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ABSTRACT  

β-FeSi2 is called the “environment-friendly thermoelectric semiconductor” but the 

origin of its high thermoelectromotive power is still unknown. In the present study, the 

temperature-dependence data of the electrical conductivity, the Hall coefficient, and the 

Seebeck coefficient on bulk single crystal p-type β-FeSi2 samples reported in literature 

have been analyzed in a multi-band model. In the model, the effects of the 2nd maximum 

of the valence band, the 2nd minimum of the conduction band, and an acceptor impurity 

band are included and are proved to be important. Through the simultaneous fits to the 

temperature-dependence data of the three transport coefficients, the effective masses of 

holes at the 1st and the 2nd maximum of the valence band and those of electrons at the 

1st and the 2nd minimum of the conduction band are deduced together with the energy 

separations among the bands. In addition, by including the temperature-dependent Hall 

factor for impurity hopping conduction, impurity concentrations have been significantly 

corrected from those previously estimated in a simple two-band model. 

 

1. Introduction  
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Semiconducting β-FeSi2 has been most widely investigated among other transition 

metal silicides as one of the most important thermoelectric materials. Recently, its use not 

only as bulk [1,2] or film [3] material but also as a constituent of nanocomposites [4–6] 

has been intensively studied. In spite of the intensive theoretical and experimental studies, 

however, the correct interpretation of the transport and thermoelectric properties of β-

FeSi2 is still a matter of debate [7–11].  

One of the obstacles to correct interpretation is the complexity of the band structure. 

Most of band calculations for β-FeSi2 show that the 1st valence band maximum (VBM) 

is located at the Y point while the 1st conduction minimum (CBM) is located at the Λ∗ 

point between the Γ and Z point. It has been shown that the optical properties of β-FeSi2 

are significantly affected not only by the direct gap at the Y  point but also by the indirect 

gap between the 1st VBM at the Y  point and the 1st CBM at the Γ point [12]. It is, 

therefore, natural to consider that the transport and thermoelectric properties may also be 

significantly affected not only by the 1st but also the 2nd extrema of the valence or the 

conduction band. Up to date, however, being different from the interpretation of the 

optical properties, that of the transport and thermoelectric properties of β-FeSi2 has been 

performed within a simple one-valence-band and one-conduction-band model. For 

precise interpretation of the transport and thermoelectric properties, the knowledge of the 

effective masses at the band extrema and the separation energy between the band extrema 

are necessary. For β-FeSi2, however, even the effective masses at the 1st VBM and CBM 

have not been definitely determined.  

In addition to the effects of the 2nd VBM or CBM, those of the impurity band should 

be taken into account at low temperatures. On the insulator side of metal-insulator (MI) 

transition, electrical conduction in the impurity band occurs via either nearest-neighbor 

hopping (NNH) or variable-range hopping (VRH). Hopping conduction in p-type β-FeSi2 

has already been observed in many studies [7,13–21].  

The author of the present article has analyzed the temperature-dependence data of the 

conductivity σ, the Hall coefficient RH, and the Seebeck coefficient S on n-type CoSb3 in 

a multi-band model including plural VBM and CBM as well as an impurity band [22]. As 

a result, the effective masses at the band extrema as well as the separation energies among 

the band extrema have been deduced. In the present study, the multi-band analysis is now 



 3 

  
 

applied to the temperature-dependence data of σ, RH, and S on p-type β-FeSi2. For the 

purpose of determining the band parameters such as the effective masses and the band 

separations, the temperature-dependence data of σ, RH, and S reported by Udono et al. 

[21] on an identical sample of p-type β-FeSi2 are analyzed. Assuming a single parabolic 

valence band, Arushanov et al. [13] deduced the effective mass of holes in p-type β-FeSi2 

solely from the temperature-dependence data of the Hall coefficient below 300 K. Their 

deduced values of the hole effective mass are ranging from 0.8 m0 to 1.2 m0, where m0 is 

the free-electron mass. On the other hand, also in a single-parabolic-band model, Du et 

al. [1] recently deduced the hole effective mass to be 4.9 m0 from the room-temperature 

data of the Hall and the Seebeck coefficient with assuming only acoustic-phonon 

scattering as the scattering mechanism. The present multi-band analysis utilizing the 

temperature-dependence data of the three transport coefficients with taking into account 

several scattering mechanisms is expected to offer the more reliable value of the effective 

mass than either of the analysis utilizing the temperature-dependent Hall-coefficient data 

alone or that utilizing the room-temperature data of the Hall and the Seebeck coefficient 

with assuming a single sccatering mechanism. 

Once the values of the effective masses have been determined, one can perform 

simultaneous fits to the temperature-dependence data of the conductivity and the Hall 

coefficient in a multi-band model using the values of the effective masses. Since strain 

due to the lattice mismatch against substrates has been shown to cause significant effects 

on the band structure of β-FeSi2 samples epitaxially grown on Si substrates [23–26], the 

analyses are restricted to p-type doped bulk single crystal samples. Through the multi-

band analyses, more reliable interpretations are presented for the temperature-dependence 

data of σ, RH, and S on several samples of p-type doped bulk single crystal  β-FeSi2.  

In the following, the analysis model is described in Sec. 2. In Sec. 3, in order to deduce 

the reliable values of the effective masses, we firstly perform the simultaneous fits of the 

temperature-dependence data on the three transport coefficients, namely σ(T), RH(T), and 

S(T), of a p-type β-FeSi2 sample reported by Udono et al. [21]. Not only the effective 

masses at the 1st and the 2nd VBM but also other parameters related to the transport 

phenomena are deduced through the fits. Using the obtained values for the effective 

masses of holes, analyses are then performed for the data of σ(T) and S(T) reported by 
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Heinrich et al. [7,18] in Sec. 4. In Sec. 5, on the other hand, analyses are performed for 

the data of σ(T) and RH(T) reported by Brehme et al. [15–17] and Udono et al. [20]. The 

summary is given in Sec. 6.   

 

2. Analysis model 

When assuming multiple valence and conduction bands together with multiple 

acceptor levels and a compensating donor level, the charge-neutrality condition in a p-

type semiconductor can be written as 
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where nvi is the hole concentration in the i-th valence band, nci is the free-electron 

concentration in the i-th conduction band, −
AiN  is the ionized acceptor concentration of the 

i-th acceptor level, and ND is the concentration of the compensating donor level.   

Only the 1st acceptor level is assumed to form an impurity band, and hopping 

conduction there is taken into account. The total conductivity σ is then represented as the 

sum of contributions from respective bands by  
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where σib, σvi, and σci are the conductivities due to hopping conduction in the impurity 

band, free-hole conduction in the i-th valence band, and free-electron conduction in the i-

th conduction band, respectively. 

Furthermore, both NNH and VRH are assumed as the hopping mechanisms in the 

impurity band. If assuming NNH and VRH are independent phenomena, as in the 

previous study [27], the total hopping conductivity in the impurity band can be expressed 

by ( )VRHNNHibVRHNNHib en µµσσσ +=+= , where e is the elemental charge and AAAib NNNn /0−=  

is the effective concentration of carriers hopping in the impurity band while µNNH and 

µVRH are hopping mobilities for NNH and VRH, respectively. Then, Eq. (2) can be 

rewritten as 
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where µvi and µci are the drift mobilities of carriers in the i-th valence and conduction 

bands, respectively. Note that nib can be approximated as nib )1()1(1 KNKN DA −≈−≈ −  at low 

temperatures, where K = ND/NA1 is the compensation ratio. 

Although Heinrich et al. [7] had identified the conduction mechanism at low 

temperatures in their Cr-doped sample as Mott VRH, they have corrected it as Efros-

Shklovskii (ES) VRH in their succeeding study [18]. In the present study, ES VRH is 

assumed as the VRH mechanism rather than Mott VRH according to Ref. [18]. 

