as complete resection without any microscopic
107	margin involvement. Exclusion criteria included active infection occurring within a
108	month before surgery and chronic systemic inflammatory or autoimmune diseases. In

 $\mathbf{7}$

109	addition, patients who received neoadjuvant chemotherapy were excluded.
110	The extent of gastric resection and lymph node dissection was determined in accordance
111	with the Japanese Gastric Cancer Treatment Guidelines (version 4) [9]. Pathological
112	classification was performed according to the International Union Against Cancer
113	Tumor, Node, Metastasis (TNM) classification (seventh edition) [10]. The need for
114	informed consent was waived owing to the retrospective nature of the study.
115	To evaluate the effect of each clinical variable on the patient's prognosis with high
116	confidence and to minimize biasing effects of confounders, propensity score matching
117	(PSM) statistical analysis was performed on the following variables: depth of tumor,
118	lymph node metastasis, and pTNM stage.
119	The protocol of this retrospective study was approved by the Ethical Review Board of
120	Shimane University, Faculty of Medicine (Shimane, Japan), and the study was
121	registered with the University Hospital Medical Information Network Clinical Trials
122	Registry (UMIN000030472).
123	
124	Blood analysis

Baseline data, including routine blood test, tumor marker, and clinicopathological
findings, were retrospectively extracted from each patient's medical record. Patients

127	with full laboratory data on preoperative complete blood count (CBC) and blood
128	differential data were enrolled in the study. These data were derived within 7 days
129	before surgery. CBC was analyzed using an automated hematology analyzer XE-5000
130	(SYSMEX K1000 hematology analyzer; Medical Electronics. Kobe, Japan).
131	SII was calculated based on platelet (P; $\times 10^{9}$ /l), granulocyte as a proxy for
132	neutrophils (N; \times 10 ⁹ /l), and lymphocyte (L; \times 10 ⁹ /l) blood counts using the following
133	formula: SII = $P \times N/L$. Using receiver operating characteristic (ROC) curve analysis,
134	an accurate SII cut-off value of 661.9 (sensitivity, 40.9%; specificity, 78.9%; area under
135	the curve=0.584) was determined to verify the optimal cut-off value of preoperative SII
136	for predicting overall survival (OS) (Fig. 1), and thus, patients were categorized into
137	two groups based on SII values; a low SII group (SII < 661.9) and a high SII group (SII
138	≥ 661.9).

139

140 Follow-up analysis

Patients were carefully followed up every 3 months for 2 years and then every 6 months for 3–5 years after the surgery. OS was calculated from the date of surgical resection to the date of death from any cause or the date of the last follow-up.

144 Postoperative complications were evaluated according to the Clavien-Dindo

145	classification, and serious complications were defined as grade II or higher [11].
146	Postoperative complications after laparoscopic gastrectomy included surgical site
147	infection, anastomotic leakage, pancreatic fistula, intra-abdominal abscess, and
148	pneumonia.
149	
150	Statistical analysis
151	Differences between categorical variables were evaluated using the Chi-squared test
152	or Fisher's exact test. OS was plotted using the Kaplan-Meier method, and differences
153	between survival curves were evaluated using the log-rank test. Univariate and
154	multivariate analyses were performed using the Cox proportional hazards regression
155	model, and hazard ratios (HRs) were calculated. Variables with a p -value <0.05
156	following univariate analyses were subsequently included in the multivariate logistic
157	regression analysis. All statistical analyses were performed using the JMP software
158	(version 14 for Windows; SAS Institute); <i>p</i> -values <0.05 were defined as statistically
159	significant.
160	
161	Results

162 **Relationships between SII and clinicopathological features**

163	Based on the SII cut-off value of 661.9 for OS, 309 (74.5%) and 106 (25.5%)
164	patients were classified as having low and high SII, respectively.
165	As shown in Table 1, there were significant associations between SII and several
166	clinicopathological factors such as age ($p=0.025$), the American Society of
167	Anesthesiologists physical status (ASA-PS) classification (p <0.001), body mass index
168	(BMI) ($p=0.036$), white blood cell count ($p<0.001$), neutrophil count ($p<0.001$),
169	lymphocyte count (p <0.001), platelet count (p <0.001), tumor size (p =0.001), depth of
170	tumor ($p < 0.001$), lymph node metastasis ($p=0.041$), pathological stage ($p < 0.001$), and
171	C-reactive protein (CRP) level (p<0.001).
172	PSM stratification adequately balanced the distribution of the confounding variables
173	(depth of tumor, lymph node metastasis, and pTNM stage) between the two groups,
174	resulting in 106 identified matched pairs that were used for subsequent analyses (Table
175	1).
176	
177	Cox regression analysis of OS in the PSM cohort
178	In univariate analysis, older age ($p=0.049$), poor ASA-PS ($p<0.001$), large tumor
179	size ($p=0.001$), poor differentiation ($p=0.024$), advanced pathological stage ($p<0.001$),

