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Negative Hall factor of acceptor impurity hopping conduction in p-type 4H-SiC 

Yasutomo Kajikawa 

Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue 690-8504, Japan 

e-mail kajikawa@riko.shimane-u.ac.jp, Phone: +81 852 32 8903, Fax: +81 852 32 8903 

The experimental data of the temperature-dependent Hall-effect measurements on Al-doped p-

type 4H-SiC samples, which exhibit the anomalous sign reversal of the Hall coefficient to 

negative at low temperatures, have been analyzed on the basis of an impurity hopping conduction 

model previously proposed. According to the small polaron theory for the non-adiabatic case, the 

activation energy E3for the drift mobility of nearest-neighbor hopping has been deduced with 

taking into account the temperature dependence of the pre-exponential factor. Existing models 

on the sign of the Hall coefficient have been critically examined. It is shown that the anomalous 

sign reversal of the Hall coefficient can be well explained by assuming the hopping Hall factor 

in the form of AH3 = (kBT/J3)exp(KHE3/kBT) with the negative sign of J3.  

Keywords Silicon carbide; Hall effect; impurity band; hopping conduction 

INTRODUCTION 

It has been known that heavy doping reduces the thermal activation energy of dopants in 

semiconductors and leads to impurity hopping conduction. However, the Hall effect for impurity 

hopping conduction is not well understood yet. Although several theories have been developed for the 

hopping Hall effect, the comparison of the theories with the experimental results is still not enough. 

Low-temperature anomalies in the conductivity and the Hall coefficient due to impurity hopping 

conduction were first discovered by Buch and Labhart [1] in SiC before they were discovered by Hung 

and Gliessman [2] in Ge. Thereafter, huge numbers of studies had been devoted for impurity hopping 

conduction in Ge, but only several studies [3-8] had been devoted for that in SiC in the 20th century. 
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Impurity hopping conduction due to Al acceptors in p-type 4H-SiC has been reported since 

1999 in Refs. [9-18]. Among these reports, the anomalous sign reversal of the Hall coefficient has been 

reported by Tone and Zhao [9], then by Contreras et al. [13] and Matsuura et al. [18]. The similar 

anomaloussign reversal of the Hall coefficient has also been observed for Al-doped p-type 6H-SiC 

[19] as well as other various p-type materials such as Ge [20], Mn-doped InSb [21-26], Mg-doped InP 

[27, 28], Mn-doped InP [29], Mg-doped GaN [30], Gd-doped LaCaMnO3 [31], and Be-doped 

GaAs/AlGaAs quantum wells [32]. Among these experimental data, the sign reversal of the Hall 

coefficient has been analyzed in the previous studies of the author for Mg-doped GaN [33], Mn-doped 

InSb [34], and Mg-dopedInP [35]. In the present study, the sign reversal of the Hall coefficient 

observed for Al-doped p-type 4H-SiC by Contreras et al. [13], Matsuura et al.[18], and by Tone and 

Zhao [9] is analyzed within a model similar to that in the previous studies of the author on the above-

mentioned III-V materials [33-35]. 

In the following, the analysis model is described in Sec. 2.We then describe in Sec. 3 the results 

of simultaneous fits to the experimental data of the conductivity σ and the Hall coefficient RH on the 

Al-doped p-type 4H-SiCsamples reported by Contreras et al. [13], Matsuura et al. [18], and Tone and 

Zhao [9]. Parameters related to impurities are deduced there. Then, the relations among the deduced 

parameters are discussed in Sec. 4. The summary is given in Sec. 5. 

ANALYSIS MODEL 

For SiC, Al is the preferred acceptor species to obtain a p-type conductivity because of its lower 

ionization energy compared to other acceptors. Al doping introduces two acceptor levels in SiC. In 

highly doped materials, however, it has been shown in Refs. [13, 36] that the deeper acceptor level is 

negligible in the temperature dependence of the Hall carrier concentration up to 700 K. Therefore, only 
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a shallow acceptor level with a compensation donor level was assumed in the present study. The 

acceptor degeneracy factor gA was assumed to be 4. 

The analysis model used in present study is almost the same as that has been used in the 

analyses of the transport data on p-type III-V materials in the previous studies [33-35].When taking 

into account impurity hopping conduction besides free-hole conduction, the total conductivity σis 

represented by σ = σv +σib, where σv and σIb denote the free-hole conductivity and the impurity 

hopping conductivity, respectively. The respective conductivities are calculated as σv= envµv and σib 

= enibµib, where e is the elemental charge, nv is the free-hole concentration while nib is the effective 

concentration of carriers hopping in the impurity band; µv and µib denote drift mobilities for free-hole 

conduction and impurity conduction, respectively. For p-type semiconductors, nib = AAA NNN /0− , where 

−
AN  and 0

AN  denote the concentrations of ionized and neutral acceptors, respectively, while NA denotes 

the total concentration of the shallow acceptors [37, 38]. The concentrations of ionized and neutral 

acceptors are calculated as −
AN  = NAfA and 0

AN  = NA(1 − fA), respectively, where fA(E) = 

1

exp1
−
















 +
+
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 denotes the occupation probability of an acceptor level by an electron withEF, kB, 

and T being the Fermi level, the Boltzmann constant, and the absolute temperature,respectively. At 

low temperatures, nib is approximated as ≈ibn ADAD NNNN )( − , where ND denotes the concentration 

of compensating donors. 

The total Hall coefficient is represented byRH = (σv/σ)2RHv +(σib/σ)2RHib. The Hall coefficient 

for free-hole conduction in the valence band is defined as RHv= AHv/(env), where AHv is the Hall factor 

of free holes in the valence band, while that for the impurity hopping conduction is defined as RHib = 
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AHib/(enib), where AHib is the Hall factor for the impurity hopping conduction.  Then, the Hall mobility 

is calculated as µH =  σHR . 

We assume here the nearest neighbour hopping (NNH) as the hopping mechanism in the 

acceptor impurity band and assume the form of [39, 40] 

( )[ ]TkETkE B
s

Bibib 330 exp)/( −= µµ ,  (1) 

where µib0 and E3 = kB T03 are adjustable temperature-independent parameters.  

