

Title

CoQ10 production in Schizosaccharomyces pombe is increased by reduction of glucose levels or deletion of pka1

Author(s)

Ikuhisa Nishida, Kazumasa Yokomi, Kouji Hosono, Kazuhiro Hayashi, Yasuhiro Matsuo, Tomohiro Kaino & Makoto Kawamukai

Journal

Applied Microbiology and Biotechnology volume 103, pages4899–4915(2019)

Published 27 April 2019

URL https://doi.org/10.1007/s00253-019-09843-7

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

1	CoQ ₁₀ production in Schizosaccharomyces pombe is increased by reduction of
2	glucose levels or deletion of <i>pka1</i>
3	
4	Ikuhisa Nishida ¹ , Kazumasa Yokomi ¹ , Kouji Hosono ¹ , Kazuhiro Hayashi ¹ , Yasuhiro
5	Matsuo ^{1, 2} , Tomohiro Kaino ^{1, 2} , & Makoto Kawamukai ^{1, 2}
6	
7	
8	
9	
10	¹ Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane
11	University, 1060 Nishikawatsu, Matsue 690-8504, Japan.
12	² Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University,
13	1060 Nishikawatsu, Matsue 690-8504, Japan.
14	
15	
16	
17	Corresponding author: Makoto Kawamukai: E-mail: kawamuka@life.shimane-u.ac.jp.
18	Telephone/Fax: 81-852-32-6587, Fax: 81-852-32-6092.
19	
20	
21	
22	
23	Key words: Coenzyme Q; ubiquinone; Schizosaccharomyces pombe; cAMP/PKA
24	pathway

25 Abstract

26 Coenzyme Q (CoQ) is an essential component of the electron transport system that 27 produces ATP in nearly all living cells. CoQ_{10} is a popular commercial food supplement around the world, and demand for efficient production of this molecule has increased in 28 29 recent years. In this study, we explored CoQ_{10} production in the fission yeast 30 Schizosaccharomyces pombe. We found that CoQ_{10} level was higher in stationary phase 31 than in log phase, and that it increased when the cells were grown in a low concentration 32 of glucose, in maltose, or in glycerol/ethanol medium. Because glucose signaling is 33 mediated by cAMP, we evaluated the involvement of this pathway in CoQ biosynthesis. 34 Loss of Pka1, the catalytic subunit of cAMP-dependent protein kinase, increased 35 production of CoQ_{10} , whereas loss of the regulatory subunit Cgs1 decreased production. Manipulation of other components of the cAMP-signaling pathway affected CoQ₁₀ 36 37 production in a consistent manner. We also found that glycerol metabolism was controlled by the cAMP/PKA pathway. CoQ₁₀ production by the S. pombe $\Delta pkal$ reached 38 39 0.98 mg/g dry cell weight in medium containing a non-fermentable carbon source [2%] 40 glycerol (w/v) and 1% ethanol (w/v) supplemented with 0.5% casamino acids (w/v)], 2-41 fold higher than the production in wild-type cells under normal growth conditions. These findings demonstrate that carbon source, growth phase, and the cAMP-signaling pathway 42 43 are important factors in CoQ_{10} production in *S. pombe*.

44 Introduction

45

46 Coenzyme Q (CoQ), also called ubiquinone (Crane et al. 1957; Morton 1958), is a 47 component of the mitochondrial electron transport chain that participates in aerobic 48 respiration in eukaryotes and most prokaryotes. CoQ consists of a quinone ring and a 49 hydrophobic isoprenoid side chain that has the all-trans configuration of a certain length 50 of isoprene units. CoQ is the most abundant prenylquinone in living cells (Kawamukai 51 2018). The guinone moiety is reduced to form CoQH₂ (ubiquinol), which functions as a 52 lipid-soluble antioxidant. A CoQ-producing organism possesses one type of CoQ as a 53 main product, which is classified according to the length of the isoprenoid side chain 54 (Kawamukai 2002). For example, Schizosaccharomyces pombe and Homo sapiens 55 predominantly produce CoQ₁₀, with ten isoprene units; *Mus musculus* and *Arabidopsis* 56 thaliana produce CoQ₉; Escherichia coli produces CoQ₈; and Saccharomyces cerevisiae 57 produces CoQ₆ (Kawamukai 2009). The side chain length of CoQ is defined by a species-58 specific polyprenyl diphosphate synthase (Okada et al. 1996; Okada et al. 1998). The 59 biosynthetic pathway for the complete conversion of *p*-hydroxybenzoate (PHB) to CoQ 60 consists of at least eight steps (Fig. 1). After the polyprenyl diphosphate is synthesized, it 61 is transferred to PHB by Coq2 (Ppt1) (PHB-polyprenyl diphosphate transferase). 62 Prenylated PHB is subjected to the following modifications in the six-membered ring: 63 three hydroxylations by Coq6, Coq7, and a still-unidentified enzyme(s), O-methylations 64 by Coq3, C-methylation by Coq5, and decarboxylation by an unknown enzyme(s) (Kawamukai 2016). In eukaryotes, this pathway has been most comprehensively studied 65 to date in S. cerevisiae and S. pombe (Tran and Clarke 2007; Hayashi et al. 2014). At least 66 67 ten genes (COO1-COO9, and COO11) in S. cerevisiae (Allan et al. 2015) and 11 genes (dps1, dlp1, ppt1, coq3-coq9, and coq11) in S. pombe are required for CoQ biosynthesis 68 69 (Uchida et al. 2000; Miki et al. 2008; Kawamukai 2018). However, the functions of the 70 COQ4, COQ8, COQ9, and COQ11 genes have not yet been clearly resolved, and 71 moreover, the pathway upstream of PHB synthesis is only partially understood (Payet et 72 al. 2016).

CoQ₁₀ (or CoQ₁₀H₂) has attracted a great deal of attention in recent years as a medicine, health food, and a cosmetic, and the demand for CoQ₁₀ has risen accordingly. Several approaches have been used to improve fermentative production of CoQ₁₀ by modifying various CoQ-related metabolic pathways in bacterial and yeast mutants (Lee et al. 2017). *S. pombe* is an ideal platform to produce CoQ₁₀ because we have a detailed understanding of the metabolic pathways involved in CoQ₁₀ synthesis, as well as tools for genetically modifying this species (Hayashi et al. 2014). In a previous study, we were partially successful in metabolic engineering of CoQ_{10} biosynthesis in *S. pombe* (Moriyama et al. 2015; Moriyama et al. 2017). CoQ_{10} production was increased by overexpression of *E. coli ubiC* (encoding chorismate lyase), *E. coli aroF(fbr)* (encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase), or *S. cerevisiae thmg1* (encoding truncated HMG-CoA reductase) (Moriyama et al. 2015). However, *S. pombe* strains overexpressing individual CoQ biosynthetic genes did not enhance CoQ_{10} production more than 10%, in most cases due to growth inhibition.

87 In *S. pombe*, glucose signaling is mainly mediated by the cAMP/PKA pathway, 88 which consists of the seven-transmembrane G protein-coupled receptor Git3, 89 heterotrimeric G protein alpha subunit Gpa2, beta subunit Git5, gamma subunit Git11, 90 adenylate cyclase Cyr1, regulatory subunit Cgs1, and catalytic subunit Pka1 (Maeda et 91 al., 1994; Devoti et al. 1991; Kawamukai et al. 1991; Welton et al. 2000; Gupta et al. 92 2011). S. pombe PKA is involved in multiple cellular processes, including sexual 93 development (Kawamukai et al. 1991), oxidative and salt stress (Roux et al. 2006; Matsuo 94 et al. 2008), and calcium homeostasis (Matsuo and Kawamukai 2017).

In this study, we investigated CoQ_{10} production in *S. pombe* at various growth stages, under different glucose or other carbon conditions, and in mutants in genes related to the PKA pathway. We found that glucose concentration, carbon source, and PKA were critical for CoQ_{10} production in *S. pombe*.

