

島根大学学術情報リポジトリ **Shimane University Web Archives of kNowledge**

Title

Nationwide study of pediatric B-cell precursor acute lymphoblastic leukemia with chromosome 8q24/MYC rearrangement in Japan

Author(s)

Kimiyoshi Sakaguchi, Toshihiko Imamura, Sae Ishimaru, Chihaya Imai, Hidemi Shimonodan, Naoto Fujita, Keiko Okada, Takeshi Taketani, Rie Kanai, Hisamichi Tauchi, Motohiro Kato, Yasuko Kojima, Arata Watanabe, Takao Deguchi, Yoshiko Hashii, Nobutaka Kiyokawa, Tomohiko Taki, Akiko M Saito, Keizo Horibe, Atsushi Manabe, Atsushi Sato, Katsuyoshi Koh

Journal

Pediatric blood & cancer, 67(7)

Published

23 April 2020

URL

https://doi.org/10.1002/pbc.28341

この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

- 1 Nationwide study of pediatric B-cell precursor acute lymphoblastic leukemia with
- 2 chromosome 8q24/MYC rearrangement in Japan
- 3
- 4 Kimiyoshi Sakaguchi^{1,2}, Toshihiko Imamura^{2,3}, Sae Ishimaru^{4,5}, Chihaya Imai⁶, Hidemi
- 5 Shimonodan⁷, Naoto Fujita⁸, Keiko Okada⁹, Takeshi Taketani¹⁰, Rie Kanai¹⁰, Hisamichi
- 6 Tauchi¹¹, Motohiro Kato¹², Yasuko Kojima¹³, Arata Watanabe¹⁴, Takao Deguchi¹⁵, Yoshiko
- 7 Hashii¹⁶, Nobutaka Kiyokawa¹⁷, Tomohiko Taki¹⁸, Akiko M. Saito², Keizo Horibe², Atsushi
- 8 Manabe¹⁹, Atsushi Sato²⁰, and Katsuyoshi Koh²¹

- 10 1 Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
- 2 Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya,
- 12 Japan.
- 13 3 Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- 4 Department of Hematology and Oncology, Tokyo Metropolitan Children's Medical Center,
- 15 Tokyo, Japan.
- 5 Department of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan.
- 17 6 Department of Pediatrics, Niigata University, Niigata, Japan.
- 7 Department of Pediatrics, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan.
- 19 8 Department of Pediatrics, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital,

- Hiroshima, Japan.
- 9 Department of Pediatric Hematology/Oncology, Osaka City General Hospital, Osaka, Japan.
- 22 10 Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Japan.
- 23 11 Department of Pediatrics, Ehime University, Toon, Japan.
- 24 12 Division of Stem Cell Transplant and Cellular Therapy, Children's Cancer Center, National
- 25 Center for Child Health and Development, Tokyo, Japan.
- 26 13 Department of Pediatrics, Toho University Omori Medical Center, Tokyo, Japan.
- 27 14 Department of Pediatrics, Nakadori General Hospital, Akita, Japan.
- 28 15 Department of Pediatrics, Mie University, Tsu, Japan.
- 29 16 Department of Pediatrics, Osaka University, Suita, Japan.
- 30 17 Department of Pediatric Hematology and Oncology Research, Research Institute, National
- 31 Center for Child Health and Development, Tokyo, Japan.
- 32 18 Department of Medical Technology, Kyorin University Faculty of Health Sciences, Mitaka,
- 33 Japan.

- 34 19 Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan.
- 35 20 Department of Hematology/Oncology, Miyagi Children's Hospital, Sendai, Japan.
- 36 21 Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan.
- 38 Corresponding author:

39	Kimiyoshi Sakaguchi, M.D., Ph.D.	
40	Department of Pediatrics, Hamamatsu University School of Medicine,	
41	1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan	
42	Phone: +81-53-435-2312	
43	FAX: +81-53-435-2311	
44	Email: k-saka@hama-med.ac.jp	
45		
46	Word Counts:	
47	Abstract, 249 words; main text, 1374 words; number of tables, 3; number of fig	gures, 1;
48	number of supplemental files, 2	
49		
50	Short running title: BCP-ALL with 8q24/MYC rearrangement in Japan	
51		
52	2 Keywords	
53	B-cell precursor acute lymphoblastic leukemia, 8q24/MYC rearrangement,	Burkitt
54	lymphoma/leukemia, immunophenotype, double-hit lymphoma/leukemia	
55		
56	Abbreviations	
	8q24-r 8q24 rearrangement	