The total Seebeck coefficient is represented as the weighted average of the 

contributions from respective bands by  
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where S’s are the Seebeck coefficients of carriers in the respective bands. In the present 

analysis, however, the Seebeck effect in the impurity band is neglected, and it is assumed 

that Sib = 0.  

The Hall coefficients for respective valence and conduction bands are defined as RHvi 

= AHvi/(envi) and RHci = −AHci/(enci), where AH’s are the Hall factors of carriers in the 

respective bands, while those for NNH and ES VRH in the impurity band are defined as 

RHNNH = AHNNH/(enib) and RHVRH = AHVRH/(enib), respectively, where AHNNH and AHVRH 

are the Hall factors for NNH and VRH, respectively. Then, the total Hall coefficient is 

represented by 
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The Hall mobilities for respective valence and conduction bands are defined as µHvi 

= RHviσvi and µHci = −RHciσci while those for NNH and ES VRH in the impurity band are 

defined as µHNNH = RHNNHσNNH and µHVRH = RHVRHσVRH, respectively. Then, the total Hall 

mobility µH = RHσ is represented as the weighted average of the contributions from 

respective bands by  
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As in the previous study [27], the hopping drift mobilities are assumed to be expressed 

as 

( ) ( )TkETkE Bi
s

Biii
i −= exp0µµ ,  (6) 
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where i = 3 and ES for NNH and ES VRH, respectively, and µ0i’s are temperature-

independent constants. The activation energy E3 of the drift mobility for NNH is treated 

as a temperature-independent constant while EES is treated as a temperature-dependent 

activation energy which is expressed as EES = kB(TEST)1/2. For impurity conduction, it is 

assumed that s3 =3/2 according to the small-polaron theory [28–30] while sES is 

tentatively assumed to be 1/2. 

Also according to the small-polaron theory [28–30], the Hall factor AHNNH = 

µHNNH/µNNH for NNH conduction is assumed to be expressed as 

( ) ( )TkEKITkA BHHBHNNH 33 exp= ,  (7) 

where KH = 2/3 and IH3 are temperature-independent constants. On the other hand, as in 

the previous study [27], the Hall factor AHVRH = AHES = µHES/µES for ES-VRH conduction 

is assumed to be expressed as  

( ) ( )( )[ ]2/11
0 1exp TTTTAA ESES

s
ESHESHES

ES ν−= −   (8) 

with A0HES and νES being temperature-independent constants.  

The carrier concentrations in the valence and the conduction bands are respectively 

calculated as nvi = NviF1/2(ηvi) and ( )cicici Nn ηexp= , where ( ) 2/32/22 hTkmN B
DOS
xx π=  (x = 

v1, v2, c1, or c2) is the effective density of states (DOS) of the x band, ηx is the reduced 

Fermi level with respect to the edge of the x band, Fj(η) is the normalized Fermi-Dirac 

integral of order j, kB is the Boltzmann constant, h is the Planck constant, and DOS
xm  is the 

effective DOS mass, which is related to the conductivity effective mass mx as 
3/2

xx
DOS
x Mmm = . Here, Mx is the number of degeneracy of the x band.  

For the valence bands of β-FeSi2, most of band calculations [23–25,31–35] show that 

the 1st VBM (v1) is located at the Y point while the 2nd VBM (v2) located at the Λ∗ point. 

On the other hand, some of band calculations [36–38] show that the 1st VBM is located 

at the Λ∗ point while the 2nd VBM is located at the Y point. In the present study, v1 and 

v2 are assumed to be located at the Y  and the Λ∗ point, respectively. Therefore, the 

numbers of degeneracy of the v1 and v2 band are Mv1 = 1 and Mv2 = 2, respectively. The 

spin degeneracy factor for the acceptor level was taken to be 2.  

For the conduction bands, all the band calculations show that the 1st CBM (c1) is 

located at the Λ∗ point while the 2nd CBM (c2) is located at the Y point. Therefore, the 
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numbers of degeneracy of the c1 and c2 band are Mc1 = 2 and Mc2 = 1, respectively. Then, 

the indirect gap is between the 1st VBM at the Y  point and the 1st CBM at the Λ∗ point 

while the direct gap d
gE  is between the 1st VBM and the 2nd CBM at the Y  point. Figure 

1 shows the sketch map of the band diagram of β-FeSi2 assumed for the present analysis. 

For both the indirect and the direct gap, the temperature dependence of the band-gap 

energies is assumed to be represented by a Bose-Einstein-type analytical expression 

[12,39–41] 









−−= 1

2
coth)0()(

Tk
SETE

B
gg

ω
ω


 ,  (9) 

where Eg(0) is the energy gap at 0 K, S is a dimensionless coupling parameter, and ω  

is an average phonon energy. According to Udono et al. [12], it is assumed that S = 4.6 

and ω  = 29 meV for the indirect gap while it is assumed that S = 2.2 and ω  = 27 meV 

for the direct gap. Therefore, not only Eg(T) for the indirect gap between the c1 and the 

v1 band but also ∆Ec2(T) for the energy separation of the c2 from the c1 band is 

temperature-dependent. On the other hand, the energy separation ∆Ev2 of the v2 from the 

v1 band is assumed to be constant, being independent of temperature.  

The calculation of mobilities of free carriers has been performed within a relaxation-

time approximation. An early experimental study by Dimitriadis et al. [42] on p-type β-

FeSi2 showed that two scattering mechanisms, namely ionized-impurity and acoustic-

phonon scattering, are dominant. However, Brehme et al. [16] proved the hole mobility 

of β-FeSi2 to follow a power-law temperature dependence T-β with β > 1.5 in the 

temperature region of 200-300 K. In their study on p-type β-FeSi2 layers, Oostra et al. 

[43] pointed out that the mobility does not follow the T-1.5 behavior as expected for 

acoustic-phonon scattering but follows the T-1.9 behavior in the temperature range of 100-

300 K. They suggested that scattering mechanisms other than acoustic-phonon scattering 

are important. Filonov et al. [44] as well as Takakura et al. [45] showed that the power-

law temperature dependence T-β with β > 1.5 in the high-temperature region can be 

obtained by including nonpolar-acoustic-phonon scattering in addition to acoustic-

phonon scattering. In the present study, therefore, nonpolar-acoustic-phonon scattering is 

taken into account.  
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In addition, space-charge scattering is included, as in the previous studies on n-type 

GaAs [46] and InP [27]. On the other hand, while Filonov et al. [44] included neutral 

impurity scattering, it is not included in the present study. Takakura et al. [47] further 

pointed out that inter-valley scattering should be taken into account since the 1st VBM is 

not located at the center of the Brillouin zone but at the Y point. However, since inter-

valley scattering was found to have negligible effects, this scattering mechanism was not 

included. 

The total relaxation time τtotal for free holes in each valence band is assumed to be 

given by 111111 −−−−−− ++++= scponpoaciitotal ττττττ , where τii, τac, τnpo, τpo, and τsc are the 

relaxation times for scattering due to ionized impurities, acoustic phonons, nonpolar 

optical phonons, polar optical phonons, and space charge, respectively. On the other hand, 

only acoustic-phonon scattering is taken into account for the calculation of the mobilities 

for free electrons in the conduction bands. Strictly speaking, the band dispersion near the 

VBM and the CBM is anisotropic. However, Zhang et al. [48] theoretically calculated σ/τ 

and S for β-FeSi2 with including the anisotropic band dispersion to show that the 

anisotropies of σ/τ and S between the directions parallel and perpendicular to the c-axis 

are not significant as long as p-type doping is lower than 1021 cm-3. Therefore, the 

calculation of τii, τac, τnpo, τpo, and τsc has been performed using the formulae for an 

isotropic parabolic band [49]. The formulae for the calculation of these relaxation times 

are described in Appendix A. The calculation of µvi and µHvi = AHviµvi as well as that of 

µci and µci = AHciµci was also performed within an isotropic parabolic band model. 

