

Title

New Chitosan-Degrading Strains That Produce Chitosanases Similar to ChoA of Mitsuaria chitosanitabida

Author(s)

ChoongSoo Yun, Daiki Amakata, Yasuhiro Matsuo, Hideyuki Matsuda, Makoto Kawamukai

Journal Applied and Environmental Microbiology Sep 2005, 71 (9) 5138-5144

Published September 8, 2005

URL https://doi.org/10.1128/AEM.71.9.5138-5144.2005

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

1	New chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria
2	chitosanitabida
3	
4	ChoongSoo YUN, Daiki AMAKATA, Yasuhiro MATSUO, Hideyuki MATSUDA, and Makoto
5	KAWAMUKAI*
6	Department of life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane
7	University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
8	E-mail: kawamuka@life,shimane-u.ac.jp
9	Tel: +81-852-32-6587
10	Fax: +81-852-32-6092
11	
12	
13	
14	* Corresponding author
15	
16	
17	
18	
19	
20	

1 Abstract

2 The beta-Proteobacterium Mitsuaria chitosanitabida (formerly Matsuebacter chitosanotabidus) 3 3001 produces a chitosanase (ChoA) that is classified into glycosyl hydrolase family 80. While many chitosanase genes have been isolated from various bacteria to date, they show limited homology to 4 5 the M. chitosanitabida 3001 chitosanase gene (choA). To investigate the phylogenetic distribution of 6 chitosanases analogous to ChoA in nature, we identified 67 chitosan-degrading strains by screening and investigated their physiological and biological characteristics. We then searched for similarities to 7 8 ChoA by Western blotting and Southern hybridization and selected 11 strains whose chitosanases 9 showed the most similarity to ChoA. PCR amplification and sequencing of the chitosanase genes 10 from these strains revealed high deduced amino acid sequence similarities to ChoA ranging from 11 77% to 99%. Analysis of the 16S rDNA sequences of the 11 selected strains indicated that they are 12 widely distributed in the β - and γ - subclasses of *Proteobacterium* and the *Flavobacterium* group. 13 These observations suggest that the ChoA-like chitosanases that belong to Family 80 occur widely in a broad variety of bacteria. 14 15 16 17

18

19

1 Introduction

Chitosan, a linear polymer composed of β-1, 4-linked glucosamine (GlcN) residues with various
numbers of *N*-acetylated residues, is a deacetylated derivative of chitin. The chitooligosaccharides
produced by the enzymatic hydrolysis of chitosan are widely used in the food, agricultural and
pharmaceutical fields because of their various physiological activities.

6 Chitosanases (EC 3.2.1.132) are glycosyl hydrolases that catalyze the hydrolysis of the β -1,4-7 glycosidic linkage of chitosan and thereby produce glucosamine oligosaccharides. To date, many 8 chitosanases have been found in a variety of microorganisms, including bacteria (11, 18, 26, 29, 30, 9 42, 43, 44, 48), fungi (6, 8, 9, 10, 17, 38, 50), plants (27), and viruses (40). The chitosanases that have 10 been sequenced so far have been classified into four different families in the classification system of glycosyl hydrolases, namely, Family 8, 46, 75, and 80, (12, 13, 14). This classification of the 11 chitosanases is based on the amino acid sequence similarity of their catalytic domains. Family 8 12 13 includes five chitosanases from bacterial organisms along with cellulase, licheninase, and endo-1,4-ßxylanase (16, 24, 45). Family 46 includes 18 chitosanases, 16 from bacterial organisms and two from 14 15 Chlorella viruses (2, 3, 21, 22, 33, 36, 40, 46, 47). The three-dimensional structures of the Family 46 16 chitosanases from Streptomyces sp. N174 (20) and Bacillus circulans MH-K1 (31) and the Family 8 17 chitosanase from *Bacillus* sp. K17 (1) have been determined. The catalytic residues of the Family 8 18 and 46 chitosanases are reported to be glutamic acid (Glu) and aspartic acid (Asp) (4). Family 75 19 includes 17 chitosanases, 14 and three of which are from fungi and bacteria, respectively (37, 49). 20 Prior to this study, only two bacterial chitosanases have been classified into Family 80

1	(http://afmb.cnrs-mrs.fr/CAZY/). These show no significant nucleotide or amino acid sequence
2	homology with the chitosanases in other families. We previously reported our identification of the
3	chitosanase gene (choA) from Mitsuaria chitosanitabida (formerly Matsuebacter chitosanotabidus),
4	which was then classified into Family 80 (23, 28). Furthermore, we recently reported that Glu-121
5	and Glu-141 are the catalytically important residues of ChoA (35). We have also succeeded in
6	functionally expressing chitosanase in the yeast Schizosaccharomyces pombe (34).
7	In the study reported here, we identified other chitosanases that can be classified into Family 80
8	and investigated their phylogenetic distribution to determine how commonly this type of chitosanase
9	occurs in nature.
10	
11	Materials and Methods
12	Materials - Restriction enzymes were purchased from TaKaRa Biomedicals (Kyoto, Japan) and
13	New England Biolabs. Chitosan was obtained from San-in Kensetsu (Shimane, Japan). Ampicillin
14	and 2-mercaptoethanol were purchased from Wako Pure Chemical Industries (Osaka, Japan). All
15	other reagents were of analytical grade quality.
15 16	other reagents were of analytical grade quality. Strains, plasmid, media, and culture conditions – <i>M. chitosanitabida</i> 3001 and 67 other strains
15 16 17	other reagents were of analytical grade quality. Strains, plasmid, media, and culture conditions – <i>M. chitosanitabida</i> 3001 and 67 other strains (Nos. 1-67), which were isolated from many different places in Japan, were used in this study. All
15 16 17 18	other reagents were of analytical grade quality. Strains, plasmid, media, and culture conditions – <i>M. chitosanitabida</i> 3001 and 67 other strains (Nos. 1-67), which were isolated from many different places in Japan, were used in this study. All were grown at 30°C with shaking in chitosan medium containing 0.5% colloidal chitosan, 0.2%
15 16 17 18 19	other reagents were of analytical grade quality. Strains, plasmid, media, and culture conditions – <i>M. chitosanitabida</i> 3001 and 67 other strains (Nos. 1-67), which were isolated from many different places in Japan, were used in this study. All were grown at 30°C with shaking in chitosan medium containing 0.5% colloidal chitosan, 0.2% K ₂ HPO ₄ , 0.1% KH ₂ PO ₄ , 0.07% MgSO ₄ , 0.05% NaCl, 0.05% KCl, 0.01% CaCl ₂ , and 0.05% yeast

into the cloning host *Escherichia coli* DH5 α. All *E. coli* strains were grown at 37°C on LB medium
 containing appropriate antibiotics for the selection of the transformants.

Screening of chitosan-degrading bacteria from nature - Samples collected from soil or water at various locations in Japan were suspended in 5ml of distilled water and particles were eliminated by stationary. The diluted supernatants were cultured in phosphate buffer with chitosan for 3 days, then plated on a chitosan plate containing 0.5% colloidal chitosan, 0.2% K₂HPO₄, 0.1% KH₂PO₄, 0.07% MgSO₄, 0.05% NaCl, 0.05% KCl, 0.01% CaCl₂, 0.05% yeast extract and 1.5% agar (pH 6.0) and incubated at 30°C to screen for chitosan-degrading bacteria, which were detected by their clear zoneforming ability.