ALL acute lymphoblastic leukemia

BCP B-cell precursor

BL Burkitt lymphoma/leukemia

CCLSG Japanese Childhood Cancer and

Leukemia Study Group

DHL double-hit lymphoma/leukemia

HCT hematopoietic cell transplantation

JACLS Japan Association Childhood Leukemia

Study Group

LDH lactate dehydrogenase

TCCSG Tokyo Children's Cancer Study Group

TdT terminal deoxynucleotidyl transferase

UA uric acid

Abstract

- 2 Background
- 3 Rearrangements of chromosome 8q24/MYC (8q24/MYC-r), resulting from
- t(8;14)(q24;q32), t(2;8)(p11;q24), or t(8;22)(q24;q11), are mainly associated with Burkitt
- 5 lymphoma/leukemia (BL) and rarely observed in patients with B-cell precursor acute
- 6 lymphoblastic leukemia (BCP-ALL). The characteristics of BCP-ALL with 8q24/MYC-r
- 7 are poorly understood.
- 8 Procedure
- 9 A retrospective nationwide study of data from patients with pediatric BCP-ALL with
- 10 8q24/MYC-r in Japan was conducted to clarify the clinical and biological characteristics
- associated with 8q24/MYC-r BCP-ALL.
- 12 Results
- 13 Ten patients with BCP-ALL with 8q24/MYC-r, including three with double-hit leukemia
- 14 (DHL) (two with t(8;14)(q24;q32) and t(14;18)(q32;q21), and one with t(8;14) and
- 15 t(3;22)(q27;q11)), were identified. Patients with BCP-ALL with 8q24/MYC-r had higher
- median age, and higher uric acid (UA) and lactate dehydrogenase (LDH) levels, relative
- 17 to those without 8q24/MYC-r. All patients were initially treated with ALL-type
- 18 chemotherapy; however, four, including one with DHL, were switched to BL-type

- 1 chemotherapy because of their cytogenetic findings. One patient relapsed after standard-
- 2 risk ALL-type chemotherapy, and two patients with DHL did not attain complete
- 3 remission with chemotherapy; all three died within 11 months. The other seven patients
- 4 treated with BL-type or high-risk ALL-type chemotherapy are alive without disease.
- 5 Conclusions
- 6 Clinical and laboratory features of BL with IG-MYC rearrangement displaying a BCP
- 7 immunophenotype (Wagener et al. and Herbrueggen et al. termed it as preBLL) are
- 8 similar to BCP-ALL with 8q24/MYC-r. Low-risk ALL-type chemotherapy may not be
- 9 appropriate for them, and further studies are required to establish adequate therapeutic
- strategy. DHL also needs further studies, including of new treatment strategies, because
- of their extremely aggressive disease.

Introduction

1

2 The hallmarks of Burkitt lymphoma/leukemia (BL) are 8q24/MYC-related including t(8;14)(q24;q32), t(8;22)(q24;q11), 3 chromosomal translocations, 4 t(2;8)(p12;q24), alongside a mature B-cell immunophenotype, elevated uric acid (UA) 5 and lactate dehydrogenase (LDH) at diagnosis, bulky disease, and FAB-L3 morphology 1. However, 8q24/MYC rearrangement (8q24/MYC-r) is also occasionally observed in 6 7 acute lymphoblastic leukemia with a B-cell precursor immunophenotype (BCP-ALL), rather than a mature B-cell immunophenotype ². Due to the rarity of BCP-ALL with 8 9 8q24/MYC-r, its characteristics are poorly understood. In addition, leukemia/lymphoma with BCL2 or BCL6 and MYC rearrangements, known as double-hit lymphoma/leukemia 10 (DHL)³, is reported to exhibit a BCP-ALL immunophenotype ⁴. Childhood DHL is also 11 extremely rare, and its characteristics are poorly described ⁴. Herein, we report the clinical 12 and biological characteristics of ten patients with BCP-ALL with 8q24/MYC-r, including 13 14 three patients with DHL, in Japan.

Patients and Methods

15

Patients with 8q24/*MYC*-r BCP-ALL were primarily from among the 4043

patients enrolled in the Japan Association Childhood Leukemia Study Group (JACLS)

ALL-02 study (n = 1252) ⁵; the Tokyo Children's Cancer Study Group (TCCSG) L99-

- 1 15 (n = 770), L04-16 (n = 150), L06-16 (n = 194), L07-16 (n = 274), and L09-16 (n =
- 2 607) studies ^{6,7}; the Japanese Childhood Cancer and Leukemia Study Group (CCLSG)
- 3 ALL2000 MRD (n = 305) and ALL2004 studies (n = 326) 8 ; and the Kyushu–
- 4 Yamaguchi Childhood Cancer Study Group ALL-02 study (n = 165) 9. Disease
- 5 classification as either BCP-ALL or Burkitt-ALL was determined by flow cytometric
- 6 analysis, according to the Japanese Pediatric Leukemia/Lymphoma Study Group criteria
- 7 10 (Supplementary Table S1), which are based on the European Group for the
- 8 Immunological Characterization of Leukemias criteria ¹¹. The presence of 8q24/MYC-r
- 9 was confirmed by G-banding, *IGH-MYC* fusion, or *MYC* split signal by fluorescence in
- situ hybridization. Patient data analyses included the following: age, sex, and
- extramedullary disease; laboratory data, including white blood cell count, serum UA
- level, serum LDH level, and FAB classification of leukemic blasts; ALL cell cytogenetic
- data, including G-banding, fluorescence in situ hybridization data, and leukemic blast
- immunophenotype; and details of treatments and outcomes. This study was approved by
- the Ethics Committee of Hamamatsu University School of Medicine.
- 16 **Results**
- 17 Clinical characteristics of patients with BCP-ALL carrying 8q24/MYC
- 18 rearrangements