The physical picture for the NNH process is based on occasional dynamic fluctuations of the 

lattice which at a given moment may produce equal distortions at the occupied and a neighbouring site. 

The electric energy of the two adjacent sites will become momentarily equal and the carrier will have 

a certain probability of tunnelling. The momentary occurrence of equal energy was called a 

“coincidence event” by Holstein [41, 42]. The transition probability during a coincidence event was 

studied in two limiting cases, called the adiabatic and non-adiabatic regimes. In adiabatic regime the 

carrier can follow the motion of the lattice and will possess a high probability of hopping to the adjacent 

site during a coincidence event. In non-adiabatic regime the carrier cannot follow the lattice vibration 

and the time required for a carrier to hop is large compared to the duration of a coincidence event. In 

this case many coincidence events will occur before the carrier hops to the neighboring site. 

Shklovskii and Efros [43] theoretically derived that s = 1 (Eq. (9.4.3) in Ref. [43]). Note, 

however, that this stands only for the adiabatic case. In case of the non-adiabatic case, it has been 

shown s = 3/2 [39, 40] (Eq. (3.2.21) in Ref. [39]). 

Mansfield [44] has pointed out that, for deducing the hopping activation energy correctly, it 

is necessary to include properly the temperature dependence of the pre-exponential factor σ ib0. When 

assuming a form of σib0 ∝ (E3/kBT)s = (T03/T)s, the slope of the Arrhenius plot of σib can be written as 
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d(lnσib)/d(1/T) = −T03 + sT. Namely, the slope of the Arrhenius plot of σib will decrease with 

temperature. The temperature dependence of the pre-exponential factor can be neglected only if T << 

T03. As has been pointed out by Mansfield [44], one should have to plot ln(σTs) as a function of 

reciprocal temperature, if one wants to obtain the correct value of T03. 

For their p-type samples of Al-doped and Al-N codoped 4H-SiC, Matsuura et al. [15] plotted 

the resistivity as a function of the reciprocal temperature. In the Arrhenius plots of the resistivity, they 

found that, for the samples with the Al concentrations between 1 × 1019 cm-3 and 4 × 1019 cm-3, another 

conduction region appears between the free-hole conduction and the NNH regions. As the conduction 

mechanism for this region, Matsuura et al. [15] proposed two models. They referred the two model as 

the dopant-concentration inhomogeneity model and the emission-hopping model. In the former model, 

the regions with two different values of the Al concentration are assumed in a sample. The latter model 

resembles the model that Poklonski et al. [45, 46] called jumping conduction. In both the models, 

capture of free holes from the valence band by acceptors occurs so that a hole travels through the free-

hole and NNH conductions alternatively.  

Figure 1 shows the Arrhenius plots of the experimental results for two samples of p-type 4H-

SiC reported by Matsuura et al. [15]:Closed squares and triangles respectively represent the plots of σ 

for the Al-doped sample with the Al concentration of 2.4 × 1019 cm-3 and for the Al-N codoped sample 

with the concentrations of Al and N of 1.4 × 1019 cm-3 and 7.0 × 1018 cm-3. It seems from these two 

Arrhenius plots of σthat another conduction region might appear between the free-hole conduction and 

the NNH regions. On the other hand, open squares and triangles in Fig. 1respectively represent the 

plots of σT3/2 for the former and the latter samples. It can be seen from these plots that there is no need 

to assume another conduction mechanism between the free-hole conduction and the NNH regions if 
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assuming the pre-exponential factor σib0having the temperature dependence in the form of (T03/T)s 

with s = 3/2. Similarly, it has been shown in the previous studies of the author on p-type GaAs [47] 

and InP [35] that the Arrhenius plots of σT3/2 in the NNH conduction region result in straight lines 

whereas those of σ exhibit the saturated behaviour with increasing temperature. Then, the temperature 

dependence of the pre-exponential factor with s = 3/2 was adopted for the analyses in these previous 

studies. In the present analysis, the value of s = 3/2 is also adopted as in the previous studies of the 

author [33-35, 47]. Note, however, that there is a possibility that s decreases from 3/2 to less than 3/4 

as the major impurity concentration approaches to the critical concentration for the onset of the metal-

insulator (MI) transition, as shown in Ref. [48]. Actually, Matsuura et al. [15] found that the data in 

the Arrhenius plots for the samples with the Al concentrations between 4.9 × 1019 cm-3 and 1.8 × 1020 

cm-3can be approximated by two straight lines without taking into the temperature dependence of the 

pre-exponential factor. In order to determine the value of s accurately, it is necessary to analyze the 

temperature dependence of the local reduced activation energy w(T) defined as w(T) = 

−(1/T)d(lnσ)/d(1/T), as was done in Ref. [48]. However, the measurement intervals of σ(T) for the p-

type 4H-SiC samples are not short enough to calculate w(T). 

The Hall factor for NNH in an impurity band can be expressed as [39, 40] 

( ) ( )[ ]TkEKJTkA BHBib 33 exp= ,  (2) 

where J3 is an adjustable parameter related to the transfer integral (See Eq. (3.5.18) in Ref. [39] and 

just above Eq. (4) in Ref. [40]). According to Friedman and Holstein [49], the hopping Hall factor 

activation energy can be expressed as KHE3 = 332 EE ′− , where E3 and E’3 correspond to the two-site 

and the three-site hopping activation energy, respectively. Friedman and Holstein [49] showed the 

relation of 33 )3/4( EE =′ for hexagonal crystals. Then, one obtains KH = 2/3. For cubic crystals,on the 
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otherhand, KH has been calculated to between 0 and 2/3 [50]. Ihrig and Hennings [51]showed that KH= 

1/6 for the correlated small polaron hopping. Recently, Avdonin et al. [52] showed that KH = 1/2 for 

an equilateral triangle geometry of the hopping sites on the basis of the Feynman’s “probability 

amplitude” approach. In the previous studies of the author, although fitting has been well performed 

with a constant value of KH = 2/3 for n-GaAs [53]and n-InP [54],KH has been found to vary sample to 

sample for p-type materials of Mn-doped GaAs [47], Mg-doped GaN [33], Mn-doped InSb [34], and 

InP [35]. In the present study, therefore, KH has been treated as an adjustable parameter.  