10 Physiological characteristics - Gram-staining was performed by using the Gram-colour kit from 11 Merck. pH and temperature tolerance were determined using LB medium. Growth at various pH 12 values ranging from 3 to 9 and various temperatures ranging from 20 to 60°C was observed 13 spectroscopically (OD_{600}) over a period of 3d. Urease activity, reduction of nitrate, indole production 14 from tryptophan and H₂S production from cysteine were determined according to Smibert and Krieg 15 (39). Other physiological and biochemical tests were performed as described by Cowan and Steel (7). 16 Analysis of isoprenoid quinones - Quinone was extracted by using previously described methods 17 (25). The extracted crude quinone was analyzed by normal phase thin-layer chromatography using 18 ubiquinone 10 as a standard. Normal phase thin-layer chromatography was carried out on a Kiesel gel 19 60 F254 plate (Merck) with benzene-acetone (93:7, v/v). The UV-visualized band containing quinone 20 was collected from the thin-layer chromatography plate and extracted with chloroform-methanol (1:1. v/v). The samples were then dried and the precipitate was dissolved in ethanol. The purified quinone
was further analyzed by HPLC using ethanol as the solvent phase (15).

3 Western blot analysis for the detection of chitosanase - Western blot analysis was undertaken to determine the cross-reactivity of various chitosanases with a ChoA-specific antibody (28). Cell 4 extracts were subjected to SDS-PAGE on a 12.5% acrylamide gel performed as described by 5 6 Laemmli (19) and the proteins were then transferred electrophoretically onto a PVDF membrane (Immobilon-PSQ; pore size, 0.45µm. IPVH 304FO, Millipore). To immunolabel the chitosanases, 7 8 the nitrocellulose membrane was incubated at room temperature with shaking in TBS-M buffer 9 (20mM Tris-HCl, 0.137M NaCl, 0.1M HCl, 0.25% Tween-20, and 5% dried milk) for at least 1 hr. 10 Afterwards, the membrane was rinsed several times in TBS buffer, then incubated for 1hr with the affinity-purified rabbit antiserum against ChoA. After several rinses in TBS buffer, the membrane 11 was incubated with a horseradish peroxidase-conjugated secondary antibody and the membrane-12 bound immunocomplexes were detected with an ELCTM system as recommended by the 13 manufacturer (Amersham Pharmacia Biotech). The rabbit antibody specific for the chitosanases was 14 15 custom-made by TaKaRa Biomedicals.

Southern hybridization analysis – The total genomic DNAs of various chitosan-degrading bacteria were extracted by the CTAB method as described by Sambrook et al. (32) and digested with the *Bam*HI restriction enzyme. The digested DNAs were then fractionated on a 0.7% agarose gel, denatured and neutralized, and then transferred onto a nylon membrane (Hybond-N, Amersham) by the capillary method. The Southern blot membranes were hybridized at 42°C for 10h with the *choA* probe in buffer containing 15ml of Gold hybridization buffer, 0.07% NaCl, and 0.1% blocking agent. The membranes were then washed twice at 42°C with 20xSSC containing 0.4% SDS and 6M Urea for 20 min and twice for 20 min at room temperature with 20xSSC containing 150mmol disodium citrate and 15mmol sodium chloride. The labelled bands were visualized by using the ELC[™] system according to the manufacturer`s recommendations (Amersham Pharmacia Biotech).

6 PCR amplification of chitosanase genes - PCR amplification was performed by using a DNA 7 Thermal Cycler (Perkin-Elmer/Cetus) and the three forward primers 5`-8 GGAACCTCTCCTACATTC-3` (cho420-), 5`-CTGGTSACSGCSACCAAG -3` (cho748-), and 5`-9 ACGGTCAATCAATGGCAG-3` (cho844-) 5`and two primers reverse CATGTTCTTSGACCACTT-3` (cho-1692), and 5`-CGCGGGTCGATGGCA-3` (cho-1773), which 10 11 were designed based on the nucleotide sequence of the *choA* gene from *M. chitosanitabida* 3001. The 12 cho748- and cho-1692 primers have a mixed base C+G (S). PCR amplification was performed with 0.5µg genomic DNA in 50µl reaction buffer supplemented with final concentrations of 1.5mM 13 MgCl₂, 50μ M of each dNTP, 0.1μ g of each synthesized primers and 2.5 units of Ex-Taq DNA 14 polymerase (TaKaRa). The cycle program was as follows: 1 min at 94~96°C, 2 min at 45~58°C, and 15 3 min at 72°C (25 cycles). 16

PCR amplification of the 16S rDNA gene - Genomic DNA was extracted from selected chitosan-degrading bacterial strains and the 16S rDNA-coding region was PCR-amplified using the two oligonucleotide primers 5⁻ ATCTGGTTGATCCTGCCAGT-3⁻ (positions 2 to 21 relative to *E. coli* 16S rRNA) and 5⁻-GGCTACCTTGTTACGACTT-3⁻ (positions 1510 to 1492 relative to *E. coli* 1 16S rRNA). The PCR program consisted of an initial denaturation step of 1 min at 95°C followed by 35 cycles of 94°C for 1 min, 48°C for 2 min, and 72°C for 3 min. The PCR products of the expected 2 size were purified using a PCR product purification kit, then cloned into the pT7 blue plasmid vector 3 and sequenced using the primers 5°-CCAGCAGCCGCGGTAATAC-3° (corresponding to the 4 Е. 5 complementary nucleotide sequence 518-536 of coli 16S rRNA) 5`and 6 AAACTCAAAGGAATTGACGG-3` (corresponding to the complementary nucleotide sequence 7 907-926 of E. coli 16S rRNA). Computer-assisted analysis and comparison of DNA sequence were 8 performed using the BLAST program in the NCBI network service.

9 Phylogenetic analysis - 16S rDNA sequences determined in this study were compared with 16S
rDNA sequences of their related bacteria obtained from the GenBank using the neighbour-joining
method with the CLUSTAL W program on the web (http://www.ddbj.nig.ac.jp/search/clustalw-j.html).
12 The phylogenetic tree was drawn by the program Tree View.

Nucleotide sequencing - The chitosanase gene fragments in the recombinant pT7 blue plasmid were used for sequencing. Sequencing was carried out using the dideoxy-nucleotide chain termination method by using an ABI PrismTM 377 DNA sequencer (Perkin Elmer). Computer analysis of the nucleotide and deduced amino acid sequences using *choA* sequences was performed by employing DNASIS (Hitachi Software Engineering Co. Ltd., Yokohama).

Nucleotide sequence accession numbers - The nucleotide sequences of every 16S rDNA and partial chitosanase gene reported in this article have been assigned to Genebank. The accession numbers of the sequences are as follows: *Chryseobacterium* sp. 2, AB024308; *Herbaspellium* sp. 9,

1	AB024305; Mitsuaria sp. 12, AY856841; Mitsuaria sp. 13, AB024306; Stenotrophomonas sp. 22,
2	AY856842; Herbaspellium sp. 27, AY856843; Pseudomonas sp. 38, AY856844; Stenotrophomonas
3	sp. 45, AY856845; Comamonas sp. 46, AY856846; Spingobacterium sp. 62, AY856847; Mitsuaria
4	sp. 67, AY856848 (16S rDNA sequences), Chryseobacterium sp. 2 AY856849; Herbaspellium sp. 9
5	AY856850; Mitsuaria sp. 12 AY856851; Mitsuaria sp. 13 AY856852; Stenotrophomonas sp. 22
6	AY856853; Herbaspellium sp. 27 AY856854; Pseudomonas sp. 38 AY856855; Stenotrophomonas
7	sp. 45 AY856856; Comamonas sp. 46 AY856857; Spingobacterium sp. 62 AY856858; Mitsuaria sp.
8	67 AY856859 (partial chitosanase gene sequences).