180 high carcinoembryonic antigen (CEA) level (p<0.001), high CRP level (p=0.008), high

181	SII ($p=0.002$), and laparoscopic total gastrectomy ($p=0.002$) were significantly
182	associated with worse OS. Meanwhile, multivariate analysis revealed that ASA-PS (HR,
183	3.989; 95 % confidence interval [CI], 2.037–7.812; p <0.001), tumor differentiation
184	(HR, 1.981; 95% CI, 1.118–3.509; <i>p</i> =0.019), pathological stage (HR, 1.809; 95% CI,
185	1.011–3.237; <i>p</i> =0.046), CEA level (HR, 2.463; 95% CI, 1.444–4.202; <i>p</i> <0.001), SII
186	(HR, 2.189; 95% CI, 1.254–3.823; <i>p</i> =0.006), and operative procedure (HR, 2.104; 95%
187	CI, 1.200–3.689; $p=0.009$) were independent prognostic factors of OS in the PSM
188	cohort (Table 2).
189	
190	Relationships between SII and clinicopathological features in age-stratified
191	patients

- Based on their age, 56 patients (26.4 %) were classified as the non-elderly group
- 193 (aged ≤ 65 years) and 156 patients (73.6 %) as the elderly group (aged ≥ 65 years).
- 194 In the non-elderly group, 32 patients (57.1 %) had low SII, while the remaining 24
- 195 patients (42.9 %) had high SII. In the elderly group, 74 patients (47.4 %) were classified
- as the low SII group and the remaining 82 patients (52.6 %) as the high SII group.

Depth of tumor, lymph node metastasis, and pathological stage did not differ
significantly between the low and high SII groups in the age-stratified analysis (Table
3).

200

201 Cox regression analysis of OS in age-stratified patients

- 202 In the non-elderly group, univariate analysis identified advanced pathological stage
- 203 (p=0.003), high CRP level (p=0.025), laparoscopic total gastrectomy (p=0.038), and

adjuvant chemotherapy administration (p=0.033) to be significantly associated with

worse OS. In multivariate analysis, pathological stage (HR, 9.247; 95% CI, 0.790-

- 206 108.265; *p*=0.034) and CRP level (HR, 4.944; 95% CI, 1.238–19.740; *p*=0.024) were
- 207 independent prognostic factors of OS (Table 4).
- 208 On univariate analysis of the elderly group, poor ASA-PS (p < 0.001), large tumor
- size (p=0.012), poor differentiation (p=0.010), advanced pathological stage (p=0.010),

210 high CEA level (p<0.001), high SII (p=0.011), laparoscopic total gastrectomy

- (p=0.011), and occurrence of postoperative complications (p=0.044) were significantly
- associated with worse OS. Meanwhile, multivariate analysis revealed that ASA-PS (HR,
- 213 4.884; 95 % CI, 2.411–9.870; *p*<0.001), tumor differentiation (HR, 2.050; 95% CI,
- 214 1.125–3.738; *p*=0.019), CEA level (HR, 2.226; 95% CI, 1.236–4.006; *p*=0.008), SII

(HR, 2.177; 95% CI, 1.182–4.011; *p*=0.013), and operative procedure (HR, 2.044; 95%
CI, 1.088–3.841; *p*=0.026) were independent prognostic factors of OS.

217

218 Association of OS with SII

The 5-year OS rates were 73.8 % and 54.8 % in patients with low and high SII,

220 respectively. The log-rank test demonstrated that patients with high SII had significantly

worse prognosis in terms of OS than did those with low SII (p=0.002) (Fig. 2).

222 Further analysis of the prognostic value of SII in the age-stratified subgroups showed

223 that patients with high SII were associated with significantly worse OS than those with

low SII (p=0.009) in the elderly group. The 5-year OS rates in patients with low and

high SII were 69.0 % and 50.2 %, respectively. In the non-elderly patient group,

however, no significant association was observed between SII and OS (Figs. 3a, 3b).