The calculation method of the hopping conductivity in the impurity band is the same 

as in the previous study on n-type InP [27].  

The material constants used for the present calculation are summarized in Table 1, in 

which the values of the static and the high-frequency dielectric constants were cited from 

Refs. [50] and [51], respectively, while those of the longitudinal sound velocity and the 

Debye temperature were cited from Refs. [52] and [53]. 

It has been shown both experimentally and theoretically that, owing to the screening 

effect of neutral impurities, the static dielectric constant increases with the impurity con-

centration to diverge at the critical net acceptor concentration NNAcr for the onset of the 
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MI transition [54,55]. According to Poklonski et al. [55], the static dielectric constant is 

assumed to be described by the form of  

( )( ) 1000 12)( −
−+= NAcrANAcrAsAeff NNNNN εε  . (10) 

Since the critical net acceptor concentration for the MI transition in p-type β-FeSi2 is not 

known, NNAcr is treated as an adjustable parameter. 

 

3. Simultaneous fits to the data of σ(T), RH(T), and S(T) 

Firstly, the effective masses should be determined. In the previous studies of the 

author on p-type [56] and n-type CoSb3 [22,57], the effective masses of carriers at the 1st 

and the 2nd extrema of the valence and the conduction band are estimated through the 

simultaneous fits to the temperature-dependence data of the three transport coefficients: 

the conductivity, the Hall coefficient, and the Seebeck coefficient.  

Regarding p-type β-FeSi2, the temperature-dependence data of the conductivity, the 

Hall coefficient, and the Seebeck coefficient on their two samples (#Ga-1 and #Ga-2) 

have been reported by Udono and his co-workers in a temperature range of 10-300 K 

[21,58]. These samples were grown by a temperature gradient solution growth (TGSG) 

method using Ga solvent [20,21,58]. Between the two samples, #Ga-1 was grown using 

an arc-melted low-purity FeSi2 solute while #Ga-2 was grown using an ampoule melted 

high-purity one. The Hall-effect measurement was performed in a magnetic field of 0.35 

T. Similar data of σ(T), RH(T), and S(T) were obtained for both the samples. We begin 

with analyzing one of their samples (#Ga-2) to deduce the effective masses of holes.  

For analyzing the data below 300 K, the effects of free electrons in the conduction 

bands may be neglected. Therefore, the simultaneous fits of the experimental data in the 

measurement temperature range of 10-300 K have been performed according to the 

present model without including the conduction bands. For these samples, good fits have 

been obtained assuming only a shallow acceptor level without assuming other deeper 

acceptor levels.  

Through the fits, the values of various fitting parameters have been obtained besides 

effective masses. For one of their two samples (#Ga-2), the obtained values of fitting 

parameters related to impurities are summarized in Table 2 while those related to the 1st 

and the 2nd VBM are summarized in Table 3 and 4, respectively. In particular, mv1/m0 is 
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estimated to be 0.9 ± 0.2. However, since the low temperature end of the measurement 

temperature range was not low enough, the values of parameters related to impurity 

hopping conduction cannot be definitely deduced. There exists, therefore, large ambiguity 

in the values of parameters related to VRH, namely µ0ES, TES, νES, and A0HES.  

Arushanov et al. [59] estimated the critical net acceptor concentration NNAcr for the 

onset of the MI transition to be 3.7 ×  1019 cm-3 for Mn-doped p-type β-FeSi2. On the 

other hand, Udono and Kikuma [20] reported the σ(T) and RH(T) data on three samples 

(#Ga4, #Ga6, and #Ga2) grown by TGSG method using Ga solvent together with an arc-

melted low-purity FeSi2 solute to show that all these samples exhibit non-metallic 

behavior with activation energies of EA = 17-18 meV in spite of high net acceptor 

concentrations of NA − ND = 4.1-5.3 ×  1019 cm-3. Furthermore, the net acceptor 

concentration NA1 − ND was estimated to be 6 ×  1019 cm-3 for #Ga-2 in the present study. 

Although this value of NA1 − ND exceeds NNAcr = 3.7 ×  1019 cm-3 estimated by Arushanov 

et al. [59], the conductivity of #Ga-2 still shows non-metallic behavior in the impurity-

conduction temperature region. It is, therefore, clear that NNAcr is larger than 6 ×  1019 cm-

3. As shown in Table 2, NNAcr was estimated to be 1 ×  1020 cm-3 through the fits in the 

present study. Using this value of NNAcr together with NA1 − ND = 6 ×  1019 cm-3, the 

effective static dielectric constant was calculated to be )()( 1
0

1 DAeffAeff NNN −≈ εε = 77.8 

ε0 for #Ga-2. Ionized-impurity scattering is weakened by screening of the Coulomb force 

through the increase of εeff. As a result, the mobility at low temperatures is increased in 

#Ga-2 in comparison with the case in which the screening effect owing to the increased 

εeff is absent. As shown in Table 2, the ionization energy EA1 of the shallow acceptor level 

is as low as 6.5 meV. This low ionization energy is also attributed to the screening effect 

owing to the increased εeff. 

Figures 2(a-d) show the comparison of the simulated results (solid lines) with the 

experimental data (open circles) of sample #Ga-2: (a) shows the conductivity as a function 

of the reciprocal temperature while (b), (c), and (d) respectively show the Hall mobility, 

the Hall coefficient, and the Seebeck coefficient as a function of the temperature. Also 

shown by yellow, green, and red curves are the contributions from the impurity band (ib), 

the 1st (v1) and the 2nd (v2) valence band, respectively, namely σx, (σx/σ)µHx, (σx/σ)2RHx, 

and (σx/σ)Sx, in (a), (b), (c), and (d), respectively, where x = ib, v1, and v2.  
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Arushanov et al. [13] analyzed the RH(T) data measured in the temperature range of 

30-300 K on their five samples of Al-doped p-type β-FeSi2 single crystal grown by 

chemical vapor transport (CVT). Using the higher-temperature data, they estimated 

1/(eRd) = NA1 + NA2 − ND from the extrapolated value of RH(1/T) to 1/T →0. Then, they 

estimated 1/(eRf) = NA1 − ND using the data in the carrier-freezing region to obtain the 

value of NA2. Furthermore, they estimated the values of EA2 and mv1
3/2NA2 from the plot 

of 1/(eRHT3/4) versus 1/T at high temperatures. Thus, it has been implicitly assumed for 

both free-hole and impurity hopping conduction that the Hall factor is unity, being 

independent of temperature. Finally, from the obtained values of NA2 and mv1
3/2NA2, they 

estimated mv1 for their five samples to be ranging from 0.8 m0 to 1.2 m0. Our estimated 

value of mv1 = 0.9 m0 is within this range. Note, however, that their deduced values of 

impurity concentrations cannot be reliable since the Hall factor for impurity hopping 

conduction is not unity but increases to be larger than 10 with decreasing temperature. 

Very recently, Du et al. [1] utilized a single-parabolic-band model to deduce the DOS 

effective mass of holes from the room-temperature data of the Hall and the Seebeck 

coefficient on the p-type polycrystalline samples of β-FeSi2-xAlx (x = 0.02, 0.03, and 0.04) 

and Fe0.92Mn0.08Si2. They set the scattering factor to be 0 assuming acoustic-phonon 

scattering as the scattering mechanism. Their deduced value for the DOS effective mass 

of holes is as large as 4.9 m0. Note, however, that this value is considerably overestimated 

because the v2 band with Mv2 = 2 as well as the v1 band with Mv1 = 1 contributes to the 

Hall and the Seebeck coefficient at room temperature. 