99

100 Material and methods

101 Yeast strains and media

102 The S. pombe strains used in this study are listed in Tables S1 and S2; the genotype of

103 the parental strain in Table S2 is *h⁻ leu1-32 ura4-D18* (Bimbó et al. 2005). The strains

104 PR109 (FY33782) and PR110 (FY33783) are available in NBRP-Yeast, Japan.

105 Standard yeast culture media and genetic methods were used (Alfa 1993; Petersen et al.

106 2016; Ito et al. 1983). S. pombe strains were grown in complete YES medium (0.5%

107 yeast extract; 3% glucose; and 225 mg/L each of adenine sulfate, leucine, uracil,

- 108 histidine, and lysine hydrochloride). Glucose concentration or the carbon source in YES
- 109 was changed depending on the purpose of the experiment. Non-fermentable carbon
- source medium [2% glycerol (w/v) and 1% ethanol (w/v) with or without 0.5%
- 111 casamino acid (w/v)] was prepared. For synthetic medium, pombe minimal medium
- 112 (PM) with 75 mg/L uracil was used as necessary. The promoter and polyadenylation
- signal of the thiamine-repressible gene *nmt1* of *S. pombe* have been used to construct

- 114 the vector pREP3X and to over-express the *rst2* or *rst2* (C2H2 Δ) gene (Maundrell 1990;
- 115 Takenaka et al. 2018). Wild-type cells were transformed with pREP3X, pREP3X-Rst2,
- 116 or pREP3X-Rst2(C2H2 Δ) and selected on PMU containing 10 μ M thiamine. For *rst2*
- 117 overexpression, transformants were grown on PMU containing 0.15 µM thiamine for
- 118 1 day at 30°C. After three washes with distilled pure water, cells were transferred onto
- 119 PMU without thiamine and incubated for 2 days at 30°C.
- 120

121 Growth test

S. pombe cells were pre-cultured in 10 mL of YES liquid medium for 1 day at 30°C. The pre-culture was inoculated into a larger volume of medium, and the main culture was grown for the indicated periods of time. For growth assays, cells were counted on a cell counter (Sysmex CDA-500 or CDA-1000B).

126

127 **CoQ extraction and measurement**

128 S. pombe cells were grown in YES liquid media containing various carbon sources at 129 30°C. At the indicated times, cells were harvested, and CoQ was extracted as described 130 previously (Hayashi et al. 2014). The CoQ crude extract was analyzed by normal-phase 131 thin layer chromatography (TLC) with authentic CoQ₆ or CoQ₁₀ standards. Normal-phase 132 TLC was conducted on a Kieselgel 60 F₂₅₄ plate (Merck Millipore) and developed with 133 benzene. The plate was viewed under UV illumination, the CoQ band was collected, and 134 the sample was extracted with hexane/isopropanol (1:1, v/v). Samples were dried and 135 solubilized in ethanol. Purified CoQ was subjected to high-performance liquid 136 chromatography on a Shimadzu HPLC Class VP series equipped with a reverse phase 137 YMC-Pack ODS-A column (YMC). Ethanol was used as the mobile phase at a flow rate 138 of 1.0 mL/min, and detection was performed by monitoring absorption at 275 nm.

139

140 Antibody

141 To immunochemically detect CoQ biosynthetic proteins, each peptide (Dlp1, 142 CDIEAKQALMEIANSVSK; Coq3, CYNPLKQQWTLDKPGSSG; Coq4, 143 CNKMLVDKTGREILKDKPRM; Coq5, CSVGLRRSKKTPYYDSGR; Coq8, 144 CKELFSGMLKHYAD) was used to immunize rabbits. Peptides and rabbit polyclonal 145 antisera were prepared by Sigma-Aldrich. The specificity of antisera against each CoQ 146 biosynthetic protein (Dlp1, Coq3, Coq4, Coq5, and Coq8) was assessed by western blot 147 analysis in wild-type and individual *dlp1* and *cog* deletion strains. The corresponding 148 bands were absent in all gene disruptants. However, we saw a background protein 149 overlapping with Coq3 when antisera against the Coq3 peptide was used (Fig. S5).

150

151 Preparation of cell lysates and detection of CoQ biosynthetic proteins by152 immunoblotting

153 S. pombe cell lysates were prepared as described (Masai et al. 1995). Each of the S. pombe 154 cells (PR109 (W. T.), PR110 (W. T.), YMP40 (Δcgs1), YMP177 (Δcgs1), YMP36 155 $(\Delta pka1)$, and YMP179 $(\Delta pka1)$) was inoculated into 55 mL YES main cultures (starting concentration, $\sim 1 \times 10^5$ cells/mL) and incubated with rotation at 30°C for 2 days and 156 157 harvested. Lysate proteins were separated by SDS-PAGE, after which western blot 158 analysis was performed using an ECL detection system (GE Healthcare). Rabbit 159 polyclonal antibodies against CoQ biosynthetic proteins (Dlp1, diluted 1:1000; Coq3, 160 diluted 1:1000; Coq4, diluted 1:1000; Coq5, diluted 1:500; Coq8, diluted 1:1000) and 161 against PSTAIRE (Cdc2, diluted 1:1000) were purchased from Sigma and Santa Cruz 162 Biotechnology, respectively. Horseradish peroxidase-conjugated anti-rabbit IgG 163 antibody (Promega) was used as secondary antibody (diluted 1:2000). These antibodies 164 were dissolved in Can Get Signal immunostain Immunoreaction Enhancer Solution 165 (TOYOBO).

166

167 Microarray analysis

168 Pre-cultures of PR110 (wild-type), YMP41 ($\Delta cgs1$), or YMP37 ($\Delta pka1$) cells were inoculated into 50 mL main cultures (starting concentration, $\sim 1 \times 10^5$ cells/mL) and 169 170 incubated with rotation at 30°C. Aliquots of cells were taken after 8 hours (log phase). 171 The cells were harvested at 4°C. Total RNA for transcriptomic analysis was isolated 172 using the RNeasy Mini Kit (Qiagen). After RNase A cleanup, double-strand cDNA was 173 prepared using the Invitrogen SuperScript Double-strand cDNA Synthesis Kit. Purified 174 cDNA was labeled using the NimbleGen One-color Labeling Kit, and the labeled 175 products were precipitated with isopropanol and dried. The dried pellets were dissolved 176 in NimbleGen Sample Tracking Control. NimbleGen Hybridization Mix was prepared 177 according to the NimbleGen Hybridization Kit protocol. The hybridization mix was

- incubated on an array (*Schizosaccharomyces pombe* (4-Plex Array) v2 (A6187-00-02,
- 179 NimbleGen)) in an Agilent Microarray Hybridization Oven for 16–20 hours at 42°C,
- 180 and then the microarray was washed with wash buffer in a slide container at 42°C. The
- 181 hybridized array was scanned on a Microarray Scanner (Agilent G2565BA), and
- 182 fluorescence intensities were extracted using the Feature Extraction Software (Agilent).
- 183 The microarray data were deposited in NCBI's Gene Expression Omnibus with the
- accession number GSE125392.
- 185

186 **Data and statistical analyses**

187 All experiments were performed more than three times, and the average values and

- 188 standard deviation (SD) were calculated. Data from control and target sample(s) were
- 189 compared using the two-sample t test in Microsoft Excel. p-values <0.05 were considered
- 190 statistically significant.
- 191

192 **Reproducibility**

- 193 All experiments were conducted at least twice to confirm the reproducibility of the results.
- 194

- 195 Results
- 196

197 S. pombe CoQ₁₀ contents change as a function of growth stage

198 Because S. pombe holds promise as a microorganism in which to efficiently produce 199 CoQ_{10} , we sought to identify conditions that affect CoQ_{10} production. To determine how 200 CoQ_{10} production changes during growth, we evaluated the productivity of CoQ_{10} after 201 cells were grown in 3% glucose containing YES complete medium for various periods of 202 time (Fig. 2). CoQ_{10} production was assessed as total production per volume (gray bar) 203 and amount per cell (white bar). The CoQ_{10} level per cell was lower in early log phase 204 (8–16 hours) than at the starting point. During mid-log (20–24 hours) and late log (30–36 205 hours) growth phase, CoQ₁₀ level per volume and per cell gradually increased in a time-206 dependent manner. In stationary (48-72 hours) and death phase (120-240 hours), the total 207 amount of CoQ_{10} kept increasing, but CoQ_{10} level per cell did not increase as much. We 208 found that CoQ₁₀ is continually synthesized during prolonged incubation and is 209 approximately 2-fold higher in stationary and death phase than in mid-log phase. Because 210 stationary phase occurs after glucose is exhausted, we hypothesized that glucose is the 211 key component that affects the CoQ_{10} level in *S. pombe*.