10 **Results**

11 Physiological and biological characteristics of chitosan-degrading bacteria - To identify 12 additional chitosan-degrading bacteria, we screened two hundreds of samples (120 samples of the soil, 13 60 samples of the fresh water and 20 samples of the sea water) collected from in many places of Japan by culturing them on chitosan-containing plates and searching for clear zones generated around 14 15 the bacterial colonies (see Material and Methods). This yielded 67 bacterial strains (38 from soil, 22 16 from fresh water and 7 from sea water) numbered No. 1 to No. 67, which were then tested for their 17 physiological and biological properties, which are summarized in Table 1. All isolates were Gramnegative, most of which had similar physiological and biological properties to M. chitosanitabida 18 3001, but some are different, especially strain 2 and 46 produce menaquinone instead of ubiquinone. 19 20 Combined with later analysis of 16S rDNA sequence (seee Fig. 3), we propose some strains belong to

1 in the β - and γ - subclasses of *Proteobacterium* and the *Flavobacterium* group.

2	Western blot analysis - To determine the similarities the chitosanases of the new chitosan-
3	degrading bacterial strains share with ChoA of M. chitosanitabida 3001, the isolates were subjected to
4	Western blot analysis using a ChoA-specific antibody. Eleven isolates (Nos. 2, 9, 12, 13, 22, 27, 38,
5	45, 46, 62, 67) showed the same band pattern as ChoA from M. chitosanitabida 3001, namely, a 34
6	and a 42k band (Fig. 1A). The others showed four different band patterns, as summarized in Table 2.
7	These results suggest that the 11 isolates that showed the same signal pattern as M. chitosanitabida
8	3001 may produce chitosanases that are similar to ChoA.
9	Southern hybridization analysis - To determine whether these 11 isolates have chitosanase genes
10	that are similar to the choA gene from M. chitosanitabida 3001, Southern hybridization analysis using
11	the choA gene as a probe was carried out. The probe used in this experiment contained the whole
12	ORF region of choA. The detected signal patterns are shown in Figure 1B. Of the 11 isolates, only
13	Nos. 9, 12, 46, and 67 had similar signal patterns to that of <i>M. chitosanitabida</i> 3001. Nos. 2, 22, 38,
14	and 45 isolates showed similar signal patterns among themselves, while Nos. 13 and 62 yielded very
15	different signals. No. 27 did not give any signals. These observations suggest that at least four of the
16	isolates that have an anti-ChoA antibody-reactive chitosanase have a chitosanase gene that is also
17	similar to choA.
18	Chitosanase sequence - We amplified the chitosanase genes from all 11 isolates using five
19	primers (three forward and two reverse) designed on the basis of the choA sequence. This generated

20 six forward:reverse primer sets. Varied denaturation and annealing temperatures were employed with

1	these primer sets. DNA fragments approximately 1.4kb in size were successfully amplified from
2	isolates Nos. 2 and 67. A DNA fragment of about 0.85kb was amplified from the other isolates. These
3	fragments were purified, ligated with the pT7 blue vector and their nucleotide sequences were
4	determined. When the deduced amino acid sequences were aligned with the ChoA sequence (Fig.2),
5	all the sequenced fragments showed high (over 95%) identity to ChoA, except for No. 27, which had
6	77% identity at the amino acid level, the one we could not detect by Southern blot analysis (Fig.1B).
7	16S rDNA sequence analysis - To determine the phylogenetic relationships between the 11
8	selected chitosan-degrading bacterial strains and M. chitosanitabida 3001, we determined the almost
9	complete 16S rDNA sequences of these strains and subjected them to BLAST searching
10	(http://www.ncbi.nlm.nih.gov/BLAST/). This revealed that strains Nos. 12, 13, and 67 appear to
11	belong to the Mitsuaria sp., as their levels of 16S rDNA homology with Mitsuaria chitosanitabida
12	3001 16S rDNA were 99.4%, 98.4%, and 99.6%, respectively. No. 2 appears to belong to the
13	Chryseobacterium sp., as its 16S rDNA homology to the 16S rDNA of Chryseobacterium
14	taichungense was 97.3%. Moreover, Nos. 9 and 27 may be Herbaspellium sp., given their 96.7%,
15	and 96.2% levels of homology with the 16S rDNA of Herbaspirillum frisingense, respectively, while
16	Nos. 22 and 45 may be Stenotrophomonas sp. (98.0%, and 97.3% homology with Stenotrophomonas
17	maltophilia 16S rDNA, respectively). No. 38 may be a Pseudomonas sp. (96.7% homology with
18	Pseudomonas tolaasii), No.46 may be a Comamonas sp. (97.4% homology with Comamonas
19	testosteroni), while No. 62 may be a Spingobacterium sp. (97.0% homology with Sphingobacterium
20	multivorum). A phylogenetic analysis of all 11 selected isolates and their related bacteria was carried

out based on their 16S rDNA sequences (Fig. 3).

2

3 Discussion

The chitosanases that have been sequenced to date are classified into four different families in the 4 classification system of the glycosyl hydrolases, namely, Family 8, 46, 75, and 80 (12, 13, 14). 5 6 Recently, the chitosanse from *Streptomyces griseus* HUT 6037 was found to fall into a new glycosyl hydrolase family, namely, Family 5 (41). Prior to this study, Family 80 contains only two chitosanases, 7 8 those from M. chitosanitabida 3001 (28) and Sphingobacterium multivorum (23). In this study, we 9 searched for additional bacteria that produce chitosanases resembling the Family 80-type ChoA of M. 10 chitosanitabida 3001. Almost all isolates have ubiquinone-8, which is the major quinone compound 11 of members of the B-subclass of the Proteobacteria (5), but isolates Nos. 2 and 62 have 12 menaquinone-6 and -7, respectively. Menaquinone is known to be the major quinone component of 13 the Flavobacterium group. This is supported by 16S rDNA analysis of these isolates, which shows that No. 2 belongs to the Chryseobacterium sp. while No. 62 belongs to the Spingobacterium sp.. 14 15 Western blot analysis with a ChoA-specific antibody revealed the intracellular chitosanase of M. 16 chitosanitabida 3001 exhibited two bands, namely, a 34 and a 42k band. The 42k band is ChoA 17 attached to its signal polypeptide, while the 34k band is the mature form of excreted. Eleven of the 67 18 isolates showed an identical signal pattern that suggests they produce chitosanases similar to ChoA 19 and that bear similarly sized signal polypeptides.