Martinelli et al. [60] calculated the principle-axis components of the effective mass 

tensor for holes at the Y and the Λ∗ point in the framework of the full-potential ab initio 

method. They obtained (mxx, myy, mzz) = (0.21, 0.27, 0.27) m0 and (1.11, 0.83, 0.81) m0 

for holes at the Y and the Λ∗ point, respectively. The calculation of (mxx myy mzz)1/3 using 

these values of the tensor components yields mv1 = 0.25 m0 and mv2 = 0.91 m0 for the 

effective masses of holes at the Y and the Λ∗ point, respectively. Our estimated values of 

mv1 = 0.9 m0 and mv2 = 1.9 m0 are 3.6 and 2.1 times larger, respectively, than those 

estimated by Martinelli et al. [60]. 

It can be seen in Fig. 2(a) that the contribution from the v1 band dominates the 

conductivity over most of the measurement temperature range while the contributions 
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from the v2 and the impurity band become comparable to it at the highest and the lowest 

temperatures, respectively. Note also that, although the Seebeck coefficient is dominated 

by the contribution from the v1 band around its peak at 33 K, the contribution from the 

v2 band starts to increase at 50 K to be larger than that from the v1 band above 100 K.  

It is interesting to note that the temperature dependence of the Seebeck coefficient 

observed for this p-type β-FeSi2 sample is very similar to that of the absolute value of the 

Seebeck coefficient observed for n-type Co1-xNixSb3 (x = 0.003 and 0.005) by Dyck et al. 

[61]. For n-type Co1-xNixSb3, it has been proved in the previous study of the author [22] 

that the slight increase of the absolute value of the Seebeck coefficient with increasing 

temperature after its peak owing to the 1st CBM at the Γ point can be attribute to the 2nd 

CBM at the Σ point between the Γ and the N point. Udono et al. [21] suggested the large 

peak value of the Seebeck coefficient to be due to the phonon-drag effect. In the present 

study, however, the large peak value has been reproduced without the phonon-drag effect.  

Thus, it has been shown that the v2 band significantly affects the transport properties 

(the thermoelectric property in particular) of p-type β-FeSi2. This finding on p-type β-

FeSi2 in the present study as well as that on n-type Co1-xNixSb3 in the previous study [22] 

suggests that the existence of the 2nd band with a large DOS and a small energy separation 

from the 1st band is crucial for the candidates of high-temperature thermoelectric 

materials.  

The values of the energy separation ∆Ev2 calculated by the band structure calculations 

for β-FeSi2 are widely scattered. (Here, ∆Ev2 corresponds to the energy separation of the 

2nd VBM at the Λ∗ point from the 1st VBM at the Y point.) Namely, the calculated results 

by Migas et al. [32] and Clark et al. [23] yielded ∆Ev2 = 50 and 170 meV, respectively 

while those by Eisebitt et al. [36] yielded ∆Ev2 to be nearly zero; A negative value of ∆Ev2 

= -75 meV was obtained in the calculation by Filonov et al. [37]. The estimated value of 

∆Ev2 = 23 meV for Sample #Ga-2 as well as those estimated in the present study for the 

other samples (see Table 4) is within the scattered range of the theoretical predictions. 

 

4. Simultaneous fits to the data of σ(T) and S(T) 



 13 

  
 

In this section, simultaneous fits to the temperature-dependence data of the 

conductivity and the Seebeck coefficient on another sample are performed using the 

values of the effective masses of holes at the 1st and the 2nd VBM obtained in the 

previous section. The acoustic-phonon deformation potential constant Eac as well as the 

nonpolar-optical-phonon deformation potential constant Enpo for the 1st VBM was also 

fixed at the value obtained in the previous section. For the 2nd VBM, on the other hand, 

while Eac was fixed at the value obtained in the previous section, Enpo was treated as an 

adjustable parameter.  

Heinrich et al. [7,18] grew single crystal p-type β-FeSi2 by a CVT reaction using Cr 

as a p-type dopant. They reported the σ(T) and S(T) data for their sample doped with 0.5 

at. % ( ≈4×1020 cm-3) Cr in a wide temperature range of 4.2-1070 K, but the RH(T) data 

are not available for this sample. Although the simultaneous fits have been performed to 

the σ(T) and S(T) data for this sample, it is rather difficult to determine the impurity 

concentrations without the RH(T) data. Note that, owing to the lack of the RH(T) data, 

there exists rather large ambiguity in deducing the impurity concentrations.  

The simultaneous fits were performed firstly being restricted to the low-temperature 

range below 300 K, based on the present model but with the c1 and c2 band neglected. 

The values of the fitting parameters for the sample in this stage are summarized in Table 

2, 3, and 4. As can be seen in Table 2, the net acceptor concentration NA1 − ND was 

estimated to be much lower than the critical net acceptor concentration NNAcr. Therefore, 

the effect of the increase of εeff following Eq. (10) was neglected in the analysis on this 

sample.  

After obtaining the simultaneous good fits to the experimental data below 300 K by 

adjusting the fitting parameters exept those related to the conduction bands, the c1 and c2 

band have been added into the mode to extend the simultaneous fits to high temperatures. 

It has been noticed in this stage that the inclusion of the c2 band is necessary for obtaining 

good fits. Thus, the newly added fitting parameters in the 2nd stage are those related to 

the c1 and c2 band, i.e., the effective masses (mc1 and mc2), the acoustic-phonon 

deformation potentials ( )1(c
acE  and )2(c

acE ), the energy separations at 0 K (Eg(0) and ∆Ec2(0)). 

Note, however, that the values of these newly added fitting parameters in the 2nd stage 

are not so significantly affected by the impurity concentrations obtained with rather large 
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ambiguities in the 1st stage. Furthermore, one may wonder why the effective masses of 

electrons in the conduction bands can be estimated without the RH(T) data. The primitive 

explanation for this issue is presented in Appendix B. The values of the fitting parameters 

for the sample related to the 1st and 2nd CBM are summarized in Table 5 and 6, 

respectively.   

Figures 3(a) and (b) show the comparison of the simulated results (solid lines) with 

the experimental data (open circles) of the sample doped with 0.5 at. % Cr: (a) shows the 

conductivity as a function of the reciprocal temperature while (b) shows the Seebeck 

coefficient as a function of the temperature. Also shown by solid lines of yellow, green, 

and red are the contributions from ES-VRH conduction in the impurity band, free-hole 

conduction in the 1st (v1) and the 2nd (v2) valence band, respectively, while shown by 

broken lines of green and red are those from free-electron conduction in the 1st (c1) and 

the 2nd (c2) conduction band, respectively.  

The low-temperature conductivity can be described by ES VRH, as has been pointed 

out by Heinrich et al. [18]. There is a transition from ES VRH to free-hole conduction in 

the v1 band at approximately 100 K. Similar to the case of Sample #Ga-2 in the previous 

section, it can be seen in Fig. 3(a) that the contribution from the v1 band dominates the 

conductivity in the temperature range of 100-200 K while the contribution from the v2 

becomes significant above 200 K. A steep increase of the conductivity above 700 K is 

due the onset of intrinsic conduction.  

Similar transitions of the dominant contribution can be seen for the Seebeck 

coefficient, as can be seen in Fig. 3(b). Heinrich et al. [62] claimed that the strong 

temperature dependence below 150 K can be described by a T3 law. They interpreted the 

dependence as the characteristic of a phonon-drag contribution [7,18,62]. In the present 

analysis, however, the strong temperature dependence has been reproduced without the 

phonon-drag effect. The steep decrease of the Seebeck coefficient with decreasing 

temperature below 150 K can be attributed to the steep decrease of the ratio σv1/σ ≈  

σv1/(σv1 + σib) in Eq. (3) due to the increase of the ratio σib/σv1 with decreasing 

temperature. After the peak due to the 1st VBM, the Seebeck coefficient shows a gradual 

increase with increasing temperature. This increase can be attribute to the contribution 
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from the 2nd VBM. The decrease of the Seebeck coefficient above 600 K can be attribute 

to the onset of intrinsic conduction, as has been pointed out by Heinrich et al. [7]. 