212

213 Lower glucose concentration increased CoQ₁₀ content

214 The results described above suggested that the glucose concentration in the medium 215 affects the CoQ_{10} level in S. pombe. To test this hypothesis, we evaluated CoQ_{10} levels at 216 12 different glucose concentrations (0.02%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3%, 5%, 217 7%, 10%, and 20%) in YES medium after 48 hours cultivation (Fig. 3a). We started at 218 0.02% glucose because no cell growth was observed at lower glucose concentrations in 219 YES. Total CoQ_{10} level per cell (white bar) tended to increase in low cell number 220 (diamond) such as at 0.02 to 0.1 % glucose concentration when the cell growth was not 221 sufficient. As we predicted, CoQ₁₀ levels per cell were 2.2- and 1.6- fold higher in 0.02 222 and 0.05% glucose respectively than in standard YES (3% glucose). At higher glucose 223 concentrations, CoQ₁₀ per cell tended to decrease. This effect was much clearer in 224 comparisons of CoQ_{10} levels in early stationary phase under higher glucose (10% or 20%). 225 In the higher glucose (20%) medium, the cells produced 2.3-fold less CoQ_{10} than in 3% 226 glucose (Fig. 3b). Consistent with the importance of glucose concentration, a longer (7 227 day) batch cultivation in 10% glucose YES produced a higher level of CoQ₁₀ than cells 228 grown in 3% glucose (Table 2), because glucose concentration eventually decreased over 229 the long incubation period. Thus, the intracellular level of CoQ₁₀ was higher under 230 glucose limitation and lower under high-glucose conditions.

231

The cAMP-dependent protein kinase (PKA) pathway is involved in CoQ₁₀ production

234 In light of our observation that glucose concentration affects CoQ_{10} production in S. 235 *pombe*, we hypothesized that protein kinase A participating in the response to carbon 236 sources may be involved in CoQ_{10} biosynthesis. To explore this idea and also test the 237 possible involvement of other kinases, we obtained 87 single deletion mutants of non-238 essential kinases including Pka1 (Table S2 and Fig. S1) and examined the amount of 239 CoQ_{10} in each. CoQ_{10} level varied among these 87 kinase deletion mutants; in particular, 240 the $\Delta pkal$ (MBY1787) strain exhibited a significant increase. To validate this finding, we 241 checked other $\Delta pkal$ mutants from different sources. Indeed, $\Delta pkal$ strains JZ633, 242 YMP36, YMP37, and YMP179 also contained higher levels of CoQ₁₀ than the wild type 243 (Fig. S2; data for JZ633 are not shown).

PKA is the signaling kinase of the cAMP/PKA pathway, which senses glucose concentration and transduces that information to downstream effectors (Fig. 4a). When glucose is abundant, it is sensed by the receptor Git3, and then Gpa2 is released to activate Cyr1 (adenylate cyclase), which generates cAMP. Binding of cAMP to Cgs1 releases Pka1 to phosphorylate multiple target proteins (Kawamukai et al. 1991; Hoffman 2005; Gupta et al. 2010a). Thus, the observation that both reduced levels of glucose and deletion of *pka1* increase production of CoQ_{10} is consistent with the known role of Pka1.

251 When we tested other mutants related to the PKA pathway, we found that the 252 $\Delta git3$ (YMP43), $\Delta gpa2$ (YMP39), and $\Delta cyr1$ (YMP28) strains increased production of 253 CoQ₁₀, and $\Delta cgs1$ (YMP40) significantly decreased production of CoQ₁₀ (Fig. 4b). We 254 checked other $\Delta cgs1$ mutants from different sources (YMP40, YMP41, and YMP177), 255 and all contained lower levels of CoQ₁₀ than the wild-type strain (Fig. S2). Because 256 deletion of the *cgs1* gene has the opposite effect from deletion of the *pka1* gene, we 257 concluded that activation of the PKA pathway negatively affects CoQ₁₀ production.

258 To further elucidate the role of Pka1 in the biosynthesis of CoQ_{10} , we 259 investigated the involvement of the transcription factor Rst2, which is controlled by Pka1. 260 To clarify the involvement of Rst2 in CoQ_{10} biosynthesis, we measured the CoQ_{10} levels 261 in PR109 (wild-type), YMP36 (Δpka1), YMP130 (Δrst2), or YMP220 (Δpka1 Δrst2) 262 cells (Fig. 5a). The CoQ₁₀ level in $\Delta rst2$ cells was similar to that in the wild-type strain, 263 whereas the $\Delta pkal \Delta rst2$ strain contained about 1.2-fold more CoQ₁₀. These results 264 suggest that Pka1 plays a role in CoQ biosynthesis in both Rst2-dependent and -265 independent manners. To demonstrate the effect of overexpression of rst2 on CoQ₁₀ 266 production, we transformed a wild-type strain (PR110) with pREP3X (vector control),

- 267 pREP3X-Rst2 (*nmt1-rst2*), or pREP3X-Rst2(C2H2 Δ) [*nmt1-rst2* (C2H2 Δ), which lacks 268 a DNA binding domain], and tested their levels of CoQ₁₀. Although overexpression of 269 *rst2* and its C2H2 Δ mutant resulted in strong growth inhibition, as observed previously 270 (Takenaka et al. 2018), the CoQ₁₀ content per cell number increased (Fig. 5b). A similar 271 trend in CoQ₁₀ level was observed after a shorter incubation (1 day) following inoculation
- 272 of a larger number of cells (Fig. S3).
- 273

Maltose or a combination of glycerol and ethanol as a carbon source increases CoQ₁₀ content

276 Glucose is the most preferred carbon source in yeasts and other organisms. When S. 277 pombe cells are grown in medium containing higher levels of glucose, they metabolize 278 glucose predominantly through glycolysis, and release ethanol into the medium. By 279 contrast, under glucose-limited conditions, cells change their metabolism from 280 fermentation to respiration. There is a threshold glucose concentration that governs the 281 respiration-dependency of S. pombe proliferation (Takeda et al. 2015). Based on this 282 observation, it is conceivable that the amount of CoQ_{10} could be increased by culture in 283 a medium lacking glucose or containing a non-fermentable carbon source.

284 Maltose is a disaccharide consisting of two units of glucose joined with an 285 $\alpha(1\rightarrow 4)$ bond. In S. pombe, maltose is degraded by the secretory maltase Agl1 (Kato et 286 al. 2013), which is only secreted after glucose limitation. In support of our hypothesis, 287 CoQ_{10} level per volume was 1.45-fold higher in maltose medium than in glucose medium 288 after a 7 days incubation (Fig. 6a). Incubation of wild-type cells for 60 hours in maltose 289 medium decreased the CoQ_{10} level per volume relative to glucose medium, while CoQ_{10} 290 levels per volume were similar after 80 hours of incubation (Fig. 6b). Moreover, CoQ₁₀ 291 level per cell was 5-fold higher after 48 hours in maltose medium than after 20 hours in 292 glucose medium, although the cell number under both conditions was similar (1×10^7) 293 cells/mL) (Fig. S4). Both growth and CoQ₁₀ production in maltose were lower in the 294 $\Delta pkal$ strain (Fig. 6b and Fig. S4), possibly because the cAMP/PKA pathway regulates 295 maltose metabolism.