- Nine patients (0.2%) with BCP-ALL carrying 8q24/MYC-r were identified
- 2 from among the 4043 patients enrolled in nine clinical studies in Japan (**Table 1**). An
- additional patient with BCP-ALL carrying t(8;14)(q24;q32), who was not enrolled in any
- 4 clinical study, was identified at a participating hospital and included in this study
- 5 (patient #10 in **Table 1**). FAB classification of leukemic blasts showed that eight of ten
- 6 patients had L1/2 morphology, and that leukemic blasts in all patients, including two
- 7 with L3 morphology, expressed CD10, and CD19, but not surface μ , κ , or λ
- 8 immunoglobulins, consistent with a BCP-ALL immunophenotype (Table 1). The
- 9 clinical characteristics of these ten patients were compared with those of other patients
- with BCP-ALL in the JACLS ALL-02 trial, and they had relatively higher median age,
- 11 higher UA and LDH levels, and were predominantly male (Table 2).

Double-hit leukemia

- Patients with BCP-ALL carrying 8q24/MYC-r included three so-called DHL
- patients: two with t(8;14)(q24;q32) and t(14;18)(q32;q21), and one with t(8;14) and
- 15 t(3;22)(q27;q11) (patients #7, #8, and #9 in **Table 1**). Fluorescence in situ hybridization
- analysis confirmed the rearrangement of MYC and BCL2 in the two patients with t(8;14)
- and t(14;18). Leukemic blasts from the majority of patients with 8q24/MYC-r expressed
- 18 CD20 but not CD34 or terminal deoxynucleotidyl transferase (TdT), consistent with a

- 1 mature B-cell immunophenotype; however, samples from two of three DHL patients
- were CD20-negative and TdT-positive (patients #8 and #9 in Table 1). Further, central
- 3 nervous system involvement was observed in two of the three patients with DHL
- 4 (patients #7 and #9 in **Table 1**).

Treatments and outcomes

5

- 6 All patients with 8q24/MYC-r were initially treated with ALL-type induction
- therapy, and three patients had maintained complete remission (CR) until the last
- 8 follow-up, following only ALL-type chemotherapy (**Table 1, Fig. 1**, **Supplementary**
- 9 Table 2). Four patients, including one with DHL, were switched to BL-type
- 10 chemotherapy because of their cytogenetic findings, and all of them maintained
- complete remission (**Table 1, Fig. 1**, Supplementary Table 2). One patient relapsed after
- standard-risk ALL chemotherapy, and two patients with DHL did not attain a complete
- remission with chemotherapy; all three received allogeneic hematopoietic cell
- transplantation but died within 11 months (**Table 1, Fig. 1**, Supplementary Table 2).

Discussion

- Wagener et al. and Herbrueggen et al. describe that BL with IG-MYC
- 17 rearrangement displaying a BCP immunophenotype (they termed it as preBLL) have
- biological similarities to BCP-ALL ^{12,13}. They describe that preBLL blasts have genetic

- 1 abnormalities similar to BCP-ALL, such as aberrant VDJ recombination and/or
- 2 activating NRAS and/or KRAS mutations. We also identified ten patients with BCP-ALL
- 3 carrying 8q24/MYC-r in this study.
- 4 For comparing clinical and immunological features of our BCP-ALL patients
- 5 carrying 8q24/MYC-r to those of preBLL, we conducted literature survey to identify 11
- 6 papers reporting 32 pediatric patients diagnosed with BCP-ALL carrying 8q24/MYC-r.
- 7 Of these, two patients lacking flow cytometric analysis data on surface κ or λ
- 8 immunoglobulins, and four patients without 8q24/MYC-r detection at initial diagnosis,
- 9 were excluded from our analysis. Therefore, 26 patients whose karyotype data and
- immunophenotyping data diagnostic for BCP-ALL were completely available were
- analyzed ^{2,4,12,14-21} (**Table 3**). The immunophenotypes of blasts reported in these
- 12 literatures were similar to those of our patients except for positivity of TdT expression
- 13 (positive TdT expression: 12/17 vs 2/7 in our cohort), although we could not explain
- this discrepancy. Ideally, we should investigate whether an aberrant VDJ recombination
- was associated with IG translocation in our patients. However, we could not perform
- further genetic studies due to the lack of enough samples. On the other hand, 26 patients
- showed quite similar clinical and laboratory features to those of our patients, such as
- relatively older median age (11.8 years vs 8 years), higher UA (median 12.9 vs 7.1