Holstein [55] as well as Emin [56] pointed out the possibility of the negative sign of J3 in spite 

of hopping in an acceptor impurity band. Holstein [55] claimed that the sign of J3 for holes, relative to 

that for electrons, is – (–1)n, where n denotes the number of the hopping sites. For three-site hops, 

therefore, the sign ofJ3 for hole hopping is the same as that for electron hopping. Furthermore, Emin 

[56] showed that the sign of J3 for both electrons and holesdepends not only on the number of the 

hopping sitesbut also the nature and the relative orientatins of the local orbitals between which the 

carrier hops. This leads to the negative sign of J3 for hopping of holes between s-orbitals in a three-

site geometry. According to these studies, J3 was assume to be negative in the present study.  

The Fermi level has been determined by solving the charge-neutrality condition. Tanaka et al. 

[57] as well as Matsuura et al. [58] took into account the effect of excited states of the acceptor level 

in the charge-neutrality condition for the analysis on almost non-compensated p-type 4H-SiC with 

acceptor concentrations less than 1019 cm-3.In p-type 4H-SiC samples with acceptor concentrations 

larger than 1019 cm-3, on the other hand, the Coulomb potential originating from an adjacent impurity 

lowers the potential barrier height for the considered impurity level. This lowering will change the 

excited states from localized to delocalized to form quasi-continuum [59-62]. This quasi-continuum 
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state is regarded as part of the valence band. In the present study, therefore, the effect of excited states 

of the acceptor level was neglected. 

The calculation methods of the concentration nv, the drift mobility µv, and the Hall factor AHv 

of free holes in the valence band are described in Appendix.  

FITTING RESULTS 

Contreras et al. [13] prepared p-type 4H-SiC samples by growing epitaxial layers with in-situ 

Al doping using chemical vapor deposition (CVD)on the Si (0001) face of n-type 4H-SiC substrates. 

They performed Hall-effect measurements on these samples in the temperature range from 80 to 900 

K with varying magnetic fields between −1 and +1 Tesla. Among their samples, Sample S3 exhibited 

the sign change of the Hall coefficient at 110 K. For this sample, the Al concentration of 7 × 1018 cm-

3 was measured by secondary ion mass spectroscopy (SIMS) while the net acceptor concentration NA 

− ND of 9.5 × 1018 cm-3 was obtained through the electrochemical C-V profiling measurement. 

Furthermore, Contreras et al. [13] performed thefit to the experimental Hall coefficient using the model 

described in Ref. [36]. Their obtained values of NA, ND, and EA through the fit areshownin parentheses 

in the second column of Table I.  

Matsuura et al. [18] also prepared two samples of p-type 4H-SiC by growing epitaxial layers 

using CVD on the Si (0001) face of n-type 4H-SiC substrates: One sample was Al doped (Sample M1) 

while the other was Al-N codoped (Sample M2). In addition, they prepared an Al-N codoped bulk p-

type 4H-SiC sample (Sample M3) by solution growth (SG). The concentrations of Al and N in their 

samples were measured by SIMS.For Sample M1, the Al concentraion was determined to be 3.4 × 1019 

cm-3. The concentrations of Al and N in Sample M2 were determined to be 3.9 × 1019 cm-3 and 8.8 

× 1018 cm-3, respectively, while those in Sample M3 were determined to be 6.7 × 1019 cm-3 and 8.8 
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× 1018 cm-3. They performed Hall-effect measurements on these samples in the temperature range from 

60 to 300 K under an AC magnetic field of 0.35 Tesla and 0.05-0.25 Hz. All of three samples exhibited 

the sign change of the Hall coefficient at low temperatures.  

On the other hand, Tone and Zhao [9] prepared five samples (Sample T1 - T5) of p-type 4H-

SiC by room-temperature (RT) coimplantation of equal concentrations of C and Al with the 

concentration range from 1 × 1020 to 2 × 1021 cm-3. Excepting the sample with the lowest concentration 

of the implantation, they reported the results of the temperature-dependent Hall-effect measurements 

on their samples in the temperature range from 130 to 500 K while the data below 170 K are not 

available for the sample (T1) with the lowest concentration of the implantation provably due to its high 

resistivity. All the rest four samples show the sign reversal of the Hall coefficient below 170 K.  

Fitting to the experimental data on Sample S3 of Ref. [13] (Sample S3), the Al-N codoped 

CVD-grown sample of Ref. [18] (Sample M2), and five samples of Ref. [9] (Sample T1 - T5)was 

performed using the model described in the previous section. For Sample T1 of Ref. [9] with the 

lowest concentration of the implantation, the parameters related to the impurity hopping conduction 

were not deduced since the data below 170 K are not available. The best-fit values of the fitting 

parameters are shown in Table I. 

As can be seen in Table I, the values of NA, ND, and EA obtained for Sample S3 in the present 

study are almost the same as those obtained in Ref. [13]. In Ref. [13], the values of NA, ND, and EA 

were obtained through the fit to only the RH(T) data above 150 K using the temperature-independent 

value of 2.66 m0 for the density-of-states (DOS) effective mass md, where m0 is the free-electron 

mass, together with an analytical expression [36] for the empirical temperature dependence AH(T) of 

the Hall factor obtained by Pensl et al. [63]. This method is effective when the logarithmic plot of 

nv(nv + ND)/(NA – ND – nv)Nv against the reciprocal temperature, where ( ) 2/32/22 hTkmN Bdv π=  is 
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the effective DOS of the valence band with h being the Planck constant, approaches a straight line 

with a slope of –EA/kB at high temperatures. This condition was fulfilled for Sample S4 as well as for 

the Al-N codoped CVD-grown sample. Since the method used in the present study is substantially 

the same as that used in Ref. [13], it is natural that the values of NA, ND, and EA obtained for Sample 

S3 in the present study are almost the same as those obtained in Ref. [13]. 

For Sample T1-T5 in Ref. [9], on the other hand, it is difficult to estimate the values of NA, ND, 

and EA through the fit to only the RH(T) data since the logarithmic plot of nv(nv + ND)/(NA – ND –

nv)Nv against the reciprocal temperature does not approaches a straight line even at 300 K which is 

the high end of the measurement temperature range in Ref. [9]. In the present study, however, the 

simultaneous fits to the RH(T) and σ(T) data enables us to deduce the values of NA, ND, and EA for 

Sample T1-T5. 