296

297 Involvement of the cAMP/PKA pathway in glycerol metabolism

We next sought to determine how the CoQ_{10} level is controlled by PKA. To this end, we first examined the protein levels of CoQ-synthesizing enzymes. For this purpose, we raised antibodies against various proteins involved in CoQ synthesis (Saiki et al. 2003; Hayashi et al. 2014), and successfully obtained antibodies against Dlp1, Coq3, Coq4, Coq5, and Coq8. When we assessed the levels of these proteins in wild-type, $\Delta cgs1$, and 303 $\Delta pkal$ strains by western blotting, using anti-PSTAIRE (Cdc2) as a loading control, we 304 observed no clear differences in Coq protein levels among the strains tested (Fig. 7). 305 However, among the five proteins we examined, we noticed the level of Coq4 was lower 306 in the $\Delta cgsl$ strain and higher in $\Delta pkal$ strains than in the wild-type. These results suggest 307 that the cAMP/PKA pathway affects some of CoQ protein expressions.

308 We next explored the possibility that the cAMP/PKA pathway affects the 309 expression of the genes involved in CoQ_{10} synthesis and other related metabolic pathways. 310 To that end, we performed microarray analyses on wild-type, $\Delta cgs1$, and $\Delta pka1$ strains. 311 Relative to the wild type, expression of 156 and 11 genes was altered in $\Delta pkal$ and $\Delta cgsl$, 312 respectively (Table 1). However, CoQ biosynthetic gene expression did not change in 313 $\Delta pkal$ (not listed in Table 1). Thus, the microarray analysis did not provide a clear 314 indication that the CoQ biosynthetic gene expressions were controlled by the cAMP/PKA 315 pathway.

Interestingly, expression of *gld1*, which is required for glycerol metabolism, and *dak2*, which encodes dihydroxyacetone kinase, was elevated more than 3-fold in the $\Delta pka1$ strains (Table 1). We confirmed the significant upregulation of *gld1* in $\Delta pka1$ (YMP37) relative to the wild type (PR110) and $\Delta cgs1$ (YMP41) by quantitative real time PCR (data not shown).

321 To evaluate the role of *pka1* in utilization of non-fermentable carbon source, we 322 grew PR109 (wild type), YMP40 ($\Delta cgs1$), and YMP36 ($\Delta pka1$) in non-fermentable 323 carbon source medium (2% glycerol and 1% ethanol) and compared their growth (Fig. 324 8a). The $\Delta pkal$ strain grew better than the wild type, whereas the $\Delta cgsl$ strain grew more 325 slowly. This result suggested that a non-fermentable carbon source might affect CoQ₁₀ 326 productivity; accordingly, we measured the CoQ_{10} level in YES medium containing 327 glycerol and ethanol. In non-fermentable carbon source medium, the CoQ_{10} level was 328 higher in $\Delta pkal$ than in the wild type, but lower in $\Delta cgsl$ (Fig. 8b). These results indicate 329 that PKA controls glycerol utilization in addition to CoQ_{10} level. We observed further 330 increases in CoQ₁₀ level in YES medium containing glycerol and ethanol as carbon 331 sources and in YES medium containing glycerol, ethanol, and casamino acids compared 332 with in glucose medium (Fig. 8c). We measured dry cell weight (DCW) in representative 333 conditions and assessed CoQ₁₀ productivity as shown in Table 2. The CoQ₁₀ productivity 334 varied greatly depending on the type of carbon sources and the cultivation period. 335 Glycerol medium tended to increase CoQ_{10} productivity to a greater extent than glucose 336 medium in both the wild type (PR110) and the $\Delta pkal$ strain (YMP179). The highest level of CoQ_{10} was 175 µg/10⁹ cells, corresponding to 0.98 mg/g-DCW (Table 2). 337

338

339 Discussion

340 In this study, we investigated CoQ_{10} productivity in the fission yeast S. pombe, a 341 promising microorganism for CoQ₁₀ production due to accumulated knowledge regarding its metabolic pathways and the availability of suitable genetic tools. We examined the 342 343 effects of medium, growth condition, and genes on CoQ₁₀ productivity. We found that 344 CoQ_{10} accumulated to higher levels in the stationary and death phase than in log phase. 345 At stationary phase, yeast cells have already consumed the glucose in the medium 346 (Hamburger and Kramhøft 1982), and glucose deprivation halts cell growth. Upon 347 consumption of glucose in the medium, S. pombe undergo transient cell-cycle arrest 348 specifically at G2 phase, extending their chronological lifespan (Masuda et al. 2016). 349 Consistent with the higher productivity of CoQ_{10} at stationary phase, we observed higher 350 CoQ_{10} levels under low-glucose condition (0.02–0.05%). When glucose is limiting, cell 351 growth is restricted; consequently, cells experience a shorter log phase. When energy 352 productivity declines following a decrease in glucose concentration, cells shift to higher 353 respiratory activity by increasing the level of CoQ₁₀ to compensate. Intriguingly, cells 354 continue CoQ₁₀ synthesis, and degradation of the compound barely occurs even when 355 cells stop growing or enter death phase (Fig. 2).

356 The cAMP/PKA pathway (Fig. 4a) is a key signaling mechanism that responds 357 to the glucose level (Hoffman 2005; DeVoti et al. 1991). The intracellular cAMP level 358 decreases when the extracellular glucose concentration is low, and under this condition 359 Pka1 remains inactivated due to binding with Cgs1 (Gupta et al. 2010b). Conversely, 360 when the external glucose concentration is higher, intracellular cAMP levels rise, and 361 binding of cAMP to Cgs1 releases Pka1 to be activated. Therefore, glucose concentration 362 in the medium and Pka1 activity are inter-related. Inactivation of Pka1 under lower 363 glucose and *pka1* (git3, gpa2, or cyr1) gene deletion create similar situations within the 364 cell. We found that deficiency of *pka1* results in higher production of CoQ₁₀ (Fig. 4b), 365 whereas by contrast, loss of Cgs1 decreased the CoQ₁₀ level. In $\Delta rst2$, the CoQ₁₀ level 366 did not differ from that in the wild-type strain. However, $\Delta pka1 \Delta rst2$ contained a lower 367 level of CoQ_{10} than $\Delta pka1$, implying that Pka1 requires Rst2 for its execution of the role. 368 In this case, both transcriptional and non-transcriptional control are conceivable, but we 369 do not have a clear answer about how Pka1 affects the production of CoQ₁₀. By analogy 370 to CoQ biosynthesis in S. cerevisiae, it is possible that some Coq biosynthetic proteins 371 are regulated by phosphorylation: in budding yeast, PKA or PKC (Protein kinase C) is 372 involved in phosphorylation of three residues of S. cerevisiae Coq7, which controls 373 oxygenase activity (Martín-Montalvo et al. 2011). Substitution of Ser20, Ser28, and 374 Thr32 of Coq7 with alanine increases the CoQ₆ level by \sim 2.6-fold. However, although a

phosphorylation-mediated mechanism is involved in *S. cerevisiae* CoQ biosynthesis, it
remains to be seen whether such regulation occurs in *S. pombe*.

377 It has been shown that S. cerevisiae produced a CoQ_6 intermediate, 3,4-378 dihydroxy-5-hexaprenylbenzoate (3,4-DHHB) and lowered CoQ₆ production when 379 grown in 10% glucose, but not in 1% glucose media. Accumulation of 3,4-DHHB was 380 inhibited by addition of cAMP (Sippel et al. 1983). Accumulation of another intermediate 381 compound, DMQ₆, has been shown when S. cerevisiae was grown in non-fermentable 382 YPG medium (Padilla et al. 2009). Decreases of CoQ level in high glucose media are 383 commonly found in both S. cerevisiae and S. pombe. But, we do not see any clear 384 accumulation of CoQ₁₀ intermediate(s) when cells were grown in high glucose or non-385 fermentable media in S. pombe. Further detail analysis is necessary for clearing this point.