Through the simultaneous fits to the σ(T) and S(T) data, the indirect band gap at 0 K 

was estimated to be Eg(0) = 0.9 eV. Udono et al. [12,63] estimated the indirect gap at 0 

K to be 0.814 eV from the optical absorption spectrum of the single crystal p-type β-FeSi2 

sample grown by a TGSG method using Ga solvent. Lang et al. [64] synthesized β-FeSi2 

nanoparticles by ion-beam-induced epitaxial crystallization followed by thermal 

annealing and then investigated the optical absorption spectrum at room temperature as 

well as the photoluminescence (PL) spectra at temperatures between 10 and 130 K. They 

estimated the indirect gap at 2 K to be 0.856 eV from the indirect gap at room temperature 

together with the temperature dependence of the PL peak. The value of Eg(0) = 0.9 eV 

for the indirect gap obtained in the present analysis is near to the value obtained by Lang 

et al. [64] 

Udono et al. [12] further estimated the direct gap at 0 K to be )0(d
gE  = 0.939 eV while 

Lang et al. [64] estimated it to be 0.867 eV. The differences of these energies from the 

indirect gap energies lead to ∆Ec2(0) = 125 and 11 meV. The band calculation by Filonov 

et al. [37] yielded ∆Ec2(0) = 8 meV while those by Moroni et al. [31] and Migas et al. 

[32] yielded ∆Ec2(0) = 65 and 50 meV, respectively. On the other hand, Arushanov et al. 

[65] estimated ∆Ec2(0) to be 25 meV from the temperature dependence of the Hall 

coefficient for the single crystal n-type β-FeSi2 sample grown by CVT. The value of 

∆Ec2(0) = 20 meV estimated from the simultaneous fits in the present study is near to the 

value obtained by Arushanov et al. [65] 

From the band structure calculation using the self-consistent linear muffin-tin orbital 

method, Filonov et al. [37] estimated mc1 to be 0.49 m0 while mc2 was estimated to be of 

the order of tens in units of m0. Martinelli et al. [60] calculated the principle-axis 

components of the effective mass tensor for electrons at the Y point in the framework of 

the full-potential ab initio method. They obtained (mxx, myy, mzz) = (1.27, 0.83, 8.83) m0 

for electrons at the Y point. These values of the tensor components yield mc1 = 2.10 m0 

for the effective mass of electrons at the Y point. They also found an exceedingly large 

value (>> m0) for mc2. Arushanov et al. [66] deduced the value of mc1 = 0.6 m0 from the 

magnetic susceptibility measurement. Our estimated value of mc1 = 1.3 m0 is between the 



16  

 
 

values obtained by Arushanov et al. [66] and Martinelli et al. [60] Our estimated value of 

mc2 = 240 m0 is consistent with their results of the band calculations.  

 

5. Simultaneous fits to the data of σ(T) and RH(T) 

In this section, simultaneous fits to the data of σ(T) and RH(T) on four samples are 

performed, using the values of effective masses used in the previous sections. Among the 

four samples, three are the samples of Cr-doped β-FeSi2 grown by a CVT reaction while 

the other one is a sample grown by the TGSG method using Zn solvent. The acoustic-

phonon deformation potential constant Eac as well as the nonpolar-optical-phonon 

deformation potential constant Enpo for the 1st VBM was also fixed at the value used in 

the previous sections. For the 2nd VBM, on the other hand, while Eac was fixed at the 

value used in the previous sections, Enpo was treated as an adjustable parameter. Since the 

net acceptor concentration NA1 − ND was proved to be much lower than the critical net 

acceptor concentration NNAcr for all of the samples treated in this section, the effect of the 

increase of εeff following to Eq. (10) was neglected here.  

A group of Hahn-Meintner Institute studied the electrical properties of β-FeSi2 single 

crystal samples grown by a CVT reaction using Cr as a p-type dopant [15–17]. Among 

their studies, although Brehme et al. [17] investigated the properties of four Cr-doped p-

type β-FeSi2 samples of N1d, N2d, and N3d, and N4d, both of the σ(T) and RH(T) data 

are available only for N4d. In Refs. [16] and [15], respectively, only #10 and To7 are Cr-

doped p-type β-FeSi2 single crystal. Therefore, analyses are performed here for the σ(T) 

and RH(T) data on the three samples of #10, N4d, and To7. The nominal Cr concentration 

was 0.1 at. % ( ≈8×1019 cm-3) in #10 while it was in the order of 1×1018 cm-3 in To7 [15]. 

For the growth of N4d, Cr was added to the starting powder in a concentration of 0.5 % 

[67], but it was found from energy dispersive X-ray spectroscopy (EDX) and electron 

paramagnetic resonance (EPR) measurements that the amount of incorporated dopants 

was about one order of magnitude lower [16].  

The simultaneous fits to the experimental data have been performed for these three 

samples without including the conduction bands. It has been found that, while good fits 

can be obtained for #10 by assuming only ES VRH as the hopping mechanism in the 

impurity band, the better fits can be obtained for N4d and To7 by assuming not only VRH 
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but also NNH. The obtained values of fitting parameters for these samples are 

summarized in Table 2, 3, and 4. 

Arushanov et al. [67,68] analyzed the RH(T) and µH(T) data on two samples of #10 

and N4d, assuming a single parabolic valence band with mv1 = 1.0 m0 together with two 

acceptor and one donor levels. They also assumed that Enpo/Eac = 2. Their estimated 

values of NA1, EA1, NA2, EA2, ND, )1(v
acE , and )1(v

npoE  for #10 and N4d are also shown in 

parentheses in Table 2 and 3. The material constants used by them are shown in Table 1 

in comparison with those used in the present analysis. Arushanov et al. [67,68] cited the 

values of the static and the high-frequency dielectric constants from Refs. [69] and [70], 

respectively, while calculated the longitudinal sound velocity by v = 3/12 )6/)(/( πθ Vk DB  , 

where V is the average atomic volume. The Debye temperature was calculated using the 

relation of kBθD = ω  with the value of ω  = 55 meV obtained in Ref. [40] for 

describing the temperature dependence of the direct gap by Eq. (9).  

The value used as the Debye temperature by Arushanov et al. [67,68] is not so 

different from that used in the present study which was estimated from analysis of specific 

heat by Waldecker et al. [53] On the other hand, the values used by Arushanov et al. 

[67,68] for the static and the high-frequency dielectric constants as well as that for the 

longitudinal sound velocity are significantly different from those used in the present 

analysis. Although Arushanov et al. [67,68] used the value calculated by the formula of v 

= 3/12 )6/)(/( πθ Vk DB   as the longitudinal sound velocity, the formula is not for estimating 

the longitudinal sound velocity but for estimating the average sound velocity defined as 

vav = [(1/3)(2/vt
3 + 1/vl

3)]-1/3, where vt denotes the transverse sound velocity which is 

about 0.6 times of the longitudinal sound velocity vl [52]. Tassis et al. [14] estimated the 

high-frequency dielectric constants by fitting the low energy part of reflectance and 

transmittance spectra of their six thin film samples to show that ε∞ is in the range of 18-

23 ε0. Our used value of ε∞ = 18.7ε0 is within this range while that used by Arushanov et 

al. [67,68] is out of this range. Filonov et al. [71] estimated εs to be 26.8 ε0. This value is 

near to our adopted value of εs = 29.9 ε0. Suzuno et al. [72] also adopted the values of εs 

= 29.9 ε0 and ε∞ = 23 ε0 rather than εs = 61.1ε0 and ε∞ = 12ε0 for calculating mobility in 

p-type β-FeSi2.  
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Figures 4(a-c), 5(a-c), and, 6(a-c) show the comparison of the simulated results (solid 

lines) with the experimental data (closed circles, open triangles, and closed diamonds) of 

the samples: (a) shows the conductivity as a function of T -1/2; (b) and (c) respectively 

show the Hall mobility and the Hall coefficient as a function of the temperature. Figures 

4, 5, and 6 show the plots for #10, N4d, and To7, respectively. Also shown by solid lines 

of yellow and violet are the contributions from ES VRH and NNH in the impurity band, 

respectively, and shown by solid lines of green and red are those from free-hole 

conduction in the 1st (v1) and the 2nd (v2) valence band, respectively. 