Figures 2(a) and 2(b) respectively show the comparison between the experimental and fitted 

results of the plots of σT3/2 and HR  as a function of the reciprocal temperature for Sample S3.Solid 

lines in Fig. 2(a) show the calculated results of σibT3/2 (green) and σvT3/2 (yellow). As can be seen in 

Fig. 2(a), the transition from hopping conduction to free-hole conduction occurs around 110 K. Figure 

2(c) and the inset in Fig. 2(b) respectively show the comparison between the experimental and fitted 

results of the plots of µH and RH as a function of the temperature. In Fig. 2(b), the calculated results of 

(σv/σ)2RHvand(σib/σ)2RHib are shown by a green and a yellow curve, respectively. As can be seen in 

Fig. 2(b), the Hall coefficient reaches its maximum around 110 K at which temperature σib = σv is 

satisfied. On further decreasing temperature, the experimental Hall coefficient decreases tobe 0 and 

changes its sign to negative. It can be seen in the inset of Fig. 2(b) that the sign change of RH from 

positive to negative at around 110 K is owing to the rapid decrease of (σv/σ)2RHv and the rapid increase 
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of (σib/σ)2
HibR , both of which are caused by the rapid decrease of σv/σib. It can be seen there that the 

exponential increase of the absolute value of the negative RH with decreasing temperature below 100 

K is owing to the exponential increase of HibR . It can be seen in Figs. 2(b) and 2(c) that both of HR  

and µH are well fitted for Sample S3 by including the contribution from the impurity hopping 

conduction. 

Contreras et al. [13] also reported the RH(T) and σ(T) data of Sample S4 for which the Al 

concentration was determined to be 2 × 1019 cm-3 by SIMS. For this sample, their model cannot 

describe the RH(T) data with a value of NA coherent with the Al concentration determined by SIMS: 

The doping level of more than one order of magnitude would be necessary in the fitting procedure. 

Their calculation of the mobility also failed to describe the µH(T) data of Sample S4. Such difficulties 

in fitting to the experimental data of S4 have been confirmed also in the present study.  

Figures 3(a) and 3(b) respectively show the comparison between the experimental and fitted 

results of the plots of σT3/2 and HR  as a function of the reciprocal temperature for Sample M2. Solid 

lines in Fig. 3(a) show the calculated results of σibT3/2 (green) and σvT3/2 (yellow). Figure 3(c) and the 

inset in Fig. 3(b) respectively show the comparison between the experimental and fitted results of the 

plots of µH and RH as a function of the temperature. In Fig. 3(b), the calculated results of (σv/σ)2RHv 

and (σib/σ)2RHib are shown by a green and a yellow curve, respectively. Similar to the case of Sample 

S3, the transition from hopping conduction to free-hole conduction occurs accompanied by the sign 

change of the Hall coefficient, but at a much higher temperature around 185 K. It can be seen in Figs. 

3(b) and 3(c) that both of HR  and µH are well fitted also for Sample M2 by including the contribution 

from the impurity hopping conduction. This is somewhat astonishing since the Al concentration NAl = 
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3.9 × 1019 cm-3 of this sample determined by SIMS is higher than that of Sample S4 for which our 

model failed to describe the experimental data well.  

For the Al-N codoped SG sample (Sample M3), on the other hand, our model cannot describe 

the RH(T) data with a value of NA coherent with the Al concentration determined by SIMS (NAl = 6.7 

× 1019 cm-3): The doping level of more than twice would be necessary in the fitting procedure. This 

situation is just like the case of Sample S4 with NAl = 2 × 1019 cm-3.  

Fits to the data were also difficult for the Al-doped sample (Sample M3) grown by CVD. It is 

known that, besides the bottom Hubbard band formed from the A0 states (singly occupied acceptor 

states by holes), the top Hubbard band is formed from the A+ states (doubly occupied acceptor states 

by holes) in p-type semiconductors. It is known that NNH conduction in the top Hubbard band, referred 

as ε2 conduction, is apt to be important in heavier doped and less compensated samples. For the Al-

doped sample, therefore, one may have to consider not only ε3 conduction in the bottom Hubbard band 

but also ε2 conduction in the top Hubbard band. 

Figure 4(a) shows the comparison between the experimental and fitted results of the plots of 

σT3/2 as a function of the reciprocal temperature for samples in Ref. [9]. In order to avoid the 

complexity, the results for only two samples with the implanted Al concentrations of 3 × 1020 cm-3 

(T2) and 1 × 1021 cm-3 (T3) are shown. Open diamonds and closed triangles represent the experimental 

data of Sample T2 and T3, respectively. Solid lines in Fig. 4(a) show the calculated results of σibT3/2 

(green) and σvT3/2 (yellow). The transition from hopping conduction to free-hole conduction can also 

be seen for these samples. 

Figure 4(b) shows the comparison between the experimental and fitted results of the plots of 

RH as a function of the temperature for Sample T2 and T3. Solid and dotted lines in Fig. 4(b) show the 



13 
 

calculated results of (σv/σ)2RHv (green) and (σ ib/σ)2RHib (yellow). The sign reversal occurs at 

temperatures between 160 and 180 K, which temperatures are higher than for Sample S3 and M2.  

DISCUSSION 

Activation Ratio of Implanted Al 

The problem to be solved in the ion implantation of acceptor impurities to SiC is in low electrical 

activation ratios of the implanted impurities. In the study of Tone and Zhao [9], the purpose of 

coimplantation of C ions along with the acceptor dopant Al was to enhance acceptor activation 

efficiency of Al by intentionally creating a slight imbalance in stoichiometry toward C enrichment, 

which is expected to enhance the chance for the implanted Al to settle at Si sites. While Tone and Zhao 

[9] did not estimate the activation ratio (NA/NAl) of Al for their samples, the activation ratio can now 

be estimated from the deduced values of the acceptor concentrations NA in the present study. Figures 

5(a) and 5(b) respectively show the estimated acceptor concentration NA and the estimated activation 

ratio (NA/NAl) of Al as a function of the implanted Al concentration for the RT C-Al coimplanted 

samples (T1-T5) annealed at 1500 ºC or 1550 ºC for 30 min in Ref. [9]. It can be seen from Figs. 5(a) 

and 5(b) that the acceptor concentration saturates at 1 × 1020 cm-3and that the activation ratio decreases 

from 16 to 4 % when the implanted Al concentration increases from 6 × 1020 to 2 × 1021 cm-3.  