386 Consistent with the importance of glucose level as a determinant of CoQ_{10} productivity, we observed a higher level of CoQ₁₀ when maltose was used as the carbon 387 388 source. S. pombe secretes the extracellular maltase Agl1, which hydrolyzes maltose into 389 glucose, and can thus use maltose as a carbon source. Transcription of agl1 is dependent 390 on Atf1 and Pcr1 (Kato et al. 2013). S. pombe cannot take up maltose directly; instead, 391 the glucose produced by the activity of Agl1 is brought into the cell via hexose 392 transporters. Secretion of Agl1 takes a relatively long time, causing cells to experience a 393 lower level of glucose, and consequently to accumulate a higher level of CoQ₁₀. In non-394 fermentable carbon source medium [2% glycerol (w/v) and 1% ethanol (w/v) with or 395 without 0.5% casamino acid], the CoQ_{10} level was higher than in glucose medium (Fig. 396 6b), likely due to a mechanism similar to that operating under low-glucose condition. 397 Moreover, addition of casamino acid to 2% glycerol (w/v)/1% ethanol (w/v) effectively 398 promoted cell growth in non-fermentable carbon source medium, suggesting that 399 casamino acid accelerates glycerol metabolism in both the wild type and $\Delta pkal$.

400 When we assessed the levels of five Coq proteins in the wild type, $\Delta pkal$, and 401 $\Delta cgs1$ strains by western blotting, we observed Coq4 was downregulated in $\Delta cgs1$ and 402 upregulated in $\Delta pkal$ (Fig. 7). This suggest that cAMP/PKA pathway affects some of 403 CoQ protein expressions, but a detailed investigation is necessary to confirm this. 404 Moreover, the expression of the dps1, dlp1, ppt1, coq3-coq9, and coq10 genes was not 405 altered in the $\Delta pkal$ or $\Delta cgsl$ strains, as determined by microarray analyses (data not 406 shown). This result suggest that genes related to CoQ biosynthesis are not regulated by 407 Pka1 or Cgs1 at the transcriptional level in S. pombe.

408 Our observation that the CoQ_{10} level increased in the $\Delta pkal$ cells suggested that 409 the electron transfer system in the mitochondria might be activated in this mutant. Indeed, 410 $\Delta pkal$ grew faster in medium containing a non-fermentable carbon source (2% glycerol 411 + 1% ethanol) (Fig. 8), which predicts that the cAMP/PKA pathway regulates glycerol 412 metabolism. The glycerol metabolic enzyme of S. pombe Gld1, known as glycerol 413 dehydrogenase, synthesizes dihydroxyacetone (DHA); Dak1 and Dak2 dihydroxyacetone 414 kinases synthesize dihydroxyacetone phosphate (DHAP), which connects the pathway to 415 glycolysis (Matsuzawa et al. 2010). Gld1, Dak1, and Dak2 undergo different types of 416 transcriptional control by the transcription factors Scr1, Tup11, and Tup12, respectively 417 (Janoo et al. 2001; Hoffman et al. 1991). Moreover, the wild type and $\Delta pkal$ exhibited 418 slightly diauxic growth in medium containing glycerol and ethanol as a carbon source, whereas $\Delta cgs1$ did not (Fig. 8a), implying that cells metabolize ethanol before glycerol 419 420 at each proliferation of wild type and $\Delta pkal$ cells. Our microarray analyses showed that 421 expression of genes involved in the glycerol metabolism system, including gld1, was 422 elevated in $\Delta pkal$, suggesting that proliferation in glycerol and ethanol medium is 423 necessary to promote expression of gld1 downstream of the cAMP/PKA pathway. 424 Catabolite repression is an idea that may explain higher CoQ_{10} levels under low-glucose 425 or non-fermentable carbon source condition. Microarray analysis in $\Delta pkal$ cells suggest 426 the involvement of PKA in catabolite repression through upregulating the expression of 427 the genes involve sugar fermentation such as glycerol metabolic enzyme Gld1, alfa-428 galactosidase Mel1 and alfa-glucosidases (Gto1, Gto2, Agl1) (Table 1). The upregulation 429 of hexose transporters Ght1, Ght3 and Ght4 in $\Delta pka1$ cells were also observed as a 430 response to elevate hexose transportation through the glucose sensing PKA pathway. In 431 fact, these hexose transporter genes are upregulated by shifting from high glucose to low 432 glucose media (Saito et al. 2015). We also noticed many genes were upregulated in $\Delta pkal$ 433 cells, while a few were affected in $\Delta cgs1$ cells. This indicates that sensing of lowered 434 glucose level as a role of the PKA pathway is mechanistically important than sensing 435 higher glucose. We think sensing lower level of glucose by the PKA pathway widely 436 affects cellular metabolisms, and as a consequence of not well explainable effects, CoQ₁₀ 437 level becomes high in $\Delta pkal$ cells.

438 In summary, CoQ_{10} is produced in *S. pombe* at high levels under low-glucose 439 conditions or in a $\Delta pkal$ strain, but its levels decrease in higher glucose during log phase 440 (Fig. S6). Prolonged incubation of S. pombe cells tends to increase the CoQ_{10} level, and 441 genetic modification of the cAMP/PKA pathway is useful for over-production of CoQ₁₀. 442 We succeeded in producing 0.98 mg of CoQ_{10} per DCW (g) at most (Table 2) when 443 glycerol/ethanol medium was used. In order to achieve much higher CoQ₁₀ production up 444 to 10 mg / dry cell weight as observed in some other microorganisms (Kawamukai 2016; 445 Lee et al. 2017), further investigation will be necessary. The findings in this study pave

446	the way for	applying S.	pombe to th	e industrial	production of	of CoQ_{10} .
-----	-------------	-------------	-------------	--------------	---------------	-----------------

- 447
- 448

449 Acknowledgments

- 450 S. pombe kinase gene deletion mutants were kindly provided by M. Balasubramanian.
- 451 Δ*pka1* (JZ633) was provided by M. Yamamoto. The authors also thank Dr. T. Nakagawa,
- 452 H. Okazaki, and all other members of the laboratory for helpful discussions and support.
- 453
- 454

455 Compliance with Ethical Standards

456

457 Funding

This work was partly supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan [#25660059, #17H03806, and #24380056] to M.K., [#15K07360 and #18K05393] to T.K., [#18K14377] to I.N., [#18K05438] to Y.M., and by the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry [#957613] to M.K. The authors thank the faculty of Life and Environmental Sciences in Shimane University for help in financial supports for publishing this report.