In Refs. [68] and [67], respectively, Arushanov et al. calculated µv1 for #10 and N4d 

using the material parameters shown in the third column in Table 1 together with the 

values of fitting parameters shown in the parentheses in Table 2 and 3. They calculated 

µv1 using Mathiesen’s approximation µv1
-1 = µii

-1 +µac
-1 + µnpo

-1 + µpo
-1 + µsc

-1, where µii, 

µac, µnpo, µpo, and µsc are the mobilities due to scattering by ionized impurities, acoustic 

phonons, nonpolar optical phonons, polar optical phonons, and space charge, respectively. 

Their calculation methods for µnpo, µpo, and µsc are different from those in the present 

study. They did not include the Hall factor and took into account only the 1st valence 

band without the effects of the 2nd conduction band and the impurity band. Their 

calculated results of µv1 for #10 and N4d are shown by broken curves in Figs. 4(b) and 

5(b), respectively.  

In Fig. 4(a), it can be seen for #10 that the contribution from the v1 band dominates 

the conductivity in the temperature range of 50-80 K while the contributions from the v2 

and ES VRH become dominant above and below this temperature range, respectively. A 

similar transition of the dominant contribution can be seen for the Hall mobility as well, 

as can be seen in Fig. 4(b). In particular, the steep increase of the Hall mobility with 

increasing temperature around 50 K is attributed to the transition from ES-VRH 

conduction to free-hole conduction. As expected from the two-band model, the Hall 

coefficient shows its peak at 50 K at which σib = σv1 is satisfied, as shown in Fig. 4(c).  

For N4d and To7, although the contribution from NNH conduction to the conductivity 

is not significant, as can be seen in Figs. 5(a) and 6(a), that to the Hall mobility and the 

Hall coefficient becomes significant in the intermediate temperature region between the  

ES-VRH dominant and the v1 conduction dominant region, as can be seen in Figs. 5(b, 
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c) and 6(b, c). This is due to the large values of AHNNH. The calculated values of AHv1, 

AHNNH, and AHES are plotted by dotted curves of green, violet, and yellow, respectively, 

in Figs. 4(c), 5(c), and 6(c).  

As can be seen in Fig. 6(b), the Hall mobility µH of To7 at its maximum is dominated 

not by the contribution from free-hole conduction in the v1 band but by that from NNH 

in the impurity band. This is due to the low value of µHv1 and the high value of µHNNH the 

latter of which is attributed to the very high value of AHNNH as large as 2000 around 90 K.  

Arushanov et al. [67] claimed that experimental data on Cr-doped single crystal p-

type β-FeSi2, including N4d, do not indicate the existence of an impurity band or the 2nd 

valence band. On the contrary, the data on N4d as well as those on #10 and have been 

well explained with assuming the existence of both an impurity band and the 2nd valence 

band in the present study. 

It can be seen from the comparison of the present results with the results obtained by 

Arushanov et al. [67,68] in Table 2 that the obtained value of NA1 − ND in the present 

analysis is 25 and 150 times larger for #10 and N4d, respectively, than those obtained by 

Arushanov et al. [67,68] This is due to the primitive two-band model which Arushanov 

et al. used. In their two-band model analysis, Arushanov et al. [67,68] estimated the net 

concentration of the shallow acceptor level by 1/(eRH) = NA1 − ND using the data of RH 

in the carrier-freezing region with assuming the Hall factors for the impurity conduction 

to be 1. In the present study, on the other hand, the Hall factor AHES for ES VRH has been 

proved to be larger than 10 while the Hall factor AHv1 for free-hole conduction in the v1 

band has been proved to stay below 2, as can be seen  in Figs. 4(c), 5(c), and 6(c). AHES 

at 30 K is as large as 10, 200, and 500 for #10, N4d, and To7, respectively. 

The large values of AHES may be attributed in part to its strong dependence on 

magnetic field. For their another Cr-doped sample of N2d, Brehme et al. [16] showed that 

the Hall coefficient below 100 K increased about three times when the magnetic field was 

increased from 0.14 to 0.495 T. On the other hand, the dependence was reduced above 

100 K and fell below the detection limit above 200 K. The strong magnetic-field 

dependence of RH below 100 K can be attributed to that of AHES. The RH(T) data for N4d 

and To7 analyzed in the present study were obtained in a magnetic field of 0.49 T. It is, 
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therefore, expected that RH of N4d and To7 below 100 K will also be decreased about 1/3 

if measured in a decreased magnetic field of 0.14 T. 

Arushanov et al. [67] further estimated the upper limit of ND for N4d to be 1.4 ×  1017 

cm-3 with supposing mv1 = 1.0 m0 and EA1 = 0 meV. However, the assumption of EA1 = 

0 meV is inconceivable because of the small screening effect arising from the low 

concentration of NA1 − ND in N4d, being different from the case of #Ga-2 having the high 

concentration of NA1 − ND. On the other hand, our deduced value of EA1 = 48 meV for 

N4d is reasonable for the low concentration of NA1 − ND in N4d. Our deduced value of 

ND = 9 ×  1017 cm-3 for N4d is far beyond the upper limit of ND estimated by Arushanov 

et al. [67]  

Arushanov et al. [67,68] performed fitting to the mobility data by using Mathiesen’s 

approximation µv1
-1 = µii

-1 +µac
-1 + µnpo

-1 + µpo
-1 + µsc

-1, where µac was calculated as  

2/322/5
1

242/1

)(3
)8(

TkEm
ve

Bacv

l
ac

ρπµ 
=  ,  (11) 

using mv1 = 1.0 m0 and vl = 4.994 ×  103 cm/s in the 3rd column of Table 1. As a result, 

they obtained a value of Eac = 8 eV for both of #10 and N4d. Eq. (11) with the use of this 

value of Eac = 8 eV and the above values of mv1 and vl yields µac = 117 cm2/Vs at 300 K. 

On the other hand, Eq. (11) yields an approximately half the value, i.e., µac = 57 cm2/Vs, 

at 300 K with the use of our deduced value of Eac = 22 eV together with mv1 = 0.9 m0 and 

vl = 8.369 ×  103 cm/s.  

As shown in Table 2, NSCσSC (NSC is the concentration of space-charge regions and 

σSC is their effective cross section) is estimated to be 104 cm-3 for N4d while it is estimated 

to be as large as 5.5 ×  106 cm-3 for To7. In the previous studies on n-type GaAs [46] and 

InP [27], NSCσSC was estimated to be 104 cm-3 at most. Arushanov et al. [67] suggested 

the importance of the space-charge scattering in the low temperature region for N4d. On 

the contrary, it is shown for N4d in the present study that the Hall mobility at low 

temperatures is dominated not by the space-charge scattering but by hopping conduction 

and that the effect of the space-charge scattering is almost negligible. On the other hand, 

the low peak value of µv1 of To7 at a high temperature is attributed to the large value of 

NSCσSC. The space-charge regions may appear when the impurity concentrations or the 

stoichiometry between Fe and Si vary spatially owing to the inhomogeneity. The large 
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difference of NSCσSC between N4d and To7 is speculated to be due to the difference in 

homogeneity. 