227

229 Discussion

Systemic immunoinflammatory parameters have been previously evaluated as 230candidates for predicting survival in various malignancies because systemic 231232inflammation is considered as an effect rather than a cause of cancer [12-14]. The SII, integrated by peripheral lymphocyte, neutrophil, and platelet counts, has recently been 233234considered as a more accurate and objective prognostic biomarker in several cancers because SII reflects the balance between host inflammatory and immune response status 235in cancer patients [15-17]. However, to our knowledge, the significance of SII in gastric 236cancer has not been evaluated. In this study, the prognostic significance of SII was 237examined in patients with gastric cancer who underwent curative resection. In addition, 238PSM analysis was performed to minimize the effects of confounding variables, such as 239240depth of tumor, lymph node metastasis, and pTNM stage, on survival. Neutrophils regulate tumor microenvironment by producing numerous inflammatory 241242factors, such as vascular endothelial growth factor, matrix metalloproteinase-9, and antiapoptotic factor (nuclear factor- κ B), which promote tumor proliferation, progression, 243and metastasis. In addition, increased levels of neutrophils can release a large amount of 244245nitric oxide, arginase, and reactive oxygen species (ROS), leading to disorders of T-cell activation. ROS released from neutrophils not only reduces the adhesion of extracellular 246

248	to tumor growth and metastasis [18,19].
249	Lymphocytes exert an anti-tumor immune response by inducing cytotoxic cell death
250	and by inhibiting cancer proliferation and migration via their ability to specifically
251	target and kill cancer cells. In addition, lymphocytes release several types of cytokines
252	such as interferon and TNF- α , which can control tumor cell growth and metastasis, thus
253	improving prognosis in cancer patients. Therefore, lymphocytes can eliminate tumor
254	cells through cellular and humoral immune mechanisms [20].
255	Platelets directly interact with cancer cells and secrete several growth factors, such
256	as angiogenesis regulators and adhesive glycoproteins, which assist tumor cells in
257	metastasizing to distant sites by enabling epithelial-mesenchymal transition [21].
258	Platelets can also create a defensive barrier around tumor cells in the circulation and
259	protect circulating tumor cells from the host's immune surveillance.
260	Considering these facts, it would be logically conceivable that individuals with
261	increased levels of neutrophils and platelets and/or a decreased level of lymphocytes are
262	at a higher risk of cancer progression. In this study, we investigated the relationships
263	between SII and various clinicopathological features, and high SII was significantly
264	associated with advanced tumor-depth (p <0.001), lymph node metastasis (p =0.041), and

matrix but also inhibits apoptosis in tumor cells. Therefore, neutrophils may contribute

265 pathological stage (p<0.001). These results suggest that high SII could be used as an 266 indicator of cancer progression in gastric cancer.

267CRP, an acute-phase inflammatory protein, is one of the most frequently used serum 268biomarkers to evaluate cancer prognosis; however, it lacks specificity and could be elevated in a number of systemic stresses, such as infection, surgery, and connective tissue 269270disease [22,23]. SII is considered a more reliable and objective indicator of cancer prognosis than CRP because it reflects the balance of host inflammatory and immune 271status. As expected, gastric cancer patients with high SII had significantly worse 272prognosis than did those with low SII (p=0.002). In addition, SII was an independent 273prognostic factor of OS in the PSM analysis for the whole cohort (p=0.006) and the 274elderly patients' cohort (p=0.013) in this study. Meanwhile, SII was not an independent 275276prognostic factor in the non-elderly patient cohort. Elderly people are more likely to have inflammation and immunodeficiency associated with cancer, and SII may have been an 277278indicator of OS because of the possibility of developing an immunodeficient state with aging, regardless of the presence of cancer [24-27]. However, non-elderly patients 279(especially those with non-advanced cancers) were not immunodeficient; therefore, SII 280281lacked the power and was not a prognostic indicator [28]. Although a few reports have suggested that SII is a prognostic biomarker in several cancers and examined differences 282

in response to chemotherapy according to SII value, no study has conducted sub-analysis
in the elderly and non-elderly populations [29-32]. In the context of the currently aging
society, the novelty of this study is that we examined the significance of SII as an
independent predictive factor using age-stratified analysis.

The present study had some limitations. First, there were no consensual cut-off values 287for most inflammation indices, including the SII. Individual cut-off levels have been 288289determined based on their relevance and significance in most previous studies. As a result, 290 there is a wide range of cut-off values that exist for SII [15-17, 33]. Before adopting SII in routine practice, a universal cut-off value for SII should be verified in prospective and 291well-designed randomized controlled trials. Second, we focused on the impact of 292preoperative SII on survival after curative laparoscopic gastrectomy for gastric cancer, 293294but we failed to evaluate dynamic changes in SII during the postoperative period. Third, nutritional indicators were not adequately assessed. Because previous studies have 295reported that malnutritional status results in reduced neutrophil migration, decreased 296 297 lymphocyte count, and decreased function, further studies should be conducted to assess the relationship among inflammation, immunity, and nutritional status [34,35]. Another 298299limitation was that some other well-known systemic inflammatory parameters, such as tumor necrosis factor- α and interleukins, were not examined in this study owing to high 300

301 costs and inconvenience associated with such tests.