465

466 **Conflict of interest**

467 The authors declare that they have no conflict of interest.

468

469 Ethical approval

- 470 This article does not contain any studies with human participants or animals.
- 471
- 472

473 **References**

- 474475 Alfa C. (1993) Experiments with fission yeast: a laboratory course manual. Cold Spring
- 476 Harbor (NY): Cold Spring Harbor Laboratory Press.
- 477

478	Allan CM, Awad AM, Johnson JS, Shirasaki DI, Wang C, Blaby-Haas CE, Merchant SS,
479	Loo JA, Clarke CF. (2015) Identification of Coq11, a new coenzyme Q biosynthetic
480	protein in the CoQ-synthome in Saccharomyces cerevisiae. J. Biol. Chem. 290:7517-
481	7534
482	
483	Bimbó A, Jia Y, Poh SL, Karuturi RK, den Elzen N, Peng X, Zheng L, O'Connell M, Liu
484	ET, Balasubramanian MK, Liu J. (2005) Systematic deletion analysis of fission yeast
485	protein kinases. Eukaryot. Cell 4:799-813
486	
487	Cohen A, Kupiec M, Weisman R. (2014) Glucose activates TORC2-Gad8 protein via
488	positive regulation of the cAMP/cAMP-dependent protein kinase A (PKA) pathway and
489	negative regulation of the Pmk1 protein-mitogen-activated protein kinase pathway. J.
490	Biol. Chem. 289:21727-21737
491	
492	Crane FL, Hatefi Y, Lester RL, Widmer C. Isolation of a quinone from beef heart
493	mitochondria. (1957) Biochim. Biophys. Acta. 25:220-221
494	
495	DeVoti J, Seydoux G, Beach D, McLeod M. (1991) Interaction between ran1 ⁺ protein
496	kinase and cAMP dependent protein kinase as negative regulators of fission yeast meiosis.
497	ЕМВО Ј. 10:3759-3768
498	
499	Gupta DR, Paul SK, Oowatari Y, Matsuo Y, Kawamukai M. (2011a) Complex formation,
500	phosphorylation, and localization of protein kinase A of Schizosaccharomyces pombe
501	upon glucose starvation. Biosci. Biotechnol. Biochem. 75:1456-1465
502	
503	Gupta DR, Paul SK, Oowatari Y, Matsuo Y, Kawamukai M. (2011b) Multistep regulation
504	of protein kinase A in its localization, phosphorylation and binding with a regulatory
505	subunit in fission yeast. Curr. Genet. 57:353-365
506	
507	Hayashi K, Ogiyama Y, Yokomi K, Nakagawa T, Kaino T, Kawamukai M. (2014)
508	Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and
509	humans. PLoS One 9:e99038
510	
511	Hirota K, Hoffman CS, Ohta K. (2006) Reciprocal nuclear shuttling of two antagonizing
512	Zn finger proteins modulates Tup family corepressor function to repress chromatin

513 remodeling. Eukaryot. Cell 5:1980-1989

• • •	
515	Hoffman CS, Winston F. (1991) Glucose repression of transcription of the
516	Schizosaccharomyces pombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev.
517	5:561-571
518	
519	Hoffman CS. (2005) Glucose sensing via the protein kinase A pathway in
520	Schizosaccharomyces pombe. Biochem. Soc. Trans. 33:257-260
521	
522	Hamburger K, Kramhøft B (1982) Respiration and fermentation during growth and
523	starvation in the fission yeast, Schizosaccharomyces pombe. Carlsberg Res. Commun. 47:
524	405-411
525	
526	Ito H, Fukuda Y, Murata K, Kimura A. (1983) Transformation of intact yeast cells treated
527	with alkali cations. J. Bacteriol. 153:163-168
528	
529	Janoo RT, Neely LA, Braun BR, Whitehall SK, Hoffman CS. (2001) Transcriptional
530	regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-
531	like corepressors and the CCAAT binding factor activation complex. Genetics 157:1205-
532	1215
533	
534	Kawamukai M, Ferguson K, Wigler M, Young D. (1991) Genetic and biochemical
535	analysis of the adenylyl cyclase of Schizosaccharomyces pombe. Cell Regul. 2:155-164
536	
537	Kawamukai M, (2002) Biosynthesis, bioproduction, and novel roles of ubiquinone. J.
538	Biosci. Bioeng. 94:511-517
539	
540	Kawamukai M. (2009) Biosynthesis and bioproduction of coenzyme Q10 by yeasts and
541	other organisms. Biotechnol. Appl. Biochem. 53:217-226
542	
543	Kawamukai M. Biosynthesis of coenzyme Q in eukaryotes. (2016) Biosci. Biotechnol.
544	Biochem. 80:23–33
545	
546	Kawamukai M. Biosynthesis and applications of prenylquinones. (2018) Biosci.
547	Biotechnol. Biochem. 82:963-977
548	

549	Kato H, Kira S, Kawamukai M (2013) The Transcription Factors Atf1 and Pcr1 Are
550	Essential for Transcriptional Induction of the Extracellular Maltase Agl1 in Fission Yeast.
551	PLoS One 8: e80572. doi: 10.1371/journal.pone.0080572
552	
553	Lee SQ, Tan TS, Kawamukai M, Chen ES (2017) Cellular factories for coenzyme Q10
554	production. Microb. Cell Fact. 16:39
555	
556	Masai H, Miyake T, Arai K. (1995) hskl ⁺ , a Schizosaccharomyces pombe gene related to
557	Saccharomyces cerevisiae CDC7, is required for chromosomal replication. EMBO J. 14:
558	3094-3104.
559	
560	Maeda T, Watanabe Y, Kunitomo H, Yamamoto M. (1994) Cloning of the pka1 gene
561	encoding the catalytic subunit of the cAMP-dependent protein kinase in
562	Schizosaccharomyces pombe. J. Biol. Chem. 269:9632-9637
563	
564	Masuda F, Ishii M, Mori A, Uehara L, Yanagida M, Takeda K, Saitoh S. (2016) Glucose
565	restriction induces transient G2 cell cycle arrest extending cellular chronological lifespan.
566	Sci. Rep. 6:19629
567	
568	Matsuo Y, Mcinnis B, Marcus S. (2008) Regulation of the subcellular localization of
569	cyclic AMP-dependent protein kinase in response to physiological stresses and sexual
570	differentiation in the fission yeast Schizosaccharomyces pombe. Eukaryot. Cell 7:1450-
571	1459
572	
573	Matsuo Y, Kawamukai M. (2017) cAMP-dependent protein kinase involves calcium
574	tolerance through the regulation of Prz1 in Schizosaccharomyces pombe. Biosci.
575	Biotechnol. Biochem. 81:231-241
576	
577	Matsuzawa T, Ohashi T, Hosomi A, Tanaka N, Tohda H, Takegawa K. (2010) The $gld1^+$
578	gene encoding glycerol dehydrogenase is required for glycerol metabolism in
579	Schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 87:715-727
580	
581	Martín-Montalvo A, González-Mariscal I, Padilla S, Ballesteros M, Brautigan DL, Navas
582	P, Santos-Ocaña C. (2011) Respiratory-induced coenzyme Q biosynthesis is regulated by
583	a phosphorylation cycle of Cat5p/Coq7p. Biochem. J. 440:107-114
584	

585	Miki, R., Saiki, R., Ozoe, Y., Kawamukai, M. (2008) Comparison of a coq7 deletion
586	mutant with other respiration-defective mutants in fission yeast. FEBS J. 275:5309-5324
587	
588	Mitchell P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a
589	chemi-osmotic type of mechanism. Nature 191:144-148
590	
591	Moriyama D, Hosono K, Fujii M, Washida M, Nanba H, Kaino T, Kawamukai M. (2015)
592	Production of CoQ10 in fission yeast by expression of genes responsible for CoQ10
593	biosynthesis. Biosci. Biotechnol. Biochem. 79:1026-1033
594	
595	Moriyama D, Kaino T, Yajima K, Yanai R, Ikenaka Y, Hasegawa J, Washida M, Nanba
596	H, Kawamukai M. (2017) Cloning and characterization of decaprenyl diphosphate
597	synthase from three different fungi. Appl. Microbiol. Biotechnol. 101:1559-1571
598	
599	Morton RA. (1958) Ubiquinone. Nature 182:1764-1767
600	
601	Maundrell K (1990) nmt1 of fission yeast. A highly transcribed gene completely
602	repressed by thiamine. J. Biol. Chem. 265:10857-10864
603	
604	Okada K, Suzuki K, Kamiya Y, Zhu X, Fujisaki S, Nishimura Y, Nishino T, Nakagawa
605	T, Kawamukai M, Matsuda H. (1996) Polyprenyl diphosphate synthase essentially
606	defines the length of the side chain of ubiquinone. Biochim. Biophys. Acta. 1302:217-
607	223
608	
609	Okada K, Kainou T, Matsuda H, Kawamukai M. (1998) Biological significance of the
610	side chain length of ubiquinone in Saccharomyces cerevisiae. FEBS Lett. 431:241-244
611	
612	Padilla S, Tran UC, Jiménez-Hidalgo M, López-Martín JM, Martín-Montalvo A,
613	Clarke, CF. Navas P, Santos-Ocaña C. (2009) Hydroxylation of demethoxy-Q6
614	constitutes a control point in yeast coenzyme Q6 biosynthesis. Cell Mol. Life Sci. 66:
615	173-186
616	
617	Payet LA, Leroux M, Willison JC, Kihara A, Pelosi L, Pierrel F. (2016) Mechanistic
618	Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast. Cell Chem. Biol.
619	23:1241-1250
620	