- 1 mg/dl) and LDH levels (median 10,554 vs 2882 IU/l). Thus, we think that our BCP-
- 2 ALL with 8q24/MYC-r belong to preBLL.
- 3 Short course, high-intensity chemotherapy regimens are the standard treatments
- 4 for BL. These chemotherapeutic regimens comprise alkylating agents, etoposide,
- 5 antimetabolites, vincristine, steroids, and high dose methotrexate ²². The JACLS NHL-
- 6 B02p, Japanese Pediatric Leukemia/Lymphoma Study Group B-NHL03, NHL B-cell
- 7 type, and NHL-BFM95 regimens are categorized as BL-type chemotherapy ²³⁻²⁵. By
- 8 contrast, the standard treatment for ALL is long-term chemotherapy that comprises three
- 9 phases: induction, consolidation, and maintenance ²⁶. Treatment intensity categories are
- 10 classified according to the original risk group to which treatment protocols were applied
- as follows: JACLS ALL-02 SR and CCLSG ALL2004 SR are categorized as standard-
- 12 risk ALL-type chemotherapy ^{5,8}; while JACLS ALL-02 HR, JACLS ALL-02 ER,
- 13 JACLS ALL-02 F, TCCSG L99-15 HR, TCCSG L99-1502 HEX, TCCSG L0416 HEX,
- and CCLSG ALL2004 salvage 1 are classified as high-risk ALL-type chemotherapy
- 15 5,8,27,28. A standard chemotherapeutic regimen for BCP-ALL with 8q24/MYC-r has yet to
- be established, while the outcome of children and adolescents with preBLL described in
- the report of Herbrueggen et al. seems to be favorable when treated with regimens for
- mature B-cell NHL rather than ALL despite its biological similarities to BCP-ALL ¹². In

- this study, all four patients treated with BL-type chemotherapy, and three of five
- 2 patients treated with high-risk ALL-type chemotherapy, are alive without disease (Table
- 3 1, Fig. 1, Supplementary Table 2). Further, in our literature survey, 10 of 12 patients
- 4 treated with BL-type chemotherapy were alive without disease; however, two of four
- 5 patients initially treated with ALL-type chemotherapy died of disease (Table 3).
- 6 Although it might be possible that chemotherapy for low-risk ALL might be insufficient
- 7 for BCP-ALL with 8q24/MYC-r, further studies are required to establish adequate
- 8 therapeutic strategy for this quite rare subtype of ALL.
- 9 Two of the patients with DHL included in our study died of disease
- progression, despite highly intensive chemotherapy oriented to high-risk ALL,
- accompanied by allogeneic hematopoietic cell transplantation, suggesting that this
- disease subtype is an aggressive form of BCP-ALL. Two of three patients with DHL in
- the literature survey also died of disease (Table 3). Further studies to assess new
- treatment strategies, such as BCL2 inhibitor ²⁹ or anti-CD19 chimeric antigen receptor
- 15 T-cell therapy ³⁰, are warranted to identify a cure for this extremely aggressive disease.

Conflict of interest statement

16

17 There are no competing financial interests.

1 Acknowledgments

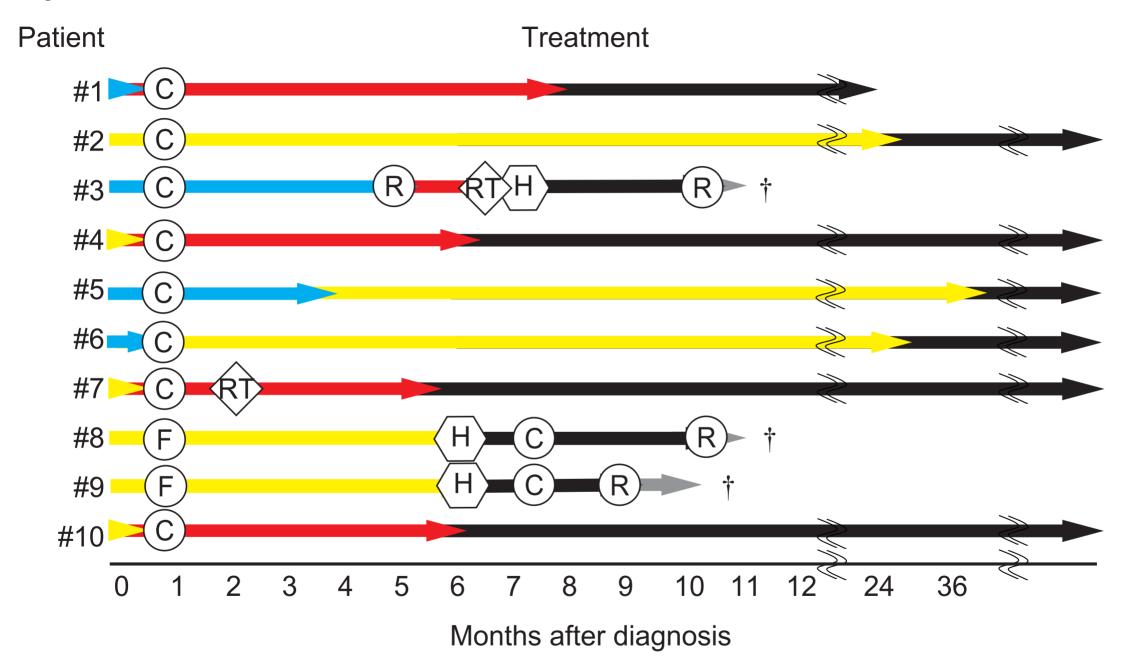
- 2 We gratefully acknowledge the work of past and present members of JACLS, TCCSG,
- 3 CCLSG, Kyushu–Yamaguchi Childhood Cancer Study Group, Japanese Pediatric
- 4 Leukemia/Lymphoma Study Group, and Japan Children's Cancer Group.