303	Conclusion
304	This study highlighted the importance of SII as an independent prognostic indicator
305	in gastric cancer patients, especially in the elderly population, suggesting that patients
306	with high SII should be carefully followed. Future multi-institutional prospective
307	validation of our findings is desirable to examine the indications for adjuvant therapy
308	based on SII values and implement SII as a valuable predictive biomarker in clinical
309	practice.
310	
311	Acknowledgments: none
312	
313	
314	

315 References

316	1. Farrow B, Sugiyama	Y, Chen A,	Uffort E, Nealon	W, Mark Evers B	. Inflammatory
	, ,,	, , , ,	/	,	2

- 317 mechanisms contributing to pancreatic cancer development. Ann Surg 2004;239:763-
- 318 769; discussion 769-771.
- 2. Mimatsu K, Fukino N, Ogasawara Y, Saino Y, Oida T. Utility of inflammatory
- 320 marker- and nutritional status-based prognostic factors for predicting the prognosis of
- 321 stage IV gastric cancer patients undergoing non-curative surgery. Anticancer Res
- 322 2017;37:4215-4222.
- 323 3. Yun JK, McCormick TS, Villabona C, Judware RR, Espinosa MB, Lapetina EG.
- 324 Inflammatory mediators are perpetuated in macrophages resistant to apoptosis induced
- 325 by hypoxia. Proc Natl Acad Sci U S A 1997;94:13903-13908.
- 4. Hirahara N, Matsubara T, Mizota Y, Ishibashi S, Tajima Y. Prognostic value of
- 327 preoperative inflammatory response biomarkers in patients with esophageal cancer who
- undergo a curative thoracoscopic esophagectomy. BMC Surg 2016;16:66. doi:
- 329 10.1186/s12893-016-0179-5.
- 330 5. Shimizu T, Taniguchi K, Asakuma M, Tomioka A, Inoue Y, Komeda K, Hirokawa F,
- 331 Uchiyama K. Lymphocyte-to-monocyte ratio and prognostic nutritional index predict
- 332 poor prognosis in patients on chemotherapy for unresectable pancreatic cancer.

- 333 Anticancer Res 2019;39:2169-2176. doi: 10.21873/anticanres.13331.
- 6. Hu B, Yang XR, Xu Y, Sun YF, Sun C, Guo W, Zhang X, Wang WM, Qiu SJ, Zhou J,
- 335 Fan J. Systemic immune-inflammation index predicts prognosis of patients after
- 336 curative resection for hepatocellular carcinoma. Clin Cancer Res 2014;20:6212-6222.
- 337 7. Cancer Research UK [Internet]. Available: http://www.cancerresearchuk.org/health-
- 338 professional/cancer-statistics/statistics
- 8. Hartgrink HH, Jansen EP, van Grieken NC, van de Velde CJ. Gastric cancer. Lancet
- 340 2009;374:477-490. doi: 10.1016/S0140-6736(09)60617-6.
- 341 9. Japanese Gastric Cancer Association. Japanese gastric cancer treatment
- 342 guidelines 2014 (ver. 4). Gastric Cancer 2017;20:1-19. https://doi:10.1007/s10120-016-

343 0622**-**4.

- 10. Sobin L, Gospodarowicz M, Wittekind C, editors. International Union against
- 345 Cancer (UICC). TNM classification of malignant tumors, 7th ed. New York: Wiley-
- 346 Blackwell, 2010.
- 11. Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, de
- 348 Santibañes E, Pekolj J, Slankamenac K, Bassi C, Graf R, Vonlanthen R, Padbury R,
- 349 Cameron JL, Makuuchi M. The Clavien-Dindo classification of surgical complications:
- 350 five-year experience. Ann Surg 2009;250:187-196.

- 351 https://doi:10.1097/SLA.0b013e3181b13ca2.
- 352 12. Dupré A, Jones RP, Diaz-Nieto R, Fenwick SW, Poston GJ, Malik HZ. Preoperative
- 353 leucocyte-based inflammatory scores in patients with colorectal liver metastases: Can
- we count on them? World J Surg 2019;43:1351-1359. doi: 10.1007/s00268-019-049142.
- 13. Xu F, Xu P, Cui W, Gong W, Wei Y, Liu B, Dong J. Neutrophil-to-lymphocyte and
- 357 platelet-to-lymphocyte ratios may aid in identifying patients with non-small cell lung
- cancer and predicting tumor-node-metastasis stages. Oncol Lett 2018;16:483-490. doi:
- 359 10.3892/ol.2018.8644.
- 14. Huang Z, Liu Y, Yang C, Li X, Pan C, Rao J, Li N, Liao W, Lin L. Combined
- 361 neutrophil/platelet/lymphocyte/differentiation score predicts chemosensitivity in
- advanced gastric cancer. BMC Cancer 2018;18:515. doi: 10.1186/s12885-018-4414-6.
- 363 15. Lu Y, Xin D, Wang F. Predictive significance of preoperative systemic immune-
- 364 inflammation index determination in postoperative liver metastasis of colorectal cancer.
- 365 Onco Targets Ther 2019;20;12:7791-7799. doi: 10.2147/OTT.S223419.
- 16. Zhong JH, Huang DH, Chen ZY. Prognostic role of systemic immune-inflammation
- index in solid tumors: a systematic review and meta-analysis. Oncotarget 2017;8:75381-
- 368 75388. doi: 10.18632/oncotarget.18856.