621	Petersen J, Russell P. (2016) Growth and the environment of Schizosaccharomyces
622	pombe. Cold Spring Harb Protoc. 2016(3); pdb top079764. doi: 10.1101/pdb.top079764
623	
624	Roux AE, Quissac A, Chartrand P, Ferbeyre G, Rokeach LA. (2006) Regulation of
625	chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2.
626	Aging Cell 5:345-357
627	
628	Saiki R, Nagata A, Uchida N, Kainou T, Matsuda H, Kawamukai M. (2003) Fission yeast
629	decaprenyl diphosphate synthase consists of Dps1 and the newly characterized Dlp1
630	protein in a novel heterotetrameric structure. Eur. J. Biochem. 270:4113-4121
631	
632	Saitoh S, Mori A, Uehara L, Masuda F, Soejima S, Yanagida M. (2015) Mechanisms of
633	expression and translocation of major fission yeast glucose transporters regulated by
634	CaMKK/phosphatases, nuclear shuttling, and TOR. Mol. Biol. Cell. 26:373-386
635	
636	Sippel CJ., Goewert RR, Slachman FN, Olson RE. (1983) The regulation of ubiquinone-
637	6 biosynthesis by Saccharomyces cerevisiae. J. Biol. Chem. 258:1057-1061
638	
639	Takeda K, Starzynski C, Mori A, Yanagida M. (2015) The critical glucose concentration
640	for respiration-independent proliferation of fission yeast, Schizosaccharomyces pombe.
641	Mitochondrion 22:91-95
642	
643	Takenaka K, Tanabe T, Kawamukai M, Matsuo Y. (2018) Overexpression of the
644	transcription factor Rst2 in Schizosaccharomyces pombe indicates growth defect, mitotic
645	defects, and microtubule disorder. Biosci. Biotechnol. Biochem. 82:247-257
646	
647	Tran UC, Clarke CF. (2007) Endogenous synthesis of coenzyme Q in eukaryotes.
648	Mitochondrion 7(Suppl):S62–71
649	
650	Uchida N., Suzuki K., Saiki R., Kainou T., Tanaka K., Matsuda H Kawamukai M. (2000)
651	Phenotypes of fission yeast defective in ubiquinone production due to disruption of the
652	gene for p-hydroxybenzoate polyprenyl diphosphate tranferase. J. Bacteriol. 182:6933-
653	6939
654	
655	Welton RM, Hoffman CS. (2000) Glucose Monitoring in Fission Yeast via the $gpa2$ Ga,
656	the <i>git5</i> G β and the <i>git3</i> Putative Glucose Receptor. Genetics. 156:513-521

657 Figure Legends

658

Fig. 1 Overview of the CoQ biosynthetic pathway in *S. pombe*. The biosynthetic pathway that converts PHB into CoQ in *S. pombe* consists of eight steps. Decaprenyl diphosphate, which is synthesized by decaprenyl diphosphate synthase (Dps1 + Dlp1), is transferred to PHB by PHB-decaprenyl diphosphate transferase [Ppt1 (Coq2)], and then seven modifications of the aromatic ring are performed in CoQ biosynthesis. DHB, 3decaprenyl-4-hydroxybenzoate; DPP, decapentenyl diphosphate; FPP, farnesyl diphosphate; IPP, isopentenyl diphosphate; PHB, *p*-hydroxybenzoate.

666

667 Fig. 2 S. pombe CoQ_{10} production during different growth phases. S. pombe cells were 668 pre-cultivated in 15 mL of YES medium for 1 day, inoculated into 850 mL of YES 669 medium at $\sim 1 \times 10^5$ cells/mL, and cultivated with rotation at 30°C. At the indicated time 670 points, 50-150 mL of culture was harvested, and CoQ₁₀ was extracted and analyzed. Gray 671 bars show CoQ_{10} content per 50 mL of medium. White bars show CoQ_{10} level per 1×10^9 672 cells. Diamonds show cell number. Ten micrograms of CoQ₆ was used as an internal 673 standard. Data are means ± SD of three measurements. Asterisks on bars denote 674 statistically significant differences (** p < 0.01; * p < 0.05) relative to the 48 hours time 675 point (Student's t test).

676

677 Fig. 3 Effect of glucose concentration in YES on CoQ₁₀ production. Yeast were precultivated in 15 mL of YES (3% glucose) medium for 1 day, washed twice with distilled 678 pure water, inoculated at $\sim 1 \times 10^5$ cells/mL into 55 mL of YES medium containing 679 680 different concentrations of glucose, and then cultured for 48 hours (a) or 24 hours (b) with 681 rotation at 30°C. CoQ₁₀ was extracted and analyzed. Gray bars show CoQ₁₀ content per 682 50 mL of medium, and white bars show CoQ₁₀ normalized against cell number. Diamonds 683 show cell number. Ten micrograms of CoQ₆ was used as an internal standard. Data are 684 means \pm SD of three measurements. Asterisks on bars denote statistically significant 685 differences (** p<0.01; * p<0.05) relative to YES (3% glucose) (Student's t test).

686

Fig. 4 Effect of disruption of PKA-related genes on CoQ_{10} production. CoQ_{10} productivity in $\Delta git3$, $\Delta gpa2$, $\Delta cyr1$, $\Delta cgs1$, or $\Delta pka1$ strains was compared against that of the reference strain PR109. (a) The cAMP/PKA pathway in *S. pombe*. (b) For the preculture, the yeast cells were cultivated in 10 mL of YES (3% glucose) medium for 1 day, inoculated at ~1×10⁵ cells/mL into 55 mL of YES medium, and then cultivated for 48 hours with rotation at 30°C). CoQ₁₀ was extracted and analyzed. Gray bars show CoQ₁₀ 693 content per 50 mL of medium, and white bars show CoQ_{10} normalized against cell number. 694 Diamonds show cell number. Ten micrograms of CoQ_6 was used as an internal standard. 695 Data are means \pm SD of three measurements. Asterisks on bars denote statistically 696 significant differences (** *p*<0.01; * *p*<0.05) relative to the wild type (Student's t test). 697

Fig. 5 Effect of rst2 disruption or overexpression on CoQ₁₀ production. (a) CoQ₁₀ 698 699 productivity in YMP36 ($\Delta pkal$), YMP130 ($\Delta rst2$), or YMP220 ($\Delta pkal \Delta rst2$) was 700 compared with that of the reference strain PR109. Strains were grown at 30°C in YES complete liquid medium. Cells were inoculated at 1×10^5 cells/mL and harvested after 48 701 702 hours of growth. (b) CoQ₁₀ productivity in PR110 harboring pREP3X (an empty vector), 703 pREP3X-Rst2 (*nmt1-rst2*), or pREP3X-Rst2 C2H2 Δ (*nmt1-rst2* C2H2 Δ). For pre-culture, 704 the strains were grown at 30°C in PMU minimal liquid medium with 0.15 μM thiamine. 705 The strains were washed twice with distilled pure water, and then grown at 30°C in PMU minimal liquid medium without thiamine. Cells were inoculated at 1×10^5 cells/mL and 706 707 harvested after 48 hours of growth. CoQ₁₀ was extracted and analyzed. Gray bars show 708 CoQ_{10} content per 50 mL of medium, and white bars show CoQ_{10} normalized against cell 709 number. Diamonds show cell number. Five micrograms of CoQ₆ was used as an internal 710 standard. Data are means ± SD of three measurements. Asterisks on bars denote 711 statistically significant differences (** p < 0.01; * p < 0.05) relative to $\Delta p kal$ (a) or vector 712 control (b) (Student's t test).