Weng et al. [64] annealed their Al implanted samples with the implanted Al concentrations of 1 

× 1019 cm-3 and 1 × 1020 cm-3 at 1650 ºC for 30 min and found that the Al activation ratio is about 10 % 

for both the Al concentrations. Comparison of the results obtained in the present study for the samples 

of Ref. [9] with those of Ref. [64] suggests that the C-Al coimplantation has an effect of enhancing the 

Al activation ratio by a maximum of 1.6 times. This enhancement factor due to coimplantation is 

consistent with that estimated by Heera et al. [65]. However, the Al activation ratio is still low for the 
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C-Al coimplanted samples particularly for Al concentrations larger than 1 × 1021 cm-3. The low 

activation ratios may be attributed to clustering of Al into precipitates [65] as was shown by TEM 

analyses in Ref. [64]. 

Giannazzo et al. [66] found for their Al implanted 4H-SiC samples with an Al concentration of 

1 × 1018 cm-3 that the Al activation ratio increases from 5 to 75 % when the annealing temperature was 

increased from 1400 to 1650 ºC. They deduced a value of 16 % as the Al activation ratio for the sample 

annealed at 1500 ºC for 30 min. The obtained value of 16 % as the Al activation ratio in the present 

studyfor RT C-Al coimplanted samples annealed at 1500 ºC or 1550 ºCis consistent also with the 

results of Ref. [66].  

The tendency that the Al activation ratio decreases with increasing Al concentration observed in 

Fig. 5(b) suggests the difficulty of activating Al near its solubility limit (~2 × 1020 cm-3) [67] even 

when coimplanted with C, as pointed out by Rao et al. [68] and Saks et al. [69].  

Ionization Energy Eb 

In both of Refs. [18] and [9], the acceptor ionization energies Eb were not estimated. In the 

present study, on the other hand, the simultaneous fits to the experimental data of σ(T) and RH(T) have 

enabled us to deduce the values of Eb for the samples of Table I. In the previous studies [36, 58, 70-

73] on p-type 4H-SiC, the ionization energy of acceptors has been assumed to depend on the total 

acceptor concentration NA. Among the studies on p-type 4H-SiC, only Negoro et al. [74] took into 

account the effect of compensation on the acceptor ionization energy. On the other hand, Tanaka et al. 

[57] as well as van Daal et al. [75] assumed that the ionization energy of acceptors depend not on the 

total acceptor concentration NA but on the ionized acceptor concentration −
AN , and assumed the 

relation of ( ) 3/1
00

−−= Abb NEE α . This is because the Coulomb potential originating from an adjacent 
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impurity lowers the potential barrier height for the considered impurity level, while that of a neutral 

impurity is screened by the charge of the trapped carrier. At such low temperatures as kBT << 

EA/ln[Nv/(2NA)] is satisfied, the approximated relation of ≈−
AN ND stands. This is valid below 300 K 

for p-type 4H-SiC samples with EA > 65 meV. Therefore, the ionization energy of acceptors can be 

substantially expressed as Eb = Eb0 − α0ND
1/3 [75].  

In the previous studies of the author on n-type semiconductors of GaAs [53], InP [54], and ZnSe 

[76], the ionization energies of donor levels have been plotted as a function of the minority impurity 

(acceptor) concentration. Then, it has been found that the relation of Eb = Eb0 − α0NA
1/3 proposed by 

Pődör [77] shows better fits than the relation of Eb = Eb0 − α0ND
1/3 to the experimental results for n-

type semiconductors of GaAs [53], InP [54], and ZnSe [76]. The linear dependence of Eb on the cube 

root of the compensating impurity concentration rather than that of the major impurity concentration 

has been also shown for p-InP [35]. 

For n-type GaP and ZnSiP2, Monecke et al. [78] adopted the model in which the ionization 

energy of donors depends not on the total concentration of donors but on the concentration of ionized 

donors. Also for p-type materials of 6H-SiC [75], InP [62], GaSb [79], GaN [80], and ZnO [81], it has 

been found that the ionization energy of acceptors depends not on the total concentration of acceptors 

but on the concentration of ionized acceptors or that of compensating donors. 

In Fig. 6, the values of Eb for the samples of Refs. [13], [18], and [9] listed in Table I deduced 

in the present study are plotted by a closed circle (●), a triangle (▲), and closed squares (■), 

respectively, as a function of ND
1/3. Also plotted are the Eb data obtained by Pernot et al. [36] (◇), 

Kasamakova-Kolaklieva et al. [82] (+), Parisini et al. [83] (□), Matsuura et al. [84] (△), Rambach et 

al. [85] (◆), Nath et al. [86] (*), and Spera et al. [87] (×) for their Al-doped p-type 4H-SiC samples. 
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A solid straight line indicates the relation assumed by Tanaka et al. [57] which can be expressed as Eb 

= Eb0 − α0ND
1/3, where Eb0 = 220 meV and α0= 4.7 ×10-5 meV cm. It can be seen in Fig. 6 that the 

values of Eb deduced for the above samples are almost coincident with this relation. 

Activation Energy of ε3 Conductivity 

Matsuura et al. [15] as well as Ji et al. [11] showed that the impurity hopping conduction 

mechanism is NNH rather than variable-range hopping for the CVD-grown 4H-SiC samples doped 

with Al concentrations lower than 1.8 × 1020 cm-3.Their results are consistent with that in the present 

study since the concentrations NA of electrically active Al in all the samples studied in this study have 

been proved to be lower than 1 × 1020 cm-3. 

The theoretical expression for the conductivity activation energy ε3 for NNH has been obtained 

by [43] as 

 ( )4/13/1

0

2

3 29.01
4

99.0 KNe
A

s

−=
επε

ε . (3) 

Since the hopping conductivity is described by σib = enibµib, the activation energy ε3 of σib includes 

not only the activation energy E3 of µib but also the activation energy of nib. At sufficiently low 

temperatures, however, since AAAib NNNn 0−=  can be approximated by the temperature independent 

value of ≈ibn ADAD NNNN )( − , the activation energy of nib can be neglected. Therefore, we can equate 

ε3 with E3. 