369	17. Wang L,	Wang C,	Wang J,	Huang X,	Cheng Y.	A novel systemic immune
-----	-------------	---------	---------	----------	----------	-------------------------

- inflammation index predicts survival and quality of life of patients after curative
- resection for esophageal squamous cell carcinoma. J Cancer Res Clin Oncol
- 372 2017;143:2077-2086. doi: 10.1007/s00432-017-2451-1.
- 18. Nakano Y, Uchiyama M, Arima T, Nagasaka S, Igarashi T, Shimizu A, Takahashi H.
- PPARα Agonist suppresses inflammation after corneal alkali burn by suppressing
- proinflammatory cytokines, MCP-1, and nuclear translocation of NF-κB. Molecules
- 376 2018;24. pii: E114. doi: 10.3390/molecules24010114.
- 19. Yang HL, Huang PJ, Liu YR, Kumar KJ, Hsu LS, Lu TL, Chia YC, Takajo T,
- 378 Kazunori A, Hseu YC. Toona sinensis inhibits LPS-induced inflammation and migration
- in vascular smooth muscle cells via suppression of reactive oxygen species and NF-κB
- 380 signaling pathway. Oxid Med Cell Longev 2014:901315. doi: 10.1155/2014/901315.
- 381 20. Gao Z, Tong C, Wang Y, Chen D, Wu Z, Han W. Blocking CD38-driven fratricide
- among T cells enables effective antitumor activity by CD38-specific chimeric antigen
- 383 receptor T cells. J Genet Genomics 2019;46:367-377. doi: 10.1016/j.jgg.2019.06.007.
- 21. Liu L, Zou J, Guan Y, Zhang Y, Zhang W, Zhou X, Xiong C, Tolbert E, Zhao TC,
- Bayliss G, Zhuang S. Blocking the histone lysine 79 methyltransferase DOT1L
- alleviates renal fibrosis through inhibition of renal fibroblast activation and epithelial-

387	mesenchymal transiti	on. FASEB J 2019:33:11941-11958	. doi: 10.1096/fj.201801861R.
	2		J

- subsequent cancer outcomes: results from a prospective cohort study. Eur J Cancer
- 390 2006;42:704-707.
- 391 23. Shimetani N, Shimetani K, Mori M. Clinical evaluation of the measurement of
- 392 serum procalcitonin: comparative study of procalcitonin and serum amyloid A protein in
- 393 patients with high and low concentrations of serum C-reactive protein. Scand J Clin Lab
- 394 Invest 2004;64:469-474.
- 24. Saltzman RL, Peterson PK. Immunodeficiency of the elderly. Rev Infect Dis 1987;
 9:1127-1139.
- 397 25. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell
 398 2010;140:883-899.
- 26. Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and
 function. Nat Immunol 2004;5:133-139.
- 401 27. Kawakami K, Kadota J, Iida K, Shirai R, Abe K, Kohno S. Reduced immune function
- and malnutrition in the elderly. Tohoku J Exp Med 1999;187:157-171.
- 403 28. Kimbara S, Kondo S. Immune checkpoint and inflammation as therapeutic targets in
- 404 pancreatic carcinoma. World J Gastroenterol 2016;22:7440-7452.

^{388 22.} Helzlsouer KJ, Erlinger TP, Platz EA. C-reactive protein levels and

405 doi:10.3748/wjg.v22.i33.7440.

406 29. Huang L, Liu S, Lei Y, Wang K, Xu M, Chen Y, Fu Q, Zhang P, Qin K, Cai Y, Fu S,