References

- 6 1. Blum KA, Lozanski G, Byrd JC. Adult Burkitt leukemia and lymphoma. *Blood* 2004;104(10):3009-3020.
- 8 2. Navid F, Mosijczuk AD, Head DR, et al. Acute lymphoblastic leukemia with the
- 9 (8;14)(q24;q32) translocation and FAB L3 morphology associated with a B-
- precursor immunophenotype: the Pediatric Oncology Group experience.
- 11 *Leukemia* 1999;13(1):135-141.
- 12 3. Kanungo A, Medeiros LJ, Abruzzo LV, Lin P. Lymphoid neoplasms associated
- with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor
- prognosis. *Mod Pathol* 2006;19(1):25-33.
- Liu W, Hu S, Konopleva M, et al. De Novo MYC and BCL2 Double-hit B-Cell
- Precursor Acute Lymphoblastic Leukemia (BCP-ALL) in Pediatric and Young
- 17 Adult Patients Associated With Poor Prognosis. *Pediatr Hematol Oncol*
- 18 2015;32(8):535-547.
- 19 5. Hasegawa D, Imamura T, Yumura-Yagi K, et al. Risk-adjusted therapy for
- 20 pediatric non-T cell ALL improves outcomes for standard risk patients: results of
- 21 JACLS ALL-02. *Blood Cancer J* 2020;10(2):23.
- 22 6. Kato M, Koh K, Manabe A, et al. No impact of high-dose cytarabine and
- asparaginase as early intensification with intermediate-risk paediatric acute
- 24 lymphoblastic leukaemia: results of randomized trial TCCSG study L99-15. Br J
- 25 *Haematol* 2014;164(3):376-383.
- 26 7. Kato M, Manabe A, Koh K, et al. Treatment outcomes of adolescent acute
- 27 lymphoblastic leukemia treated on Tokyo Children's Cancer Study Group
- 28 (TCCSG) clinical trials. *Int J Hematol* 2014;100(2):180-187.
- 29 8. Hyakuna N, Shimomura Y, Watanabe A, et al. Assessment of corticosteroid-
- induced osteonecrosis in children undergoing chemotherapy for acute

- 1 lymphoblastic leukemia: a report from the Japanese Childhood Cancer and
- 2 Leukemia Study Group. *J Pediatr Hematol Oncol* 2014;36(1):22-29.
- Okamoto Y, Koga Y, Inagaki J, et al. Effective VCR/DEX pulse maintenance
- 4 therapy in the KYCCSG ALL-02 protocol for pediatric acute lymphoblastic
- 5 leukemia. *Int J Hematol* 2016;103(2):202-209.
- 6 10. Iwamoto S, Deguchi T, Ohta H, et al. Flow cytometric analysis of de novo acute
- 7 lymphoblastic leukemia in childhood: report from the Japanese Pediatric
- 8 Leukemia/Lymphoma Study Group. *Int J Hematol* 2011;94(2):185-192.
- 9 11. Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological
- 10 classification of acute leukemias. European Group for the Immunological
- 11 Characterization of Leukemias (EGIL). *Leukemia* 1995;9(10):1783-1786.
- 12 12. Herbrueggen H, Mueller S, Rohde J, et al. Treatment and outcome of IG-
- 13 MYC(+) neoplasms with precursor B-cell phenotype in childhood and
- 14 adolescence. Leukemia 2019.
- 13. Wagener R, Lopez C, Kleinheinz K, et al. IG-MYC (+) neoplasms with
- precursor B-cell phenotype are molecularly distinct from Burkitt lymphomas.
- 17 *Blood* 2018;132(21):2280-2285.
- 18 14. Rawlinson NJ, Baker P, Kahwash SB. Burkitt's leukemia with an atypical
- immunophenotype: report of a case and review of literature. *Lab Hematol*
- 20 2011;17(4):27-31.
- 21 15. Kaplinsky C, Rechavi G. Acute lymphoblastic leukemia of Burkitt type (L3
- ALL) with t(8;14) lacking surface and cytoplasmic immunoglobulins. *Med*
- 23 *Pediatr Oncol* 1998;31(1):36-38.
- 24 16. Hassan R, Felisbino F, Stefanoff CG, et al. Burkitt lymphoma/leukaemia
- 25 transformed from a precursor B cell: clinical and molecular aspects. Eur J
- 26 *Haematol* 2008;80(3):265-270.
- 27 17. Sato Y, Kurosawa H, Fukushima K, Okuya M, Arisaka O. Burkitt-Type Acute
- 28 Lymphoblastic Leukemia With Precursor B-Cell Immunophenotype and Partial
- Tetrasomy of 1q: A Case Report. *Medicine (Baltimore)* 2016;95(10):e2904.
- 30 18. Gupta AA, Grant R, Shago M, Abdelhaleem M. Occurrence of
- t(8;22)(q24.1;q11.2) involving the MYC locus in a case of pediatric acute
- 32 lymphoblastic leukemia with a precursor B cell immunophenotype. *J Pediatr*
- 33 *Hematol Oncol* 2004;26(8):532-534.
- 34 19. Demina I, Zerkalenkova E, Illarionova O, et al. Heterogeneity of childhood
- acute leukemia with mature B-cell immunophenotype. J Cancer Res Clin Oncol
- 36 2019;145(11):2803-2811.