In Fig. 7, plotted by closed marks are the obtained results of E3 for the samples listed in Table 

I while straight lines show the calculated results according to Eq. (3) with εs = 9.78: A solid line shows 
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the result for K = 0 while and a broken line shows that for K = 0.5. It can be seen there that the plots 

for the obtained results in the present study are between the two lines.  

Ji et al. [11] performed the resistivity (ρ) measurements in the temperature range of 20-900K 

on their Al-doped samples grown by CVD. The Al concentration NAl in these samples were measured 

by SIMS to be in the range between 2 × 1019 cm-3 and 4 × 1020 cm-3. They found that the Arrhenius 

plot of ρ shows a distinct change in slope around 100 K. They ascribed the change of the slope to the 

change of the dominant conduction mechanism from free-hole conduction to NNH conduction. They 

estimated the activation energy ε3 of NNH from the slope of the Arrhenius plot of ρ with assuming the 

temperature-independent pre-exponential factor. The values of ε3estimated in Ref. [11] are plotted as 

a function of NAl
1/3 by open squares in Fig. 7. It can be seen there that the values of ε3 obtained in Ref. 

[11] plotted versus NAl
1/3 are located lower than those of E3 obtained in the present study plotted versus 

NA
1/3. The difference between the values of E3 obtained in the present study and those of ε3 obtained 

by Ji et al. [11] may be partly due to the difference of the temperature dependence of the pre-

exponential factor assumed as follows. When assuming the form of Eq. (1) for µib, the slope of the 

Arrhenius plot of σib can be written as d(lnσib)/d(1/kBT) ≈ −E3 + (3/2)kBT. Therefore, when the value 

of ε3 is deduced from the slope of the Arrhenius plot of σ around T = 100 K, it will be smaller than the 

present value of E3 by (3/2)kBT ≈ 13 meV.  

Hopping Hall Effect 

Very recently, Matsuura et al. [18] proposed a model for explaining the anomalous sign change 

of the Hall coefficient in their Al-doped p-type 4H-SiC samples. They assumed not only the current Ih 

due to the hopping of holes from neutral Al (Al0) sites to their nearest-neighbor negatively ionized Al 

(Al−) acceptor sites but also the current Ie due to the hopping of electrons from Al− sites to their nearest-
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neighbor Al0 sites. When a magnetic field is applied for the Hall-effect measurement, both of hopping 

holes in Ih and hopping electrons in Ie are forced into the same direction due to the Lorentz force. As 

the results, the Lorentz force leads to the accumulation of holes and electrons at an electrode. Then, 

the magnetic field induces not only the Hall voltage VHh due to the Lorentz force for Ih but also the 

Hall voltage VHe due to the Lorentz force for Ie. Because the existence probabilities of Al− and Al0 

sites are fA and 1 −  fA, respectively, the ratio of the amount of holes to that of electrons accumulated 

at the electrode is Ih : Ie = fA : (1 − fA). Consequently, the ratio between the absolute values of VHh and 

VHe equals to fA : (1 − fA). Since the signs of VHh and VHe are positive and negative, respectively, the 

total Hall voltage is proportional to 2fA − 1. Therefore, Matsuura et al. [18] claimed that the sign of 

RHib is positive when fA > 0.5 while negative when fA < 0.5. 

This model includes serious flaws. First, it is meaningless to distinguish Ih and Ie. Either of 

hole hopping fromAl0 to Al− or electron hopping from Al− to Al0 describes the same phenomenon in 

which charge transfer occurs between Al− and Al0. This charge transfer occurs through the quantum-

mechanical tunneling process. The Lorenz force is proportional to the velocity of the charged carrier. 

However, the velocity cannot be defined for this charge transfer process through the quantum-

mechanical tunneling. It is therefore impossible to apply the Lorenz force to this charge transfer 

process.  

In addition, whereas some of experimental results, including the results of Matsuura et al. [18], 

do agree with the prediction that the sign of RHib is negative when fA is smaller than 0.5, other 

experimental results contradict the prediction. At sufficiently low temperature, fA coincides with the 

compensation ratio K. Actually, however, it has been demonstrated that RHib is positive even when K 

is smaller than 0.5 for several p-type materials, e.g., Cd- or Zn-doped InP [35] and Mn-doped GaAs 

[47]. 



19 
 

Therefore, the sign of RHib does not have any direct connection to the type of the charge carriers. 

On the other hand, it is widely accepted now, that the Hall voltage in the hopping regime arises from 

the quantum interference of the carriers during the hopping motion [88]. In turn, the minimum unit to 

provide such interference is a triad of closely located sites 1, 2, and 3, so that such triads represent a 

microscopic structures of the overall Hall effect. Avdonin et al. [52] showed that the difference in 

phase between the wave function propagating directly from site 1 to site 2 and that propagating from 

site 1 to site 2 via site 3 is proportional to the magnetic flux Φ through the triangle formed by three 

sites 1, 2, and 3.  

Holstein [55] claimed that the sign of the Hall coefficient for hole hopping is the same as that 

for electron hoppingwhen the elementary jump-process involves odd members (e.g., three-site 

hopping) while it is opposite when the elementary jump-process involves even members (e.g., four-

site hopping). Emin [56] suggested that the sign of the hopping Hall coefficient depends not only on 

whether the the elementary jump-process involves even or odd members but also on the symmetry and 

relative orientation of the local orbitals between which the carrier moves. Kogutyuk et al. [89] as well 

as Bányai and Aldea [90] suggested that the sign of the hopping Hall coefficient changes as the filling 

of the impurity band varies, as was assumed by Matsuura et al. [18] but including both of the top and 

the bottom impurity Hubbard bands. However, none of the above models explain the experimental 

results well. Furthermore, the value of KH obtained in the present study varies sample to sample. No 

tendency can be found against any parameters.  