- 407 Ge S, Yuan X. Systemic immune-inflammation index, thymidine phosphorylase and
- 408 survival of localized gastric cancer patients after curative resection. Oncotarget 409 2016;7:44185-44193. doi: 10.18632/oncotarget.9923.
- 410 30. Lin JX, Wang ZK, Huang YQ, Xie JW, Wang JB, Lu J, Chen QY, Lin M, Tu RH,
- 411 Huang ZN, Lin JL, Zheng CH, Huang CM, Li P. Dynamic changes in pre- and
- 412 postoperative levels of inflammatory markers and their effects on the prognosis of
- 413 patients with gastric cancer. J Gastrointest Surg 2020. doi: 10.1007/s11605-020-04523-8.
- 414 31. Sun Y, Huang Z, Chi P. An inflammation index-based prediction of treatment response
- 415 to neoadjuvant chemoradiotherapy for rectal mucinous adenocarcinoma. Int J Clin Oncol
- 416 2020. doi: 10.1007/s10147-020-01670-5.
- 417 32. Wang D, Hu X, Xiao L, Long G, Yao L, Wang Z, Zhou LD. Prognostic nutritional
- 418 index and systemic immune-inflammation index predict the prognosis of patients with
- 419 HCC. J Gastrointest Surg 2020. doi: 10.1007/s11605-019-04492-7.
- 420 33. Hua X, Deng JP, Long ZQ, Zhang WW, Huang X, Wen W, Guo L, He ZY, Lin HX.
- 421 Prognostic significance of the skeletal muscle index and an inflammation biomarker in
- 422 patients with breast cancer who underwent postoperative adjuvant radiotherapy. Curr

423 Probl Cancer 2019;1:100513. doi: 10.1016/j.currproblcanc	er.2019.1	00513.
--	-----------	--------

424	34.	Nishihira	T,	Hirayama	Κ,	Akimoto	М,	Sato	S,	Shineha	R,	Tan	М,	Kasai	M
-----	-----	-----------	----	----------	----	---------	----	------	----	---------	----	-----	----	-------	---

- 425 Significance of active nutritional support for maintenance of immunopotentiation on the
- 426 surgical treatment of esophageal cancer. Nihon Geka Gakkai Zassi 1985;86:1104-1107.
- 427 35. Shirai R, Kadota J, Iida K, Kawakami K, Abe K, Yoshinaga M, Iwashita T, Matsubara
- 428 Y, Oka M, Kohno S. Immunological competence and nutritional status in patients with
- 429 lung cancer. Lung 1998;176:363-370.
- 430
- 431

432 **Figure and table legends**

433	Fig. 1 Receiver operating curve for overall survival was plotted to verify the optimum
434	cut-off value of SII score.
435	
436	Fig. 2 Overall survival based on SII in propensity score matched 212 gastric cancer
437	patients.
438	
439	Fig. 3 Postoperative overall survival based on SII in age-stratified gastric cancer
440	patients (a) non-elderly patients, (b) elderly patients.
441	
442	
443	Table 1. Relationships between SII values and clinicopathological features before and
444	after propensity score matching
445	
446	Table 2. Univariate and multivariate analyses for overall survival in propensity score-
447	matched gastric cancer patients.
448	
449	Table 3. Relationships between SII and clinicopathological features in age-stratified

450 gastric cancer patients

- Table 4. Univariate and multivariate analyses for overall survival in age-stratified
- 453 gastric cancer patients
- 454

		Before	e propensity score mate	ching		After propensity score matching			
	_	SII				SII			
Characteristics	Total	< 661.9	≥661.9		Total	< 661.9	≥661.9		
	Patients	(n=309)	(n=106)	p value	Parlents	(n=106)	(n=106)	p value	
Age (years)		70 (36-91)	74 (43-90)	0.025		72 (41-89)	74 (43-90)	0.101	
Gender				0.593				0.758	
Male	289	213	76		154	78	76		
Female	126	96	30		58	28	30		
ASA-PS				< 0.001				0.008	
1	24	20	4		9	5	4		
2	351	270	81		176	95	81		
3	40	19	21		27	6	21		
BMI		22.5 (14.7-40.4)	21.8 (14.0-32.5)	0.036		23.4 (16.9-30.5)	21.8 (14.0-32.5)	0.011	
WBC		5530 (510-9280)	6495 (3510-13700)	< 0.001		5615 (2870-8920)	6495 (3510-13700)	< 0.001	
Neutrophil		3160 (250-6190)	4530 (2650-11460)	< 0.001		3200 (1450-5770)	4530 (2650-11460)	< 0.001	
Lymphocyte		1750 (230-3780)	1215 (230-2500)	< 0.001		1815 (800-3780)	1215 (230-2500)	< 0.001	
Platelet		205 (36-460)	252 (119-726)	< 0.001		218 (80-336)	252 (119-726)	< 0.001	
Location of tumor				0.717				0.475	
EGJ	12	8	4			3	4		
U	81	63	18			25	18		
М	175	132	43			46	43		
L	147	106	41			32	41		
Operative procedure				0.247				0.493	
LTG	88	63	25			27	25		
LPG	44	37	7			11	7		
L(A)DG	283	209	74			67	74		
Tumor size (mm)		40 (3-180)	50 (5-170)	0.001		44 (5-180)	50 (5-170)	0.401	
Differentiation				0.262				0.279	
Well	82	66	16		27	11	16		
Moderate	154	109	45		84	39	45		
Poor	179	134	45		101	56	45		
Depth of tumor				< 0.001				0.998	
T1a-1b	218	180	38		76	38	38		
2	56	43	13		26	13	13		
3	60	38	22		43	21	22		
4a-4b	81	48	33		67	34	33		
Lymph node metastas	sis			0.041				0.998	
NO	276	216	60		119	59	60		
N1	51	37	14		28	14	14		
N2	45	27	18		37	19	18		
N3	43	29	14		28	14	14		
Pathological stage				< 0.001				1.000	
1a-1b	248	203	45		90	45	45		
2a-2b	75	51	24		48	24	24		
3a-3c	92	55	37		74	37	37		
CEA antigen (ng/ml)		3.2 (0.7-106.0)	3.6 (0.8-163.3)	0.147		3.2 (0.7-84.7)	3.6 (0.8-163.3)	0.493	
CRP (mg/l)		0.07 (0.01-6.31)	0.16 (0.01-11.10)	< 0.001		0.08 (0.01-5.35)	0.16 (0.01-11.10)	0.002	
Postoperative compli	cations	× ,	~ /	0.120				0.381	
Absent		223	68			32	38		
Present		86	38			72	68		
Adjuvant chemothera	ру			0.138				0.157	
Yes	114	79	35		80	45	35		
No	301	230	71		132	61	71		