Udono and Kikuma [20] measured the conductivity and the Hall coefficient of four 

samples (#Zn10-1, #Zn10-2, #Zn13, and #Zn21) of single crystal p-type β-FeSi2 grown 

by the TGSG method using Zn solvent. Among the samples, the data in a wide 

temperature range of 10-700 K are available for #Zn10-1 and #Zn10-2 while only the data 

above 120 K are reported for #Zn13 and #Zn21. Both the samples of #Zn10-1 and #Zn10-

2 showed similar data of σ(T) and RH(T). Being different from their samples grown using 

Ga solvent, however, the S(T) data have not been reported for these p-type samples grown 

using Zn solvent. The simultaneous fits to the σ(T) and RH(T) data for sample #Zn10-2 

reported in Ref. [20] have been performed using the values of the effective masses of 

holes and electrons obtained in the previous sections. The obtained values of fitting 

parameters for Sample #Zn10-2 are summarized in Table 2, 3, 4, 5, and 6.  

Udono and Kikuma [20] analyzed their Hall-effect data to estimate the values of NA 

and EA within the conventional one-acceptor and one-compensating-donor model with 

assuming ND << NA, AHv1 = 1, and mv1 = 1.0 m0. Their estimated values of NA and EA are 

also shown in parentheses in Table 2. It can be seen in Table 2 that EA2 obtained in the 

present study agrees with that obtained by Udono and Kikuma [20] while NA2 obtained 

in the present study becomes smaller owing to the addition of the shallow acceptor level.  

Figures 7(a-c) show the comparison of the simulated results (solid lines) with the 

experimental data (crosses) of Sample #Zn10-2: (a) shows the conductivity as a function 

of the reciprocal temperature while (b) and (c) respectively show the Hall mobility and 

the Hall coefficient as a function of the temperature. The contributions from holes in the 

respective bands are also plotted by solid lines while those from electrons are plotted by 

broken lines. 

It can be seen in Fig. 7(a) that, above the impurity-conduction dominant region, the 

conductivity is dominated not by the contribution from the v1 band but by that from the 

v2 band. A steep increase of the conductivity above 550 K is attributed to the onset of 

intrinsic conduction. The steep increase of the Hall mobility with increasing temperature 

around 100 K is attributed to the transition from impurity hopping conduction to free-

hole conduction. On the other hand, the increases with decreasing temperature below 60 
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K of the Hall mobility and the Hall coefficient are both attributed to the temperature 

dependence of AHES.  

Udono and Kikuma [20] calculated the extrapolated hole concentration pex from their 

conductivity data by using the equation of σ = e pexµHex, where µHex is the extrapolated 

Hall mobility derived from the relation of µH β−∝ T  with β = 1.9. Their calculated results 

of 1/(e pex) are also plotted by open circles in Fig. 7(c). For the purpose of the comparison 

with pex, they calculated the intrinsic carrier concentration ni by using 
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where Eg(T) is calculated by Eq. (9). They calculated Nc and Nv with assuming mv = mc 

= 1.0 m0 and Mv = Mc = 1. As the energy gap Eg, they used the indirect exciton energy 

gap Egx determined from their optical absorption measurement [12]. In Ref. [12], they 

obtained a value of 0.814 eV for the indirect exciton energy gap Egx(0) between the 1st 

CBM at the Λ∗ point and the 1st VBM at the Y point. As a result, they find that pex agrees 

well with the calculated results of ni above 500 K.  

It should be noted, however, that the activation energy of the Hall carrier 

concentration 1/(eRH) is not determined by the indirect energy gap Egx but substantially 

by the direct energy gap Λd
gE = Egx + ∆Ev2 between the 1st CBM and the 2nd VBM at the 

Λ∗ point since the contribution from the v2 band dominates the total Hall coefficient above 

500 K rather than the v1 band, as can be seen in Fig. 7(c).  

Through the simultaneous fits to the σ(T) and RH(T) data in the present study, the 

indirect band gap Eg(0) was estimated to be 0.84 eV. This value is near to the value 

obtained by Lang et al. [64]  

6. Summary  

Multi-band analyses have been performed for the temperature-dependence data of the 

conductivity, the Hall coefficient, and the Seebeck coefficient on six samples of bulk 

single crystal p-type β-FeSi2. Among the six samples, four were grown by a CVT reaction 

using Cr as a p-type dopant while the other two were grown by a TGSG method using Ga 

or Zn as the solvent. The analysis results are summarized as follows: 
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(1) From the simultaneous fits to the σ(T), RH(T), and S(T) data of a p-type β-FeSi2 

sample reported by Udono et al. [21], the effective mass of holes at the 1st VBM has been 

estimated to be mv1 = 0.9 ± 0.2 m0.  

(2) Simultaneous fits to the σ(T) and RH(T) data on all the four samples reported by 

Brehme et al. [15–17] and Udono et al. [20] have been well performed with common 

values of mv1 = 0.9 m0 and mv2 = 1.9 m0.  

(3) It has been shown that the free-hole mobility in the low-mobility samples is 

limited by inhomogeneity while the temperature dependence of the free-hole mobility in 

the high-mobility samples is well described by considering ionized-impurity scattering, 

acoustic-phonon scattering, polar-optical-phonon scattering, and nonpolar-optical-

phonon scattering. 

(4) It has been shown that contributions to σ, RH, and S from holes in the v2 band are 

significant at higher temperatures than 200 K. The separation between the 1st and the 2nd 

VBM has been estimated to be in the range of ∆Ev2 = 15-35 meV.   

(5) By including the temperature dependence of the Hall factor for impurity hopping 

conduction, impurity concentrations have been significantly corrected from those 

previously estimated in a simple two-band model.  

(6) Through the simultaneous fits to the σ(T) and S(T) data on a p-type β-FeSi2 sample 

in the wide temperature range of 4.2-1070 K reported by Heinrich et al. [7], the effective 

mass of electrons at the 1st CBM has been estimated to be mc1 = 1.3 m0 while that at the 

2nd CBM has been estimated to be larger than 100 m0. The indirect gap at 0 K between 

the 1st VBM at the Y point and the 1st CBM at the Λ∗ point was estimated to be Eg(0) = 

0.84-0.9 eV through the fits to the data at high temperatures reported by Udono et al. [20] 

and Heinrich et al. [7] The strong temperature dependence of the Seebeck coefficient 

below 150 K has been reproduced by including the effect of the impurity band conduction 

without the phonon-drag effect.  

In conclusion, the more reliable interpretation has been presented for the published 

data of σ(T), RH(T), and S(T) on the samples of p-type doped bulk single crystal  β-FeSi2 

through the reassessment on the basis of the multi-band model. In particular, the effects 

of the impurity band, the 2nd VBM, and the 2nd CBM have been clarified.  
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Appendix A: Formulae for calculating relaxation times 

The relaxation times, τac,  τnpo, and τsc  due to acoustic-phonon scattering, nonpolar-

optical-phonon scattering, and space-charge scattering can be calculated respectively 

according to expressions: 
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where ρ is the mass density, Eac is the acoustic-phonon deformation potential constant, 

and Enpo is the nonpolar-optical-phonon deformation potential constant. The 2nd term in 

the square bracket of Eq. (A2) is present only if E > kBθD.  

The relaxation times τii due to ionized-impurity scattering can be calculated as 
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where Nii = −
1AN  + −

2AN  + ND is the concentration of ionized impurities. The screening 

function Bii(ζs) is defined as 
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The screening length λs can be written as 
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The relaxation time τpo due to polar-optical-phonon scattering can be calculated as  
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and αF is the dimensionless Fröhlich coupling constant defined as 
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αF is calculated to be 0.3 for holes in the v1 band using the values in Table 1 with mv1 = 

0.9 m0. Kakemoto et al. [73] calculated it to be 0.92 using different values of the 

parameters. Although the value of αF = 0.3 is less than 1/3 of that calculated by Kakemoto 

et al., it is still much larger than those for III-V compound semiconductors, which are 

within the range of 0.023 - 0.126, while it is comparable with that for ZnSe, one of II-VI 

compound semiconductors, which has been estimated to be αF = 0.575 [74]. 