- 1 20. Pegoraro L, Palumbo A, Erikson J, et al. A 14;18 and an 8;14 chromosome
- translocation in a cell line derived from an acute B-cell leukemia. *Proc Natl*
- 3 *Acad Sci U S A* 1984;81(22):7166-7170.
- 4 21. Uemura S, Hasegawa D, Yokoi T, et al. Refractory double-hit
- 5 lymphoma/leukemia in childhood mimicking B-precursor acute lymphoblastic
- leukemia at initial presentation. *Rinsho Ketsueki* 2017;58(2):143-149.
- 7 22. Giulino-Roth L, Goldman S. Recent molecular and therapeutic advances in B-
- 8 cell non-Hodgkin lymphoma in children. *Br J Haematol* 2016;173(4):531-544.
- 9 23. Fujita N, Mori T, Mitsui T, et al. The role of hematopoietic stem cell
- transplantation with relapsed or primary refractory childhood B-cell non-
- Hodgkin lymphoma and mature B-cell leukemia: a retrospective analysis of
- enrolled cases in Japan. *Pediatr Blood Cancer* 2008;51(2):188-192.
- 13 24. Tsurusawa M, Mori T, Kikuchi A, et al. Improved treatment results of children
- with B-cell non-Hodgkin lymphoma: a report from the Japanese Pediatric
- Leukemia/Lymphoma Study Group B-NHL03 study. *Pediatr Blood Cancer*
- 16 2014;61(7):1215-1221.
- 17 25. Woessmann W, Seidemann K, Mann G, et al. The impact of the methotrexate
- administration schedule and dose in the treatment of children and adolescents
- with B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. *Blood*
- 20 2005;105(3):948-958.
- 21 26. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl
- 22 J Med 2015;373(16):1541-1552.
- 23 27. Manabe A, Ohara A, Hasegawa D, et al. Significance of the complete clearance
- of peripheral blasts after 7 days of prednisolone treatment in children with acute
- 25 lymphoblastic leukemia: the Tokyo Children's Cancer Study Group Study L99-
- 26 15. *Haematologica* 2008;93(8):1155-1160.
- 27 28. Takahashi H, Kajiwara R, Kato M, et al. Treatment outcome of children with
- acute lymphoblastic leukemia: the Tokyo Children's Cancer Study Group
- 29 (TCCSG) Study L04-16. *Int J Hematol* 2018;108(1):98-108.
- 30 29. Li L, Pongtornpipat P, Tiutan T, et al. Synergistic induction of apoptosis in high-
- 31 risk DLBCL by BCL2 inhibition with ABT-199 combined with pharmacologic
- 32 loss of MCL1. Leukemia 2015;29(8):1702-1712.
- 33 30. Nandagopal L, Mehta A. Treatment approaches of hard-to-treat non-Hodgkin
- 34 lymphomas. *Expert Rev Hematol* 2017;10(3):259-273.


Figure Legends

1

10

2 Fig. 1 Schematic representation of the clinical course of ten patients with BCP-ALL with 8q24/MYC rearrangement. 3 4 Blue arrow, standard-risk ALL-type chemotherapy; yellow arrow, high-risk ALL-type chemotherapy; red arrow, BL-type chemotherapy; gray arrow, 5 palliative therapy; black arrow, observation; RT, rituximab; H, hematopoietic 6 cell transplantation; R, relapse; F, induction failure; C, complete remission; †, 7 8 death; BCP, B-cell precursor; ALL, acute lymphoblastic leukemia; BL, Burkitt 9 lymphoma/leukemia.

Figure 1

	TA	BLI	E 1	Clini	ical and	biologica	ıl charac	cteristics of ten patient	s with	ı BCP	-ALL	with	8q24/ <i>N</i>	<i>1YC</i> r	earr	ange	ement	
Pati	Age	Se	Extra	Morp	Lal	boratory d	ata	Cytogenetic data			Immu	nopher	otypic d	ata			Treatm	Outcome
ent	(y)	X	medu llary	holog y	WBC (/μL)	UA (mg/dl)	LDH (IU/L)		CD 10	CD 19	CD 20	CD 34	TdT	μ	к	λ	ent (Treat	
			disea se														ment after	
																	relapse)	
1	1.4	M	No	L3	1400	7.1	3498	46,XY,t(8;14)(q24;q32), der(14)t(1;14)(q12;p13), der(15)t(1;15)(q12;p13) [19/20]	+	+	+	-	N/A	_s	-	-	SR ALL type → BL type	ANED20 m+
?	16.1	M	No	L1	6730	3.7	837	46,XY,t(8;14)(q24;q32), add(9)(p13),add(13)(q32) [19/20]	+	+	+	-	-	_cs	-	-	HR ALL type	ANED121 m+
3	4.9	M	No	L2	6900	N/A	2157	46,XY,t(8;14)(q22;q32) [15/20] <i>IgH-MYC</i> FISH 21%§	+	+	+	-	_	_cs	-	-	SR ALL type (BL type + HCT)	Relapse 5m DOD11 m
1	7.8	M	No	L3	3430	12.2	12 660	46,XY,ins(1;?)(q21;?), t(8 ; 14)(q24;q32) ,add(13)(q	+	+	+	-	N/A	_c	_	_	HR ALL	ANED136 m+