SUMMARY 

Simultaneous fits to the experimental data of σ(T) and RH(T) on Al-dopedp-type 4H-SiC have 

been performed to deduce the impurity concentrations, the acceptor ionization energy, and the 
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parameters related to the impurity hopping conduction and the hopping Hall effect. The RH(T) data on 

Al-doped p-type 4H-SiC reported by Contreras et al. [13] and Matsuura et al. [18] as well as those 

reported by Tone and Zhao [9] have been well explained within the same model that has been used in 

the analyses of the data on p-type III-V samples of GaN [33], InSb [34], and InP [35] with the negative 

Hall factor for the NNH conduction.It has been shown that, being consistent with the small polaron 

theory in the non-adiabatic case, hopping drift mobility can be described as 
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2/3
3

0 exp)( µµ , and then the activation energy E3 has been deduced with taking into 

account the temperature dependence of the pre-exponential factor. It has also been shown that the 

anomalous sign reversal of the Hall coefficient to negative can be well explained with assuming the 

hopping Hall factor in the form of ( )TkEKJTkA BHBH 333 exp)/(=  with the negative sign of J3. 

APPENDIX: Calculation methods for concentration, mobility, and Hall factor of free 

holes 

The concentration nv of free holes is calculated by nv = NvF1/2(η), where

( ) 2/32/22 hTkmN Bdv π=  is the effective DOS of the valence band, η is the reduced Fermi level with 

respect to the edge of the valence band, and Fj(η) is the normalized Fermi-Dirac integral of order j.In 

the present study, we use the temperature-dependent DOS effective masses, rather than the 

temperature-independent DOS effective masses, for free holes in p-type 4H-SiC, as in the study by 

Koizumi et al. [71]. The temperature-dependent DOS effective mass md(T) is defined as  

∫
∞







=

0

2/1
2/3

2 ),()(24 dEETEf
h

Tmn d
v π , (A1) 

where f(E, T) is the Fermi-Dirac distribution function, and has been obtained by Wellenhofer and 

Rössler [91] for 4H-SiC. We found that the temperature-dependent DOS effective massobtained by 
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Tanaka et al. [57] can be approximated bymd(T) = 2.5 m0/[1 + (24/T) 3/4] for p-type 4H-SiC in the 

temperature range between 100 and 900 K. 

Tanaka et al. [57] proposed a model for calculating the Hall mobility µH and the drift mobility 

µd of p-type 4H-SiC and fitted the calculated results to the experimental data on their almost non-

compensated p-type 4H-SiC samples. Their model includes the effects of the anisotropic valence band 

structure and the anisotropic relaxation times. They showed that the drift mobility µd of almost non-

compensated p-type 4H-SiC is dominated by acoustic and nonpolar optical phonon scattering at high 

temperatures while ionized impurity scattering has negligible impact. Furthermore, through the fits to 

the temperature and acceptor density dependence of mobility, they obtained empirical expressions for 

the drift mobility and the Hall factor as 
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respectively. The former expression agrees with both µH/AH and µHnH/nv calculated using their model 

within about ± 10% error in 200-700K. At lower temperature, however, this expression slightly 

overestimates the mobility. Furthermore, they suggested that larger errors can arise for higher acceptor 

concentrations. They also noted that, in case of highly compensated samples, this expression will 

require some modification to take account of the compensating donor concentration. Such errors at 
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lower temperatures for higher acceptor concentrations as well as the required modification for the 

highly compensated case can arise from the effect of ionized impurity scattering.  

In the present study, therefore, the effect of impurity scattering is explicitly included in order 

to calculate the drift mobility µv of free holes in moderately compensated heavily doped p-type 4H-

SiCat low temperatures. Namely, the drift mobility µvis calculated as 1/µv = 1/µphonon + 1/µimp, where 

µphonon and µimp denote the lattice-limited and the impurity-limited mobility, respectively. We regard 

µd(T, 0) as µphonon. The impurity-limited mobility is calculated as 1/µimp = 1/µii + 1/µni, where µii and 

µni denote the mobility due to ionized-impurity scattering and that due to neutral-impurity scattering, 

respectively. 

Tanaka et al. [57] calculated conductivity tensors and the drift mobility on the basis of the 

relaxation-time approximation. In Ref. [57], the relaxation time τii due to ionized-impurity scattering 

was calculated using the Brooks-Herring formula. Then, Tanaka et al. [57] multiplied the relaxation 

time τii by a factor of 2 in order to take into account the p-type symmetry of wave functions in place 

of the s-type wave functions while Pernot et al. [36] as well as Koizumi et al. [71] multiplied it by a 

factor of 3/2. However, Poklonski et al. showed that the Brooks-Herring formula gives an 

overestimated value of the mobility (and thus the relaxation time τii) for p-type Si [92] as well as for 

n-type InSb [93] even when the value is not multiplied. When using the Brooks-Herring formulafor 

the calculation of hole mobility, Lowney and Bennett [94] preferred not to multiply τii by the overlap 

factor because of the relative strength of small-angle scattering and the fact that the overlap factor due 

to the p-wave nature of holes goes to unity for small angles. In the present study, therefore, the 

relaxation time τii due to ionized impurity scattering has been calculated using the Brooks-Herring 

formula without any multiplication as in the previous studies of the author on p-type materials [35, 47]. 
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On the other hand, for the calculation of τii, we have taken into account the effect of the increase 

of the static dielectric constant at the insulator side of the MI transition. It has been shown both 

experimentally and theoretically that the static dielectric constant at low temperature increases with 

the impurity concentration to diverge at the critical net acceptor concentration NNAcr for the onset of 

the MI transition [95, 96]. According to Poklonski et al. [96], we assume the form of 

 ( )( ) 1000 12)( −
−+= NAcrANAcrAsAeff NNNNN εε . (A4) 

Regarding the critical concentration for the MI transition in Al-doped p-type 4H-SiC, we adopt the 

value of NNAcr = 2.1 × 1020 cm-3according to Persson et al. [97], and calculated εeff according to Eq. 

(A4). 