20

Southern hybridization analysis using choA as the probe revealed that of the 11 isolates identified

1 by Western blot analysis, isolates Nos. 9, 12, 46, and 67 showed the same signal as M. chitosanitabida 3001. Apart from No. 27, which did not give a signal at all, the remaining isolates 2 3 showed differently sized signals. Thus, it appears that the chitosanase gene from No. 27 may have low homology to choA compared to the others. This is supported by the deduced amino acid 4 sequence of the No. 27 chitosanase, which showed only 77% homology to ChoA while the 5 6 chitosanases of the other ten isolates showed over 95% identity with ChoA. Alignment of the 7 deduced amino acid sequences with that of choA revealed the two glutamic acid residues (Glu-121 8 and Glu-141) reported to be putative catalytic residues for M. chitosanitabida 3001 ChoA (35) are 9 conserved in all the sequenced chitosanases. Moreover, all six cysteine residues, and the Arg-150 and 10 Asp-164 residues that are important for the catalytic activity of ChoA are all conserved (35). Phylogenetic analysis using the 16S rDNA sequences of the 11 selected isolates then showed that 11 choA-like genes are widely distributed in the β - and γ - subclasses of Proteobacterium and the 12 13 Flavobacterium group in nature.

In conclusion, we characterized 11 newly isolated strains that possess a Family 80-type chitosanase, which reveals these chitosanases are widely distributed in the β - and γ - subclasses of *Proteobacterium* and the *Flavobacterium* group in nature. This wide distribution suggests that Family 80 chitosanases occur commonly in nature.

18 Acknowledgments

This work is supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Scienceand Technology of Japan.

1 References

2	1. Adachi, W., Sakihama, Y., Shimizu, S., Sunami, T., Fukazawa, T., Suzuki, M., Yatsunami R.,
3	Nakamura, S., and Takenaka, A. 2004. Crystal Structure of Family GH-8 Chitosanase with
4	Subclass II Specificity from Bacillus sp. K17. J. Mol. Biol. 343:785-795.
5	2. Akiyama, K., Fujita, T., Kuroshima, K., Sakane, T., Yokota, A., and Takata, R. 1999.
6	Purification and gene cloning of a chitosanase from Bacillus ehimensis EAG1. J. Biosci. Bioeng.
7	87 :383-385.
8	3. Ando, A., Noguchi, K., Yanagi, M., Shinoyama, H., Kagawa, Y., Hirata, H., Yabuki, M., and
9	Fujii, T. 1992. Primary structure of chitosanase produced by Bacillus circulans MH-K1. J. Gen. Appl.
10	Microbiol. 38 :135-144.
11	4. Boucher, I., Fukamizo, T., Honda, Y., Wilick, G. E., Neugebauer, W. A., and Brzezinski, R.
12	1995. Site-directed mutagenesis of evolutionary conserved carboxylic amino acids in the chitosanase
13	from Streptomyces sp. N174 reveals two residues essential for catalysis. J. Biol. Chem. 270:31077-
14	31082.
15	5. Busse, H. J., T. El-Banna, H. Oyaizu, and G. Auling. 1992. Identification of xenobiotic-
16	degrading isolates from the beta subclass of the Proteobacteria by a polyphasic approach including
17	16S rRNA partial sequencing. Int. J. Syst. Bacteriol. 42:19-26.
18	6. Cheng, C. Y., and Li, Y. K. 2000. An Aspergillus chitosanase with potential for large-scale
19	preparation of chitosan oligosaccharides. Biotechnol. Appl. Biochem. 32:197-203.
20	7. Cowan, S. T. and Steel, K. J. 1965. Manual for the Identification of Medical Bacteria. London:

- 1 Cambridge University Press.
- 2 8. Eom, T. K., and Lee, K. M. 2003. Characteristics of Chitosanases from Aspergillus fumigatus
- 3 KB-1. Arch. Pharm. Res. 26:1036-1041.
- 4 9. Fenton, D. M., and Eveleigh, D. E. 1981. Purification and mode of action of a chitosanase from
- 5 Penicillium islandium. J. Gene. Microbiol. 126:151-165.
- 6 10. Grenier, J., Benhamou, N., and Asselin, A. 1991. Colloidal gold-complexed chitosanase: a new
- 7 probe for ultrastructural localization of chitosan in fungi. J. Gen. Microbiol. 137:2007-2015.
- 8 11. Hedges, A., and Wolfe, R. S. 1974. Extracellular enzyme from *Myxobacter* AL-1 that exhibits
- 9 both β-1,4-glucanase and chitosanase activities. *J. Bacteriol.* **120**:844-853.
- 10 12. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence
- 11 similarities. *Biochem. J.* **280**:309-316.
- 12 13. Henrissat, B., and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases
- 13 based on amino acid sequence similarities. *Biochem. J.* **293**:781-788.
- 14 14. Henrissat, B., and Bairoch, A. 1966. Updating the sequence-based classification of glycosyl
- 15 hydrolases. Biochem. J. 316: 695-696.
- 16 15. Kainou, T., Okada, K., Suzuki, K., Nakagawa, T., Matsuda, H., and Kawamukai, M. 2001.
- 17 Dimer formation of octaprenyl-diphosphate synthase (IspB) is essential for chain length 18 determination of ubiquinone. *J. Biol. Chem.* **276**:7876-7883.
- 19 16. Kimoto, H., Kusaoke, H., Yamamoto, I., Fujii, Y., Onodera, T., and Taketo, A. 2002.
- 20 Biochemical and genetic properties of *Paenibacillus* glycosyl hydrolase having chitosanase activity

- 1 and discodin domain. J. Biol. Chem. 277:14695-14702.
- 17. Kim, S. Y., Shon, D. H., and Lee, K. H. 1998. Purification and characteristics of two types of
 chitosanases from *Aspergillus fumigatus* KH-94. *J. Microbiol. Biotechnol.* 8:568-574.
- 4 18. Kurakake, M., Yo-u, S., Nakagawa, K., Sugihara, M., and Komaki, T. 2000. Properties of
- 5 chitosanase from *Bacillus cereus* S1. *Curr. Microbiol.* **40**:6-9.
- 6 19. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of
- 7 bacteriophage T4. *Nature*. **227**: 680-685.
- 8 20. Marcotte, E. M., Monzingo, A. F., Ernst, S. R., Brzezinski, R., and Robertus, J. D. 1996. X-
- 9 ray structure of an anti-fungal chitosanase from *Streptomyces* N174. *Nat. Struct. Biol.* **3**:155-162.
- 10 21. Masson, J. Y., Boucher, I., Neugebauer, W. A., Ramotar, D., and Brzezinski, R. 1995. A new
- 11 chitosanase gene from a *Nocardioides* sp. is a third member of glycosyl hydrolase family 46.
- 12 *Microbiology.* **141**:2629-2635.
- 13 22. Masson, J. Y., Denis, F., and Brzezinski, R. 1994. Primary sequence of the chitosanse from
- 14 *Streptomyces* sp. strain N174 and comparison with other endoglycosidases. *Gene.* **140**:103-107.

15 23. Matsuda, Y., Iida, Y., Shinogi, T., Kakutani, K., Nonomura, T., and Toyodai, H. 2001. In

- 16 vitro suppression of mycelial growth of Fusarium oxyspoorum by extracellular chitosanase of
- 17 Sphingobacterium multivorum and cloning of the chitosanase gene csnSM1. J. Gen. Plant Pathol.
- 18 **67**: 318-324.
- 19 24. Mitsutomi, M., Isono, M., Uchiyama, A., Nikaidou, N., Ikegami, T., and Watanabe, T. 1998.
- 20 Chitosanase activity of the enzyme previously reported as β -1,3-1,4-glucanase from *Bacillus*

1 circulans WL-12. Biosci. Biotechnol. Biochem. 62:2107-2114.