								34) [1/20] <i>IgH-MYC</i> FISH 16%									type → BL type	
5	4.2	M	No	L2	29 100	4.7	3240	46,XY,ins(1;?)(q21;?),de r(4),t(1;4)(q21;q31),t(8;1 4)(q24;q32) [2/19]	+	+	N/ A	-	-	_cs	-	-	SR ALL type → HR ALL type	ANED114 m+
6	9.6	M	No	L1	2400	5.8	196	46,XY,add(5)(p11), t(8;1 4)(q24;q32) , <u>t(11;16)(q23</u> ; <u>p13)</u> [6/20]	+	+	N/ A	+	N/A	N/A	-	-	SR ALL type → HR ALL type	ANED122 m+
7	8.2	M	CNS	L1	2680	18.7	1966	46,XY, <u>t(3;22)(q27;q11)</u> , t (8;14)(q24;q32),dup(12) (q13q24),del(13)(q?) [4/10] <i>IgH-MYC</i> FISH 97%	+	+	+	-	-	_c +s*	+ *	+	SR ALL type → BL type	ANED104 m+
8	14.0	M	No	L2	23 400	7.2	5586	46,XY,t(8;14)(q24;q32), t(14;18)(q32;q21) [18/19] <i>IgH-MYC</i> FISH 92%	+	+	-	-	+	_cs	-	-	HR ALL type + HCT	Relapse 10m DOD11 m

								<i>IgH-BCL2</i> FISH 90%								
								46,XY,t(8;14)(q24;q32),							HR	
0	11.3	M	CNC	N/A	14 470	6.0	2523	t(14;18)(q32;q21) [6/8]					+	cs	ALL	Relapse 8m
9		M	CNS		14 4 / 0	6.9		MYC split FISH 90.4%	+	+	_			_65	 type +	DOD10 m
								IgH-BCL2 FISH 90.4%							HCT	
															SR	
			Kidn	L1			8525	47,XX,+i(1)(q10), t(8;14)					_	+c	ALL	ANED66
10	5.0	F			6400	9.8		(q24;q32) [20/20]	+	+	-			_s	 type	ANED00
			ey					<i>IgH-MYC</i> FISH 54%							\rightarrow BL	m+
															type	

^cCytoplasmic

BCP, B-cell precursor; ALL, acute lymphoblastic leukemia; y, years; N/A, not assessed; M, male; F, female; CNS, central nervous system; WBC, white blood cell; UA, uric acid; LDH, lactate dehydrogenase; FISH, fluorescence in situ hybridization; TdT, terminal deoxynucleotidyl transferase; BL, Burkitt lymphoma/leukemia; SR, standard-risk; HR, high-risk; ANED, alive with no evidence of disease; DOD, dead of disease; m, months after diagnosis.

^sSurface

[§]This data was obtained when the ALL was relapsed.

^{*}False positive: these results were considered false positives because κ and λ were positive simultaneously.

TABLE 2 Clinical characteristics of BCP-ALL with 8q24/MYC and BCP-ALL from JACLS ALL-02

Phenotype		BCP-ALL with 8q24/MYC	BCP-ALL from JACLS ALL-02
n		10	1091
A == (=)	< 10	7 (70%)	896 (82.1%)
Age (y)	≥ 10	3 (30%)	195 (17.9%)
Median Age (y)		8.0 (1.4–16.1)	4 (1–18)
	Male	9 (90%)	578 (53%)
Sex	Female	1 (10%)	513 (47%)
WBC (/μL)	< 20 000	8 (80%)	799 (73.2%)
	≥ 20 000	2 (20%)	292 (26.8%)
Median WBC (/μL)		6565 (1400–29 100)	7100 (370–816 000)
UA (mg/dl)	< 7	4 (40%)	878 (84.6%)
	≥ 7	6 (60%)	160 (15.4%)
Median UA (mg/dl)		7.1 (3.7–18.1)	4.7 (0.7–53)
LDH (IU/L)	< 500	1 (10%)	550 (52.1%)
	≥ 500	9 (90%)	505 (47.9%)
Median LDH (IU/L)		2881.5 (196–12 660)	476 (7.35–28 900)

BCP, B-cell precursor; ALL, acute lymphoblastic leukemia; JACLS, Japan Association Childhood Leukemia Study Group; WBC, white blood cell; UA, uric acid; LDH, lactate dehydrogenase.