Table 1. Relationships between SII values and clinicopathological features before and after propensity score matching

Variables	Patients	Category or	Univariate	analysis		Multivariate analysis			
variables	(n=212)	characteristics	HR	95%CI	p value	HR	95%CI	p value	
Age	56/156	(<65/≥65)	1.979	1.003-3.905	0.049	1403	0.696-2.829	0.343	
Gender	58/154	(female/male)	1.031	0.587-1.809	0.916				
BMI	190/22	(>18.5/<18.5)	1.285	0.609-2.713	0.511				
ASA	185/27	(<3/≥3)	4.688	2.553-8.609	< 0.001	3.989	2.037-7.812	< 0.001	
Tumor size	106/106	(<5/≥5)	2.442	1.416-4.211	0.001	1.716	0.905-3.252	0.098	
Diff.	111/101	(well & mod/poor)	1.839	1.084-3.119	0.024	1.981	1.118-3.509	0.019	
pStage	138/74	(1,2/3)	2.829	1.692-4.731	< 0.001	1.809	1.011-3.237	0.046	
CEA	158/54	(<5.0/≥5.0)	2.556	1.522-4.294	< 0.001	2.463	1.444-4.202	< 0.001	
CRP	171/41	(<0.5/>0.5)	2.088	1.211-3.600	0.008	1.345	0.711-2.546	0.362	
SII	106/106	(<661.9/≥661.9)	2.292	1.342-3.915	0.002	2.189	1.254-3.823	0.006	
Operative procedure	159/53	(Proximal & Distal / Total)	2.321	1.377-3.912	0.002	2.104	1.200-3.689	0.009	
Postoperative complications	142/70	(absent/present)	1.657	0.988-2.781	0.056				
Adjuvant	132/80	(No/Yes)	1.25	0.751-2.082	0.391				

Table 2. Univariate and multivariate analyses for overall survival in propensity score-matched gastric cancer patients