2	25. Okada, K., Kainou, T., Tanaka, K., Nakagawa, T., Matsuda, H., and Kawamukai, M. 1998.
3	Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate
4	synthase from Gluconobacter suboxydans. Eur. J. Biochem. 255:52-59.
5	26. Okajima, S., Ando, A., Shinoyama, H., and Fujii, T. 1994. Purification and characterization of
6	an extracellular chitosanase produced by Amycolatopsis sp. CsO-2. J. Ferment. Bioeng. 77:617-620.
7	27. Osswald, W. F., Shapiro, J. P., Doostdar, H., McDonald, R. E., Niedz, R. P., Nairn, C. J.,
8	Hearn, C. J., and Mayer, R. T. 1994. Identification and characterization of acidic hydrolases with
9	chitinase and chitosanase activities from sweet orange callus tissue. Plant Cell Physiol. 35:811-820.
10	28. Park, J.K., Shimono, K., Ochiai, N., Shigeru, K., Kurita, M., Ohta, Y., Tanaka, K., Matsuda,
11	H., and Kawamukai, M. 1999. Purification, characterization, and gene analysis of a chitosanase
12	(ChoA) from Matsuebacter chitosanotabidus 3001. J. Bacteriol. 181: 6642-6649.
13	29. Pelletier, A., and Sygusch, J. 1990. Purification and characterization of three chitosanase
14	activities from Bacillus megaterium P1. Appl. Environ. Microbiol. 56:844-848.
15	30. Rivas, L.A., Parro, V., Moreno-Paz, M., and Mellado, R. P. 2000. The Bacillus subtilis 168 csn
16	gene encodes a chitosanase with similar properties to a Streptomyces enzyme. Microbiology.
17	146 :2929-2936.
18	31. Saito, J., Kita, A., Higuchi, Y., Nagata, Y., Ando, A., and Miki, K. 1999. Crystal structure of
19	chitosanase from Bacillus circulans MH-K1 at 1.6-Å resolution and its substrate recognition
20	mechanism. J. Biol. Chem. 274:30818-30825.

1	32. Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual,
2	2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
3	33. Seki, K., Kuriyama, H., Okuda, T. and Uchida, Y. 1997. Molecular cloning of the gene
4	encoding chitosanase from Bacillus amyloliquefaciens UTK. Advances in Chitin Science. 2: 284-289.
5	34. Shimono, K., Matsuda, H., and Kawamukai, M. 2002. Functional expression of chitinase and
6	chitosanase, and their effects on morphologies in the yeast Schizosaccharomyces pombe. Biosic.
7	Biotech. Biochem. 66:1143-1147.
8	35. Shimono, K., Shigeru, K., Tsuchiya, A., Itou, N., Ohta, Y., Tanaka, K., Nakagawa, T.,
9	Matsuda, H., and Kawamukai, M. 2002. Two glutamic acids in chitosanase A from Matsuebacter
10	chitosanotabidus 3001 are the catalytically important residues. J. Biochem. 131:87-96.
11	36. Shimosaka, M., Fukumori, Y., Zhang, X. Y., He, N. J., Kodaira, R., and Okazaki, M. 2000.
12	Molecular cloning and characterization of a chitosanase from the chitosanolytic bacterium
13	Burkholderia gladioli strain CHB101. Appl. Microbiol. Biotechnol. 54:354-360.
14	37. Shimosaka, M., Kumehara, M., Zhang, XY., Nogawa, M., and Okazaki, M. 1996. Cloning
15	and characterization of a chitosanase gene from the plant pathogenic fungus, Fusarium solani. J.
16	Ferment. Bioeng. 82:426-431.
17	38. Shimosaka, M., Nogawa, M., Ohno, Y., and Okazaki, M. 1993. Chitosanase from the plant
18	pathogenic fungus, Fusarium solani f. sp. phaseoli -purification and some properties. Biosic. Biotech.
19	Biochem. 57 :231-235.

20 39. Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In Methods for General

1	and Molecular Bacteriology, pp. 603-711. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N.
2	R. Krieg. Washington, DC: American Society for Microbiology.
3	40. Sun, L., Adams, B., Gurnon, J. R., Ye, Y., and Etten, J. L. V. 1999. Characterization of two
4	chitinase genes and one chitosanase gene encoded by chlorella virus PBCV-1. Virology. 263:376-387.
5	41. Tanabe, T., Morinaga, K., Fukamizo, T., and Mitsumomi, M. 2003. Novel chitosanase from
6	Streptomyces griseus HUT 6037. Biosci. Biotechnol. Biochem. 67: 354-364.
7	42. Yabuki, M., Uchiyama, A., Suzuki, K., Ando, A., and Fujii, T. 1988. Purification and
8	properties of chitosanase from Bacillus circulans MH52 K1. J. Gen. Appl. Microbiol. 34:255-270.
9	43. Yamasaki, Y., Fukumoto, I., Kumagai, N., Ohta, Y., Nakagawa, T., Kawamukai, M., and
10	Matsuda, H. 1992. Continuous chitosan hydrolyzate production by immobilized chitosanolytic
11	enzyme from Enterobacter sp. G-1. Biosic. Biotech. Biochem. 56:1546-1551.
12	44. Yamasaki, Y., Hayashi, I., Ohta, Y., Nakagawa, T., Kawamukai, M., and Matsuda, H. 1993.
13	Purification and mode of action of chitosanolytic enzyme from Enterobacter sp. G-1. Biosci. Biotech.
14	Biochem. 57 :444-449.
15	45. Yatsunami, R., Sakihama, Y., Suzuki, M., Fukazawa, T.,Shimizu, S., Sunami, T. 2002. A
16	novel chitosanase from Bacillus sp. strain K17: gene cloning and expression in Escherichia coli.
17	Nucleic Acids Res. Suppl. 2: 227_228.
18	46. Yoon, H. G., Kim, H. Y., Lim, Y. H., Kim, H. K., Shin, D.H., Hong, B. S. and Cho, H. Y. 2000.
19	Thermostable chitosanase from Bacillus sp. Strain CK4: cloning and expression of the gene and
20	characterization of the enzyme. Appl. Environ. Microbiol. 66:3727-3734.