Supplemental TABLE S1 Proposed immunophenotypic criteria for de novo cases of acute lymphoblastic leukemia 11

T-lineage ALL	1. CD3 ⁺					
	2. Express CD2, CD5, CD7, or CD8					
B-lineage ALL						
Early pre-B ALL	Express at least two B-lineage markers (CD19, CD20, CD22, or CD79a)					
Pre-B ALL*	1. Express at least two B-lineage markers (CD19, CD20, CD22, or CD79a)					
	2. Negative for surface membrane immunoglobulin κ or λ light chains					
	3. Express cytoplasmic and/or surface immunoglobulin μ heavy chains					
B-ALL	1. Express at least two B-lineage markers (CD19, CD20, CD22, or CD79a)					
	2. Express surface membrane immunoglobulin κ or λ light Chains					
ALL with aberrant myeloid-	-associated antigen expression					
My Ag ⁺ T-lineage ALL	1. CD3 ⁺ and express CD2, CD5, CD7, or CD8					
	2. CD79a ⁻					
	3. MPO and express myeloid-associated markers (CD13, CD15, CD33, or CD65)					
My Ag ⁺ B-lineage ALL	1. Express at least two B-lineage markers (CD19, CD20, CD22, or CD79a)					
	2. CD3 ⁻					
	3. MPO ⁻ and express myeloid-associated markers (CD13, CD15, CD33, or CD65)					

BCP-ALL or mature B-ALL were classified by FCM according to the JPLSG criteria.

BCP-ALL includes early pre-B ALL and pre-B ALL. Mature B-ALL includes B-ALL.

*Pre-B ALL cases include transitional pre-B cases.

My, myeloid; Ag⁺, antigen positive.

Supplemental TABLE S2 Treatment administered and outcomes of ten patients with BCP-ALL with 8q24/MYC rearrangement

Patient	Treatment	Recurrence	HCT	Outcom	e	
1	JACLS ALL-02 SR ^a → JACLS NHL-B02p Group 4 ^c	No	No	ANED	20 m+	
2	JACLS ALL-02 HR ^b	No	No	ANED	121 m+	
	$JACLSALL$ -02 $SR^{a} \rightarrow$					
3	<relapse> \rightarrow JPLSG B-NHL03 Group 4°, rituximab, and so on \rightarrow</relapse>	Yes (5 m)	Yes (8 m)	DOD	11 m	
	$<$ non CR $> \rightarrow$ CBT $\rightarrow <$ relapse $> \rightarrow <$ death $>$					
4	TCCSG L99-1502 $\text{HEX}^b \rightarrow \text{NHL B-cell type group IV}^c$	No	No	ANED	136 m+	
5	$CCLSG\ ALL2004\ SR^a \rightarrow CCLSG\ ALL2004\ salvage\ 1^b$	No	No	ANED	114 m+	
6	$JACLS ALL-02 SR^a \rightarrow JACLS ALL-02 HR^b$	No	No	ANED	122 m+	
7	JACLS ALL-02 $HR^b \rightarrow JPLSG B-NHL03 Group 4^c$	No	No	ANED	104 m+	
	JACLS ALL-02 ER $^{\rm b}$ \rightarrow		Yes (6 m)	DOD	11 m	
8	$<$ non CR $> \rightarrow$ JACLS ALL-02 F ^b \rightarrow	Yes (10 m)				
0	$<$ non CR $> \rightarrow$ PBSCT $\rightarrow <$ CR $> \rightarrow$				11 111	
	$\langle \text{relapse} \rangle \rightarrow \text{palliative care} \rightarrow \langle \text{death} \rangle$					
	TCCSG L0416 HEX ^b \rightarrow					
9	$<$ non CR $> \rightarrow$ TCCSG L0416 (VCR+DEX+L-asp) + RT (30 Gy/15 fr) \rightarrow	Voc (9 m)	Vag (6 m)	DOD	10 m	
9	$<$ non CR $> \rightarrow$ BMT $\rightarrow <$ CR $> \rightarrow$	Yes (8 m)	Yes (6 m)	DOD	10 m	
	$\langle \text{relapse} \rangle \rightarrow \text{palliative care} \rightarrow \langle \text{death} \rangle$					
10	TCCSG L99-15 $HR^b \rightarrow NHL$ -BFM95 $R4^c$	No	No	ANED	66 m+	

^aJACLS ALL-02 SR and CCLSG ALL2004 SR are standard-risk ALL-type chemotherapy.

^bJACLS ALL-02 HR, JACLS ALL-02 ER, JACLS ALL-02 F, TCCSG L99-1502 HEX, TCCSG L0416 HEX, and CCLSG ALL2004 salvage 1 are high-risk ALL chemotherapy.

^cJACLS NHL-B02p Group 4, JPLSG B-NHL03 Group 4, NHL B-cell type group IV, and NHL-BFM95 R4 are BL-type chemotherapy.

BCP, B-cell precursor; ALL, acute lymphoblastic leukemia; JACLS, Japan Association Childhood Leukemia Study Group; TCCSG, Tokyo Children's Cancer Study Group; CCLSG, Japanese Childhood Cancer and Leukemia Study Group; NHL, non-Hodgkin lymphoma; SR, standard risk; HR, high risk; HEX, extremely high risk; ER, extremely high risk; F, induction failure; BFM, Berlin-Frankfurt-Münster; CBT, cord blood transplantation; PBSCT, peripheral blood stem cell transplantation; BMT, bone marrow transplantation; VCR, vincristine; DEX, dexamethasone; L-asp, L-asparaginase; RT, irradiation; fr, fraction; m, months after diagnosis; ANED, alive with no evidence of disease; DOD, dead of disease.