		Non-	elderly patients			Elderly p	atients	
		5	SII				SII	
Characteristics	Total	< 661.9	≥661.9		Total	< 661.9	≥661.9	
	patients	(n=32)	(n=24)	p value	patients	(n=74)	(n=82)	p value
Age (years)		59 (41-64)	61 (43-64)	0.131		77 (65-89)	77 (65-90)	0.441
Gender				0.533				0.505
Male	154	23	19		154	55	57	
Female	58	9	5		58	19	25	
ASA				0.121				0.054
1	5	3	2		4	2	2	
2	48	29	19		128	66	62	
3	3	0	3		24	6	18	
BMI		23.4 (16.9-29.8)	20.9 (14.0-32.5)	0.032		23.4 (17.6-30.5)	22.2 (15.4-29.8)	0.085
WBC		5840 (3610-8320)	6755 (4880-9180)	0.009		5555 (2870-8920)	6420 (3510-13700)	< 0.001
Lymphocyte		1950 (1130-3250)	1320 (530-2500)	< 0.001		1740 (800-3780)	1170 (230-2270)	< 0.001
Neutrophil		3151 (2010-5720)	4775 (3120-6970)	< 0.001		3218 (1450-5770)	4440 (2650-11460)	< 0.001
Platelet		240 (147-336)	289 (141-543)	< 0.001		199 (80-331)	244 (119-726)	< 0.001
Location of tumor								0.775
EGJ	1	1	0	0.290	6	2	4	
U	13	9	4		30	16	14	
М	25	15	10		64	31	33	
L	17	7	10		56	25	31	
Operative procedure				0.340				0.884
LTG		9	4			19	21	
LPG		5	2			6	5	
L(A)DG		18	18			49	56	
Tumor size (mm)		41 (10-150)	42.5 (12-120)	0.389		50 (5-180)	52 (5-170)	0.795
Differentiation				0.929				0.283
Well	6	3	3		21	8	13	
Moderate	17	10	7		67	29	38	
Poor	33	9	14		68	37	31	
Depth of tumor				0.517				0.740
T1a-1b	26	15	11		50	23	27	
2	5	3	2		21	10	11	
3	11	8	3		32	13	19	
4a-4b	14	6	8		53	28	25	
Lymph node metastas	sis			0.490				0.720
N0	35	22	13		84	37	47	
N1	5	2	3		23	12	11	
N2	8	3	5		29	16	13	
N3	8	5	3		20	9	11	
Pathological stage				0.414				0.669
1a-1b	28	18	10		62	27	35	
2a-2b	12	5	7		36	19	17	
3a-3c	16	9	7		58	28	30	
CEA antigen (ng/ml)		2.8 (0.7-84.7)	3.0 (1.2-8.3)	0.842		3.35 (1.2-76.3)	3.65 (0.8-163.3)	0.434
CRP (mg/l)		0.06 (0.01-0.92)	0.11 (0.01-2.50)	0.002		0.09 (0.01-5.35)	0.18 (0.01-11.10)	0.008
Postoperative complic	cations			0.338				0.715
Absent	41	25	16		101	49	52	
Present	15	7	8		55	25	30	
Adjuvant chemothera	ру			0.440				0.047
Yes	27	14	13		53	31	22	
No	29	18	11		103	43	60	

Table 3. Relationships between SII and clinicopathological features in age-stratified gastric cancer patients

	Non-elderly patients								Elderly patients						
Variables	Patients (n=56)	Category or characteristics	Univariate analysis			Multivariate analysis			Patients	Univariate analysis			Multivariate analysis		
			HR	95%CI	p value	HR	95%CI	p value	(n=156)	HR	95%CI	p value	HR	95%CI	p value
Gender	14/42	(female/male)	3.178	0.400-25.247	0.274				44/112	0.904	0.498-1.640	0.740			
BMI	51/5	(>18.5/<18.5)	2.386	0.504-11.288	0.273				139/17	1.109	0.471-2.611	0.813			
ASA	53/3	(<3/≥3)	5.483	0.599-50.178	0.132				132/24	4.184	2.207-7.932	< 0.001	4.884	2.411-9.870	< 0.001
Tumor size	34/22	(<5/≥5)	3.663	0.942-14.251	0.061				72/84	2.153	1.186-3.908	0.012	1.890	0.940-3.803	0.074
Diff.	23/33	(well & mod/poor)	1.153	0.318-4.176	0.828				88/68	2.152	1.205-3.845	0.01	2.050	1.125-3.738	0.019
pStage	40/16	(1,2/3)	11.159	2.337-53.270	0.003	9.247	0.790-108.265	0.034	98/58	2.09	1.198-3.646	0.01	1.252	0.655-2.393	0.497
CEA	46/10	(<5.0/≥5.0)	1.493	0.385-5.794	0.563				112/44	2.745	1.556-4.843	< 0.001	2.226	1.236-4.006	0.008
CRP	48/8	(<0.5/>0.5)	4.572	1.214-17.220	0.025	4.944	1.238-19.740	0.024	123/33	1.721	0.938-3.156	0.08			
SII	32/24	(<661.9/≥661.9)	2.301	0.649-8.162	0.197				74/82	2.16	1.195-3.905	0.011	2.177	1.182-4.011	0.013
Operative procedure	43/13	(Proximal & Distal / Total)	3.743	1.076-13.026	0.038	2.703	0.659-11.090	0.167	116/40	2.116	1.186-3.778	0.011	2.044	1.088-3.841	0.026
Postoperative complication	s 41/15	(absent/present)	0.799	0.168-3.788	0.777				101/55	1.781	1.015-3.126	0.044	1.541	0.835-2.843	0.167
Adjuvant	29/27	(No/Yes)	5.786	1.155-28.992	0.033	1.176	0.102-13.567	0.896	103/53	1.01	0.570-1.789	0.973			

Table 4. Univariate and multivariate analyses for overall survival in age-stratified gastric cancer patients

Fig. 1 Receiver operating curve for overall survival was plotted to verify the optimum cutoff value of SII score.

Fig.2 Overall survival based on SII in propensity score matched 212 gastric cancer patients.

Fig. 3 Postoperative overall survival based on SII in age-stratified gastric cancer patients. (a) non-elderly patients, (b) elderly patients