1	47. Yoon, H. G., Lee, K. H., Kim, H. Y., Kim, H. K., Shin, D. H., Hong, B. S., and Cho, H. Y.
2	2002. Gene cloning and biochemical analysis of thermostable chitosanase(TCH-2) from Bacillus
3	coagulans CK108. Biosci. Biotechnol. Biochem. 66:986-995.
4	48. You, Y.J., Jo, K.J., Jin, Y.L., Kim, K.Y., Shim, J.H., Kim, Y.W., and Park, R.D. 2003.
5	Characterization and kinetic of 45kDa chitosanase from Bacillus sp. P16. Biosci. Biotechnol.
6	Biochem. 67:1875-1882.
7	49. Zhang, X. Y., Dai, A. L., Kuroiwa, K., Kodaira, R., Nogawa, M., Shimosaka, M., and
8	Okazaki, M. 2001. Cloning and characterization of a chitosanase gene from the koji mold
9	Aspergillus oryzae strain IAM 2660. Biosci. Biotechnol. Biochem. 65: 977_981.
10	50. Zhang, X. Y., Dai, A. L., Zhang, X. K., Kuroiwa, K., Kodaira, R., Shimosaka, M., and
11	Okazaki, M. 2000. Purification and characterization of chitosanase and exo-ß-D-glucosaminidase
12	from a koji mold, Aspergillus oryzae IAM 2660. Biosci. Biotechnol. Biochem. 64:1896-1902.
13	
14	
15	
16	
17	
18	
19	
20	

1 **LEGENDS**

Fig. 1. Western blot and Southern hybridization analysis against yielded isolates. (A) Each isolate was grown in PYS medium overnight and then cultured five more days in chitosan liquid medium. The precipitate was separated from the culture medium by centrifugation and the intracellular chitosanase was detected by Western blot analysis using a ChoA-specific antibody and a horseradish peroxidase-conjugated secondary antibody. (B) Southern hybridization analysis was performed using total *Bam*HI-digested genomic DNA from each strain and the chitosanase gene (*choA*) from *M. chitosanitabida* 3001 as the probe.

9

10 Figure 2. Comparison of the partial amino acid sequences of the chitosanases from the 11 11 selected isolates, Spingobacterium multivorum and M. chitosanitabida 3001. The amino acid 12 sequences of the 11 selected isolates were deduced from the nucleotide sequences of the PCR-13 amplified DNA fragments. Bold characters indicate different amino acid residues relative to the ChoA sequence. The two putative catalytic amino acid residues of ChoA are boxed. The asterisks (*) 14 15 indicate the six cysteine residues of ChoA. The Arg-150 and Asp-164 residues, which are important 16 for the catalytic activity of ChoA, are indicated by vertical arrows. The GenBank accession numbers 17 are: (a) Mitsuaria chitosanitabida 3001, AB010493; (b) Spingobacterium multivorum, AB030253; 18 (c) Flavobacterium sp. 2 AY856849; (d) Herbaspellium sp. 9 AY856850; (e) Mitsuaria sp. 12 19 AY856851; (f) Mitsuaria sp. 13 AY856852; (g) Stenotrophomonas sp. 22 AY856853; (h) 20 Herbaspellium sp. 27 AY856854; (i) Pseudomonas sp. 38 AY856855; (j) Stenotrophomonas sp. 45 AY856856; (k) *Comamonas* sp. 46 AY856857; (l) *Spingobacterium* sp. 62 AY856858; (m) *Mitsuaria* sp. 67 AY856859.

3	Fig. 3. Phylogenetic relationship of <i>M. chitosanitabida</i> 3001 with the 11 selected isolates and
4	their related strains based on their 16S rDNA gene sequences. Bar, 1 nucleotide substitution per
5	100 nucleotides in 16S rDNA gene sequence. The numbers at the nodes of the tree indicate bootstrap
6	values (%) for each node of 1,000 bootstrap re-samplings. The sequences used for the comparison
7	with the 16S rDNA genes of the isolates were obtained from GenBank. The origins and accession
8	numbers of the sequences are as follows: Escherichia coli, J01859; Pseudomonas sp. 38, AY856844;
9	Pseudomonas tolaassi, AF255336; Xanthomonas campestris pv. camp, AF000946;
10	Stenotrophomonas sp. 45, AY856845; Stenotrophomonas maltophilia, AJ131903; Stenotrophomonas
11	sp. 22, AY856842; Chryseobacterium sp. 2, AB024308; Chryseobacterium taichungense, AJ843132;
12	Sphingobacterium multivorum, AB020205; Spingobacterium sp. 62, AY856847; Rhodocyclus tenuis,
13	D16208; Azoarcus denitrificians, L33694; Zoogloea ramigera, D14257; Alcaligenes faecalis,
14	D88008; Herbaspellium sp. 9, AB024305; Herbaspellium sp. 27, AY856843; Herbaspirillum
15	frisingense, AJ238359; Burkholderia cepacia, X87275; Spirillum volutans, M34131; Brachymonas
16	denitrificans, D14320; Comamonas testosteroni, AB064318; Comamonas sp. 46, AY856846;
17	Variovorax paradoxus, D88006; Rhodoferax fermentans, D16212; Sphaerotilus natans, Z18534;
18	Leptothrix discophora, Z18533; Ideonella dechloratans, X72724; Rubrivivax gelatinosus,
19	AB016167; Mitsuaria sp. 13, AB024306; Mitsuaria chitosanitabida 3001, AB024307; Mitsuaria sp.
20	67, AY856848; Mitsuaria sp. 12, AY856841.

	No.2	No.9	No.12	No.13	No.22	No.27	No.38	No.45.	No.46	No.62	No.67	M.c.3001
Gram staining	-	_	-	_	-	-	-	-	-	-	-	-
Nitrate reduction	-	+	+	+	+	+	+	+	+	+	+	+
Metylred & V-P test	-	-	-	-	-	-	-	-	-	-	-	-
Indole production	+	-	-	-	-	-	-	-	-	-	-	-
O-F test	n	n	n	n	n	n	ο	n	n	n	n	n
Oxidase production	+	+	+	+	+	+	-	+	+	+	+	+
Urease production	+	_	-	_	+	+	+	+	+	+	-	-
2-keto-gluconate production	+	-	-	-	-	-	-	-	-	-	-	-
3-keto lactose production	-	-	-	-	-	-	-	-	-	-	-	-
Dihydroxyacetone production	+	-	-	-	-	-	-	-	-	-	-	-
Catalase production	+	+	+	+	+	+	+	+	+	+	+	+
H_2S production	-	_	-	_	-	-	+	-	-	_	-	-
Hydrolysis of Tween20, 40, 60	+	+	+	+	+	+	+	+	-	+	+	+
Highest temperature for growth	37°C	34°C	34°C	34°C	37°C	40°C	37°C	37°C	37°C	37°C	34°C	34°C
pH for growth	5-8	6-9	5-9	5-9	5-9	5-10	5-9	4-9	4-9	5-9	5-9	5-9
Quinone type	MK-6	UQ-8	UQ-8	UQ-8	UQ-8	UQ-8	UQ-8	UQ-8	UQ-8	MK-7	UQ-8	UQ-8

Table1. Comparison of physiological and biological characteristics of 11 isolated strains

+ : positive, -: negative

n : no action on carbohydrate, o : oxidation

 Table 2. Band patterns showing the reactivity of the chitosanases from new chitosan

 degrading bacteria with an anti-ChoA antibody

Detected signal	Strains
34k, 42k	M.c. 3001, No.2, 9, 12, 13, 22, 27, 38, 45, 46, 62, 67
34k	No. 2, 4, 7, 11, 14-17, 19-21, 26, 32, 35, 39, 59, 65
42k	No. 29, 34, 37, 41-44, 47, 50-55, 58, 60, 61, 63
Signals of different size	No. 8, 23-25, 28, 30, 31, 40, 56, 57, 64, 66
No signal	No. 1, 3, 5, 6, 10, 18, 33, 36, 48, 49