Appendix B: Estimation of the electron effective mass from the conductivity and 

the Seebeck coefficient in the intrinsic region of a p-type sample with a known hole 

effective mass 

In order to simplify the problem, let us consider here only one conduction band with 

an effective mass mc and one valence band with an effective mass mv. Then, the total 

Seebeck coefficient in the intrinsic region can be expressed as S = (σc/σ)Sc + (σv/σ)Sv. 

The Seebeck coefficient can be expressed as Sc = −(kB/e)(r + 2 − η) and Sv = (kB/e)(r + 

2 − η) for free electrons in the conduction band and for free holes in the valence band, 

respectively [75].  

Furthermore, let us consider only acoustic phonon scattering as the scattering 

mechanism in the intrinsic region. For acoustic phonon scattering, r = 0. Therefore, the 

total Seebeck coefficient in the intrinsic region can be rewritten as S = 

(kB/e)(2 − η)(σv −σc)/σ. This relation together with σ = σc + σv yields S = 

(kB/e)(2 − η)(2σv/σ −1).  

One can therefore estimate η as η = 2 − S(e/kB)(2σv/σ −1)−1 using the calculated 

value of σv together with the measured values of σ and S. Once η has been estimated, one 

can estimate the mass ratio mc/mv using the relation of η = Eg/(2kBT) − (3/4)ln(mc/mv) 

with assuming a value for Eg. The value of Eg can easily be determined from the 

activation energy of σ. Therefore, one can estimate the value of mc from the measured 

values of σ and S in the intrinsic region without the measured value of RH if the values of 
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σv and mv have been estimated in advance. σv can be calculated using the relaxation time 

τac which is calculated by Eq. (A1) with the values of mv, Eac, and vl.  
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Table 1  

Material parameters.  

Parameter Present study Arushanov et al. [68] 

Mass density ρ (g/cm3) 4.93 4.93  

Static dielectric constant εs 29.9ε0 [50] 61.6ε0 

High-frequency dielectric constant ε∞ 18.7ε0 [51]  12ε0 

Longitudinal sound velocity vl (105 cm/s) 8.369 [52] 4.994 

Debye temperature θD (K) 630 [53] 640 
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Table 2  

Values of parameters related to impurities. Values estimated for #10, N4d, and #Zn10-2 

in Refs. [68], [67], and [20], respectively, are shown in parentheses.  

Sample #Ga-2 Cr 0.5% #10 N4d To7 #Zn10-2 

Dopant or sol-

vent 

Ga Cr Cr Cr Cr Zn 

NA1 − ND  

(1018 cm-3) 

60 1.8 0.05 

(0.002) 

0.3 

(0.002) 

1.0 0.08 

NA1 (1018 cm-3) 70 2.9 0.09 

(0.01) 

1.2 

(0.142) 

3.6 1.05 

ND (1018 cm-3) 10 1.1 0.04 

(0.008) 

0.9 

(0.14) 

2.6 0.97 

K = ND/NA1  0.14 0.38 0.44 

(0.8) 

0.75 

(0.99) 

0.72 0.92 

NA2 (1018 cm-3)  8 100 

(130) 

150 

(290) 

80 0.7 

(1.2) 

NNAcr  

(1018 cm-3) 
90      

EA1 (meV) 8.5 72 35 

(30) 

48 

(0) 

54 54 

EA2 (meV)  85 84 

(85) 

116 

(144) 

100 123 

(123) 

µ0ES (cm2/Vs) 0.08 0.6 18 1.4 0.19 1.0 

TES (K) 60 200 70 35 90 100 

νES 0.8  0.8 0.92 1.1 -1 

A0HES 270  5.5 140 300 1 

µ03 (cm2/Vs)    0.7 0.08 1 

E3 (meV)    24 22 17 

IH3 (meV)    0.04 0.02 1.0 

NSCσSC  
(105 cm-1) 

23 4 0.1 0.1 50 8 
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Table 3  

Values of parameters related to the 1st VBM. 

Sample #Ga-2 Cr 0.5% #10 N4d To7 #Zn10-2 

mv1/m0 0.9 0.9 0.9 

(1.0) 

0.9 

(1.0) 

0.9 0.9 

(1.0) 

Eac (eV) 22 22 22 

(8) 

22 

(8) 

22 22 

Enpo (eV) 60 60 60 

(16) 

60 

(16) 

60 25 

 

Table 4 

Values of parameters related to the 2nd VBM.  

Sample #Ga-2 Cr 0.5% #10 N4d To7 #Zn10-2 

mv2/m0 1.9 1.9 1.9 1.9 1.9 1.9 

∆Ev2 (meV) 23 35 20 25 15 15 

Eac (eV) 2 2 2 2 2 2 

Enpo (eV) 15 25 25 25 50 15 
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Table 5 

Values of parameters related to the 1st CBM.   

Sample Cr 0.5% #Zn10-2 

mc1/m0 1.3 1.3 

Eg(0) (eV) 0.9 0.84 
)1(c

acE (eV) 1.8 13 

 

Table 6 

Values of parameters related to the 2nd CBM.   

Sample Cr 0.5% #Zn10-2 

mc2/m0 240 120 

∆Ec2(0) (meV) 20 20 
)2(c

acE (eV) 1 1 
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Figure captions 

Fig. 1. Sketch map of the band diagram of β-FeSi2 assumed for the present analysis. 

Fig. 2. Comparison of the simulated curves (solid lines) for the temperature dependence 

of (a) the electrical conductivity σ, (b) the Hall mobility µH, (c) the Hall coefficient RH, 

and (d) the Seebeck coefficient S with the experimental data (open circles) for #Ga-2 of 

Ref. [21]. The calculated results of the contributions from the impurity band (ib), the fist 

VBM (v1), and the 2nd VBM (v2) are also plotted by yellow, green, and red lines, respec-

tively.   

Fig. 3. Comparison of the simulated curves (solid lines) for the temperature dependence 

of (a) the electrical conductivity σ and (b) the Seebeck coefficient S with the experimental 

data (open circles) for the sample of Ref. [18]. The inset in (a) shows the expanded plot 

for the high temperature region. The calculated results of the contributions from carriers 

in the impurity band (ib), the fist VBM (v1), and the 2nd VBM (v2) are also plotted by 

solid lines of yellow, green, and red, respectively, while those from electrons in the 1st 

CBM (c1) and the 2nd CBM (c2) are plotted by dotted lines of green and red, respectively. 

Fig. 4. Comparison of the simulated curves (solid lines) for the temperature dependence 

of (a) the electrical conductivity σ, (b) the Hall mobility µH, and (c) the Hall coefficient 

RH with the experimental data (closed circles) for #10 of Ref. [17]. The calculated results 

of the contributions from the respective bands are also plotted by solid lines. The dotted 

curves of green and yellow in (c) represents the calculated results of AHv1 and AHES, 

respectively. A broken curve in (b) shows the calculated results of µc1 by Arushanov et 

al. 

Fig. 5. The same as Fig. 4 but for N4d of Ref. [16]. The dotted curves of green, violet, 

and yellow in (c) represents the calculated results of AHv1, AHNNH, and AHES, respectively. 

Fig. 6. The same as Fig. 5 but for To7 of Ref. [15]. 

Fig. 7. Comparison of the simulated curves (solid lines) for the temperature dependence 

of (a) the electrical conductivity σ, (b) the Hall mobility µH, and (c) the Hall coefficient 

HR  and the Hall factor with the experimental data (crosses) for #Zn10-2 of Ref. [20]. 

The calculated results of the contributions from ES VRH, NNH, the fist VBM (v1), and 

the 2nd VBM (v2) are also plotted by solid lines of yellow, violet, green, and red, 

respectively, while those from electrons in the 1st CBM (c1) and the 2nd CBM (c2) are 
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plotted by broken lines of green and red, respectively. The inset in (a) shows the expanded 

plot for the high temperature region. Open circles in (c) represent the calculated results 

of 1/(e pex) by Udono and Kikuma [20]. 
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