In the calculation of the energy-dependent relaxation time τii(E) due to ionized-impurity 

scattering, Tanaka et al. [57] as well as Koizumi et al. [71] and Parisini et al. [83] took into account 

not only screening due to free holes but also that due to hopping carriers [98] for calculating the inverse 

screening length βs (Note that there are nontrivial errors related to the Fermi-Dirac integral in Eq. (A2) 

for βs in Ref. [83]). In the present study, however, only screening due to free holes has been taken into 

account for calculating τii(E) of free holeswithout the effect of hopping carriers. In order to calculate 

the drift mobility, it is necessary to average τii(E) by integral of E. The Brooks-Herring formula for 

τii(E) contains a factor )1()1ln()( +−+= bbbbBii , where ( )28 sd Emb β= . Although the factor 

Bii(b) is a function of E, its dependence is slow. Owing to this, Bii(b) can be replaced before the integral 

of EdE by a constant value of Bii(bmax), where bmax represents the value of b at which the integral 

becomes the maximum. One can calculate bmax as [99] 
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Then, the drift mobility due to ionized impurity scattering can be calculated as 
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The calculation of µni have been performed according to Erginsoy’s model. Namely, it is 

calculated as 
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where 2*2
0 /4 ema effB επε=  is the Bohr radius describing the bound hole at the neutral acceptor. 

Tanaka et al. [57] treated the hole effective mass in Eq. (A7) as an adjustable parameter which is 

irrespective of the DOS and the conductivity effective masses to assume it to be 1.0 × m0 to reproduce 

the experimental mobility at low temperatures and high concentrations of acceptors in p-type 4H-SiC. 

In the present study, the hole effective mass for the calculation using Eq. (A7) was also assumed to be 

1.0 × m0.  
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Table I. Values used for fitting to the experimental data on Sample S3 of Refs. [13], Sample M2 of 

Ref. [18], and Sample T1 - T5 of Ref. [9].The values in parentheses in the second column are those 

obtained through the fit in Ref. [13] while the values in brackets in the third column are those 

obtained through the SIMS measurements in Ref. [18]. 

Sample S3 M2 T1 T2 T3 T4 T5 

NAl (1019 cm-3) 0.7 3.9 10 30 60 100 200 

NA (1019 cm-3) 1.0 

(1.0) 

1.35 0.9 3.9 9.6 8.6 7.6 

ND (1019 cm-3) 0.001 

(0.001) 

0.5 

[0.88] 

0.5 1.8 2.1 2.9 3.0 

K = ND/NA 0.001 

(0.001) 

0.37 

[0.23] 

0.56 0.46 0.22 0.34 0.39 

EA (meV) 186 

(190) 

93 98 72 101 81 74 

E3 (meV) 34 30  52 55 59 59 

µib0 (cm2/Vs) 0.8 0.2  1.6 2.6 2.2 1.9 

KH 1.8 0.55  0.95 1.4 1.0 1.0 

J3 (meV) -33 -40  -1200 -22000 -3500 -3000 
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Fig. 1. Arrhenius plots of σ (closed markes) and σT3/2 (open markes) for the samples of p-type 4H-SiC 

reported by Matsuura et al. [15]: Squares and triangles respectively represent the experimental results 

for the Al-doped sample with the Al concentration of 2.4 × 1019 cm-3 and for the Al-N codoped sample 

with the concentrations of Al and N of 1.4 × 1019 cm-3 and 7.0 × 1018 cm-3. The solid and broken lines 

indicate the band and NNH conductions at higher and lower temperatures, respectively. 
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Fig. 2. Comparison between the experimental and fitted results for Sample S3 of Al-doped p-type 4H-

SiC reported by Contreras et al. [13]: (a) the plot ofσT3/2 as a function of the reciprocal temperature; 

(b) the plot of HR  as a function of the reciprocal temperature; (c) the plot of µH as a function of the 

temperature. The inset in (b) shows the plot of RH as a function of the temperature. Green and yellow 

curves represent the calculated results of the contributions from free-hole conduction and impurity 

hopping conduction, respectively.  
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Fig. 3. The same as Fig. 2 but for the Al-N codoped sample (Sample M2) grown by CVD of Ref. 

[18].  

  

1

10

100

1000

2 6 10 14 18

σT
3/

2
(S

cm
-1

K
3/

2 )

1000/T (K-1)

(a)

0.1

1

10

2 6 10 14 18
|R

H
|(

cm
3 /C

)
1000/T (K-1)

(b)

0.01

0.1

1

10

10 100

µ H
(c

m
2 /V

s)

T (K)
200 300

0.01

(c)

-10
0

10
20
30
40

50 100 150 200 250 300

R H
(m

3 /C
)

T (K)



32 
 

 

 

Fig. 4. Comparison of between the experimental and fitted results for the two samples of RT C plus Al 

coimplanted p-type 4H-SiC of Ref. [9]: (a) the plot of σT3/2as a function of the reciprocal temperature; 

(b) the plot of HR  as a function of the reciprocal temperature; (c) the plot of µH as a function of the 

temperature. Open diamonds and closed triangles represent the experimental results for the samples 

implanted with Al concentrations of 3 × 1020 cm-3 (Sample T2) and 1 × 1021 cm-3 (Sample T3), 

respectively, while solid and dotted curves represent the calculated results for the former and the latter 

samples, respectively. 
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Fig. 5 (a) Acceptor concentration NA and (b) Al activation ratio NA/NAl as a function of the implanted 

Al concentration NAl for the RT C-Al coimplanted samples (T1-T5) of Ref. [9].  
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Fig. 6 The plot of EA as a function of ND
1/3. A closed circle (●), a closed triangle (▲), and 

closed squares (■)respectively represent the results obtained in the present study for samples of 

Refs. [13], [18] and [9] listed in Table I. Also shown are the results obtained by Matsuura et al. 

[84] (△), Kasamakova-Kolaklieva et al. [82] (+), Pernot et al. [36] (◇), Rambach et al. [85] (◆), 

Parisini et al. [83] (□), Nath et al. [86] (*), and Spera et al. [87] (×). A solid line represents the 

relation of Eb = Eb0 − α0ND
1/3, where Eb0 = 220 meV and α0 = 4.7 ×10-5 meV cm, which was 

assumed by Tanaka et al. [57]. 
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Fig. 7. The plot of E3 as a function of NA
1/3: Closed marks of a circle, a triangle, and squares 

respectively represent the results for the samples of Refs. [13], [18], and [9] listed in Table I. A 

solid and a broken line represent the relations of Eq. (3) with K = 0 and 0.5, respectively. Open 

squares show the plot of ε3 as a function of NAl
1/3 reported in Ref. [11]. 
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