(a)	MOLPRPDLRR	FARRAALPLL	AASTLAAAFG	AASPALAAGN	RVAGMAGPKS	GASSAVVODG	WI.VTHTHTAT	GEPLVTATKA	80
(-)	NESS STREET					01001110000		ODI DVINIKA	
(Þ)	MHSRSPSVRR	IGVQAALTVL	ALVC	GASAAVAAGK	PKAAAQTN	G QP S V YVQDG	WVYTNTFTAT	G Q PLVTATKA	72
(C)								DKL	3
(A)		FADDAALDLL	AASTIAAAFC	AASDALAACN	DUACMACDEC	CACCAVUODO	ωινσυσυσλα	CEDIVENENC	0 0
(4)	NODIKIDDKU	TAKKAADIDD	AND I DAAAL G	ANDEADAAGN	RVAGNAGERS	GREENING	MULIULUIAL	GEFEVIAING	00
(e)								KL	2
(f)								L	1
(α)									
())									
(1)									
(1)									
(j)									
(k)									
(1)									
(1)									
(m)	MQLPRPDLRR	FARRAALPLL	AASTLAAAFG	AASPALAAGN	R V A G M A G P K N	GASSAYVQDG	WLYTHTHTAT	GEPLVTATKA	80
						*	.L.		
/ . \	AAAACUTDUC	DCDUVCAUED	KOPKI MUNOW	ONUT CHONNO	E NCOMPNYORY	CDUDVGDUDV	G haagaaya	COMPONIAUM	1
(a)	AAAAGVIPVG	DSRVIGAVED	VCKVTIANÓM	QAVLSMDAIP	ENGTINIQEV	GPWRICEVDI	EAAQGISDIR	GDTFGPVGVT	100
(b)	AAAAGVIPVG	DSRVYGNVFD	KGRKLTVNQW	QAVLSMDAYP	ENGTTNYQDP	EPWRYCEVDY	EASEGISDYR	GNTFGPVGVT	152
(C)	AAAAGVIPVG	DSRVYGAVFD	KGRKLTVNQW	QAVLSMDAYP	ENGTTNYQEV	GPWRYCEVDY	EAAOGISDYR	GDTFGPVGVT	83
(a)	AAAAGVIPVG	DSRVYCAVED	KGRKLTVNOW	OAVLGMDAVD	FNCTTNYOFV	COWDVCEVOV	FALACTEDVA	COTECOVCVT	160
	ANARGUIDUC	DORVIONVID	KOKKDIVNQW	QAVIDADATT		GFWRICEVDI	DRAUGISDIK	GDIFGFVGVI	100
(e)	AAAAGVIPVG	DSRVIGAVED	KGRKLTVNQW	QAVLSMDAYP	ENGTINYQEV	GPWRYCEVDY	EAAQGISDYR	GDTFGPVGVT	82
(f)	AAAAGVIPVG	DSRVYGAVFD	KGRKLTVNQW	QAVLSMDAYP	ENGTTNYQEV	GPWRYCEVDY	EAAQGISDYR	GDTFGPVGVT	81
(q)			TVNOW	OAVLSMDAYP	ENGTTNYOEV	GPWRYCEVDY	EAAOGISDYR	GNTEGPVGVT	55
()				OAVISMDAVD	FNCTTNYODD	PDWDVCEVDV	FHNPCTCDVD	CNTECDUCUT	55
(*)			!\!\Q	QAVISHDATE		BrwkicsvDi	ERNEGISDIK	GNIFGFVGVI	35
(1)			TVNQW	EAVLSMDTYP	ENGTTNYQEV	GPWRYCEVDY	EAAQGISDYR	GNAFGPVGVT	55
(j)			TVNQW	QAVLSMDAYP	ENGTTNYQEV	GPWRYCEVDY	EAAQGISDYR	GNTFGPVGVT	55
(k)			TVNOW	OGLISMDAYP	ENGTINYOEV	GPWRYCEVDY	EAAOGISDYR	GDTEGPVGVT	55
(1)				ONVICHDAVD	ENCHMINYORY	COMPAGENDY		CMMPCDBCVM	
(1)			IVKQW	QAVLSMDAIP	ENGLINIQEV	GPWRICEVDI	EMAQGISDER	GNTFGPAGVT	22
(m)	AAAAGVIPVG	DSRVYGAVFD	KGRKLTVNQW	QAVLSMDAYP	ENGTTNYQEV	GPWRYCEVDY	EAAQGISDYR	GDTFGPVGVT	160
	J.							*	
(~)	W	WARADVUT CV	CNAMNA DMT A	HOUDOWER			****		
(a)	IVGDIPDICK	KAPAPIVLGK	SNATNADMLA	WGVQVTGVTA	GNFQADDTAL	DPIPSKSRSD	KNKRAALTKI	CGALQSAFDT	240
(b)	TVGDFPDYFK	NAYAPYVLGK	TGATNTDMKN	WGVQVTG IA A	ADMK ADDTRL	D P Y P N L A R S N	SKKRAALTKI	CQALQSDFDN	232
(C)	TVGDFPDYFK	KAFAPYVLGK	SNATNADMLA	WGVOVTGVTA	GNFOADDTAL	DPYPSKSRSD	KNKRAALTKI	CGALOSAFDT	163
iai	TVGDFPDYFK	KAFAPYVLCK	SNATNADMLA	WGVOVTGVTA	CNFOADDAAL	DPVPSKSPSD	PNKPAALTKT	CCALOSAFDT	240
()	TUCDEDDVEV	KARADVULCK	CNAMNADATA	WCUOUMCUMA	CNEONDOMAL	DEVECTOR	ZNKRAAD IKI	CONLOGNIDI	1 4 4 0
(=)	IVGDFPDIFK	KAFAFIVLGK	SNAINADMLA	WGVQVIGVIA	GNEQADDIAL	DPIPSKSKSD	KNKRAALTKI	CGALQSAFDT	162
(I)	TVGDFPDYFK	KAFAPYVLGK	SNATNADMLA	WGVQVTGVTA	GNFQADDTAL	DPYPSKSRSD	KNKRAALTKI	CGALQSAFDT	161
(g)	TVGDFPDYFK	KAFAPYVLGK	SNATNADMLA	WGVQVTGVTA	GNF K ADDTAL	DPYPSRSRSD	K T KRAALTKI	CGALOSAFDT	135
(h)	TVGDFPDYFK	NAYAPYVLGK	TGATNTDMKN	WGVOVTGTAA	SDMKADDSRL.	DPVPNI.SRTN	SKKKAALTKT	COALOSDEDN	135
(4)	TUCDEDDVEV	KAFADVULCK	CNADNADATA	WCUOUMCUMA	CNERADDMAL	DDVDCDCDCD	VNVDDDTMI	CONLOCATOR	100
	IVGDFFDIFK	KAFAFIVLGK	SNAINADHLA	WGVQVIGVIA	GNFRADDIAL	DPIPSKSKSD	KTKRAALTKI	CGALQSAFDT	135
()	TVGDFPDYFK	KAFAPYVLGK	SNATNADMLA	WGVQVTGVTA	GNF K ADDTAL	DPYPS R SRSD	K T KRAALTKI	CGALQSAFDT	135
(k)	TVGDFPDYFK	KAFAPYVLGK	SNATNADMLA	WGVQVTGVSA	GNFQADDSAL	DPYPS R SRSD	K T K K AALTKI	CNALOSAFDN	135
(1)	TVGDFPDYFK	KAFAPYVLGK	SNATNADMLA	WGVOVTGVTA	GNERADDTAL	DPVPSPSRSD	KTKRAALTKT	CGALOSAFDT	135
(-)	TUCDEDDVEV	KARADVULCK	CNAMNADATA	NGVQVIGVIN	GNEGNDOTHE	DITIOKOROD	KERKAADIRI KUTPAAT	CONDODAIDI	133
()	IVGDIPDICK	KALALIAPU	SNAINADMLA	WGVQVIGVIA	GNEQADDTAL	DPIPSKSKSD	KNKRAALTKI	CGALQSAFDT	240
							*	*	
(a)	QQDKYVMSHY	AHIDQDKLVP	VLNALKGIGF	TAFDRYNLVG	LAFOVOVNTG	SIGSISAFSS	VKSAGNCGSL	SAETCFATYL	320
(b)	ROACYVMSHY	AHIDSDKLLP	VLDALKKLGF	TSFGOYNLVG	LAFOVOVNTC	STESTSAFSS	VKSAGNCGSM	SNETCEATVI.	312
(-)	OODVVVVCUV	AUTDODKTUD	VINALVOICE	TELEVINE	LABOVOVNIC	OIGOIDAI DO	VRONGREGOM	CADICIAIID	312
	QQDKIVHSHI	ANIDQUKLVP	VDNADKGIGF	TAPDRINLVG	LAPOVOVNIG	SIGSISAPSS	VKSAGNUGSL	SAETCFATYL	243
(a)	QQDKYVMSHY	AHIDQDKLVP	VLNALKGIGF	TAFDRYNLVG	LAFQVQVNTG	SIGSISAFSS	VKSAGNCGSL	SAETCFATYL	320
(e)	QQDKYVMSHY	AHIDQDKLVP	VLNALKGIGF	TAFDRYNLVG	LAFQVQVNTG	SIGSISAFSS	VKSAGNCGSL	SAETCFATYL	242
(f)	OODKYVMSHY	AHIDODKLVP	VLNAL P GIGF	TAFDRYNLVG	LAFOVOVNTG	SIGSISAESS	VKSAGNCGSL	SAOTCFATYL.	241
	OODKVVMSHV		VINALKCICE	TAFDDVNIUC	LAFOVOVNEC	STOCTONECO	VENCNOCCEL	CARMCRAMVI	215
())	BOBORUNCHY	AUTDODKITD	VERNERGIGI		TYDATO	SIGSISATSS	VRSAGNCGSL	SABICFATIL	215
(#)	RURURVMSHY	AUIDSDKPP	VLDALKKIGF	τ εΓεφ ΥΝΓΛĠ	лагұvұvnTG	FIGSISAFSQ	SKSACGSM	TP ETCFATYL	213
(i)	QQDKYVMSHY	AHID R DKLVP	VLNALKGIGF	TAFDRYNLVG	LAFQVQVNTG	SIGSISAFSS	VKSAGNCGSL	SAETCFATYL	215
(j)	QQDKYVMSHY	AHIDODKLVP	VLNALKGIGF	TAFDRYNLVG	LAFOVOVNTG	SIGSISAFSS	VKSAGNCGSL	SAETCEATYL	215
()k)	OODOYVMSHY	AHTDODKLVP	VINALKCICE	TAFDRYNLVC	LAFOVOVNTC	STOSTSARSS	VKCACNCCCT	CARDORADVI	215
(1)	QQDQ1VHCHY	AUTDODKIND	VINALKGIGT	TAPDRINLVG	TYLCAL	SIGSISAFSS	VKSAGNCGSL	SALICFALL	215
(1)	QQDKIVMSHI	AHIDQUKLVP	VENALKGIGF	TAFDRINLVG	LAFQVQVNTG	SIGSISAFSS	VKSAGNCGSL	SAETCFATYL	215
(m)	QQDKYVMSHY	AHIDQDKLVP	VLNALKGIGF	TAFDRYNLVG	LAFQVQVNTG	SIGSISAFSS	VKSAGNCGSL	SAETCFATYL	320
		*				*			
(a)	TDOYTRWIKS	SSLGDDPDNC	WRASMALDTV	KKDPTMCSVC	VVNOVINACV	DENSERCOME	CIEWCENNEN	0 301	
())		CCLODDIDAC	WDACHATET	KADDMHGMUG	***********	- GROGACFID	GIN#GRNHOW	7 J)T	
(")	TDAITKMPK2	SSLGDDAGNC	WRASMALDIY	NUPTMGNVS	VVTSIINSKY	PNNSGKCPTS	GVKWSKNMAW	N 383	
(C)	TDQYIRWLKS	SSMGDDPDNC	WRASMALDIY	KKDPTMGSVS	VVNQVINASY	PGNSGKCPTS	GIKWSKNMSW	Q 314	
(d)	TDQYIRWLKS	SSLGDDPDNC	WRASMALDIY	KKDPTMGSVS	VVNOVINASY	PGNSGKCPTS	GIKWSKNMSW	0 391	
(e)	TDOYTRWING	SSLGDDDDNC	WRASMALDTV	KKDPTMCSVS	VVNOVINACY	DENSCRODE	CTEWSNNMCH	0 313	
(=)	TOYTENING	CTICDDDDDDC	WDA CHREAT	WADDUNGONO	AAMAATMW91	LONDGACTIS	GINMONNMOW	Δ 313	
(1)	TDÖITPMPKS	PILEDDADNC	WRASMELDIF	KKDPTMG RVR	V V N Q V I H A R N	PGNSGKCPTS	GIKWSKYMSW	Q 312	
(g)	TDQYIRWLKS	SSLGDDPDNC	WRASMALDIY	KKDPTMGSVS	VVNQVINASY	PGNSGKCPTS	GIKWSKNM	- 283	
(h)	TDQYIRWLSS	SSLGDD KG NC	WRANMALDIY	KQDPTMSNVS	VVTSIINSKY	PNNSGKCPTS	GVKWSKNM	- 281	
(i)	TDOYTRWIKS	SSLGDDPDNC	WRASMATOTY	KKDPTMCSVC	VVNOVTNACV	DENSCROPTE	CTEWSENN	_ 293	
(4)	TO VIDET 20	CCLODDIDAC	WDACKAT DT"	KKDDEMGGVO	AAMOATMW91	LONDGRUPIS	GINWSNNM	- 403	
())	TDÄTTKMTV2	SSTRDDADAC	WRASMALDIY	KADPIMGSVS	VVNQVINASY	PGNSGKCPTS	GIKWSKNM	- 283	
(K)	TDQYIRWLKS	SSLGDDPDNC	WRASMALDIY	KKDPTMGSVS	VVNQVINASY	PGNSGKCPTS	GIKWSKNM	- 283	
(1)	TDQYIRWLKS	SSLGDDPDNC	WRASMALDIY	KKDPTMGSVS	VVNOVINASY	PGNSGKCPTS	GIKWSKNM	- 283	
(m)	TDOYTRWING	SSLGDDDDNC	WRASMATOTY	KKDDTMCCVC	VUNOUTNACY	DCNCCVCDMC	CTVMCVNNCM	0 201	
·-/		SSPORATONC		WUDI THODAD	A A W A A T W V D I	TONDOVCLID	GTUMOVNUDM	7 32T	

0.01