713

714 Fig. 6 Effect of maltose on CoQ_{10} production. CoQ_{10} productivity was tested in YES 715 containing 3% (w/v) maltose (Mal) instead of 3% glucose (Glc) and compared with YES. 716 Cells were grown at 30°C in YES (Glc) complete medium. The pre-culture was washed three times with distilled pure water, and then inoculated at 1×10^5 cells/mL and grown 717 718 until the indicated time points. CoQ₁₀ was extracted and analyzed. Gray bars show CoQ₁₀ 719 content per 50 mL of medium, and white bars show CoQ₁₀ normalized against cell number. 720 Diamonds show cell number. Five micrograms of CoQ₆ was used as an internal standard. 721 Data are means \pm SD of three measurements. (a) Strain PR110. Asterisks on bars denote 722 statistically significant differences (** p < 0.01; * p < 0.05) relative to glucose (Student's t 723 test). (b) Strains PR110 (wild type) and YMP179 ($\Delta pkal$) were used to compare 724 productivity of CoQ₁₀.

725

Fig. 7 Western blotting for detection of Cdc2, Dlp1, Coq3, Coq4, Coq5, and Coq8. Each
sample was subjected to 10.5% SDS–polyacrylamide gel electrophoresis, and analyzed
by immunoblotting using rabbit antibodies against Dlp1, Coq3, Coq4, Coq5, and Coq8.

729 Rabbit anti-PSTAIRE antibody (Cdc2) was used as a loading control of whole cell

- extracts. Horseradish peroxidase–fused anti-rabbit IgG was used as a secondary antibody.
- Arrows indicate bands corresponding to the target proteins. lane1, PR109 (W. T.); lane2,
- PR110 (W. T.); lane3, YMP40 ($\Delta cgs1$); lane4, YMP177 ($\Delta cgs1$); lane5, YMP36 ($\Delta pka1$);
- 733 lane6, YMP179 ($\Delta pkal$). Protein bands are indicated at right.
- 734

735 **Fig. 8** Growth of $\Delta pkal$ and $\Delta cgsl$ cells in non-fermentable carbon source media. (a) 736 Growth of the wild type (PR109, open circle), $\Delta pkal$ (YMP36, open square), or $\Delta cgsl$ 737 (YMP40, open triangle) in 55 mL of YES medium containing 2% glycerol (w/v) and 1% 738 ethanol (w/v) was monitored by counting cell numbers. Growth of wild type (PR109, 739 closed circle) and $\Delta pkal$ (YMP36, closed square) cells in YES (which contains 3%) 740 glucose) medium is also shown. (b) CoQ_{10} productivity was tested in YES containing 2% 741 glycerol (w/v)/1% ethanol (w/v) or 3% glucose (w/v). (c) CoQ₁₀ productivity of YES 742 containing 2% glycerol (w/v)/1% ethanol (w/v) with or without 0.5% casamino acid (w/v)743 instead of 3% glucose (w/v). The pre-culture was washed three times with distilled pure water, and then inoculated at 1×10^5 cells/mL (a and b) or 1×10^6 cells/mL (c). The cells 744 were harvested at the indicated time points. CoQ_{10} was extracted and analyzed. Gray bars 745 show CoQ₁₀ content per 50 mL of medium, and white bars show CoQ₁₀ normalized 746 747 against cell number. Diamonds show cell number. Five micrograms of CoO₆ was used as 748 an internal standard. Data are means \pm SD of three measurements. In panel C, asterisks 749 between bars denote statistically significant differences (** p < 0.01, * p < 0.05; Student's 750 t test) relative to wild type (day 4 in glucose). Glc, glucose; Gly, glycerol; EtOH, ethanol; 751 Cas; casamino acid.

752

753

Fig. 1.

Fig. 2.

Fig. 3.

а

b

Fig. 4.

a

b

×10⁷ cells/mL

Fig. 6.

Fig. 7.

С

Fig. 8.

Table 1 DNA microarray analyses with wild type, $\Delta pka1$ and $\Delta cgs1$

Upregulated genes in∆*pka1*

Systematic ID	Cono nomo		Fold change	SPAC869.08 ncm2	protein-L-isoaspartate O-methyltransferase Pcm2	3 35
Systematic ID	Gene name	Function	Pold change	3FAC805.08 pcm2	(predicted)	5.55
SPBPBZIE7.01C	enoiuz	enolase (predicted)	27.11	SPBPB21E7.04c Unassigned	human COMT ortholog 2	3.33
SPCC1739.080	Unassigned	short chain denydrogenase (predicted)	20.80	SPAC3C7.13c Unassigned	glucose-6-phosphate 1-dehydrogenase (predicted)	3.31
SPBC359.06	mug14	adducin	19.74	SPBC3H7.08c Unassigned	conserved fungal protein	3.30
SPACZZAIZ.1/C	Unassigned	short chain denydrogenase (predicted)	18.79	SPAC13C5 04 Unassigned	class I glutamine amidotransferase family protein,	3 20
SPBC16E9.16C	Isa90	LSG90 protein	15.38	SI ACISCS.04 Onassigned	conserved in fungi, bacteria, plants	5.25
SPAC869.06c	hry1	HHE domain cation binding protein (predicted)	15.35	SPAC11D3 18c Unassigned	carboxylic acid transmembrane transporter	3 27
SPAC869.07c	mel1	alpha-galactosidase, melibiase	14.19	SI ACTIDS. IBC Offassigned	(predicted)	5.27
SPAC22H10.13	zym1	metallothionein Zym1	14.14	SPCP31B10.06 mug190	C2 domain protein	3.27
SPAC869.09	Unassigned	Con-6 family conserved fungal protein	13.01	SPBC24C6.09c Unassigned	phosphoketolase family protein (predicted)	3.17
SPAC1F8.01	ght3	hexose transporter Ght3	12.50	SPCC965.06 osr2	potassium channel subunit/aldo-keto reductase	3 17
SPAC1F8.05	isp3	spore wall structural constituent Isp3	11.98	51 66505.00 - 0312	(predicted)	5.17
SPBC1289.14	Unassigned	adducin (predicted)	11.97	SPBPB2B2.12c gal10	UDP-glucose 4-epimerase/aldose 1-epimerase Gal10	3.08
SPAC23H3.15c	ddr48	DNA damage-responsive protein ortholog DDr48	11.69	SPAC2F3.05c Unassigned	xylose and arabinose reductase (predicted)	3.03
SPBC1198.14c	fbp1	fructose-1,6-bisphosphatase Fbp1	8.13	SPAPJ691.02 Unassigned	yippee-like protein	3.00
SPAC637 03	Unassigned	DUF1774 family multi-spanning conserved fungal	8 04	SPAC13F5.03c gld1	mitochondrial glycerol dehydrogenase Gld1	2.96
51 AC057.05	onassigned	membrane protein	0.04	SPAC22F3.12c rgs1	regulator of G-protein signaling Rgs1	2.84
SPCC794.04c	Unassigned	amino acid transmembrane transporter (predicted)	7.52	SPBC1773.06c adh8	alcohol dehydrogenase (predicted)	2.77
SPCC794.01c	gcd1	glucose dehydrogenase Gcd1	7.35	SPCC162.10 ppk33	serine/threonine protein kinase Ppk33 (predicted)	2.76
SPAC513.02	Unassigned	phosphoglycerate mutase family	7.20	SPAC23C11.06c Unassigned	vacuolar membrane hydrolase	2.75
SPAC139.05	Unassigned	succinate-semialdehyde dehydrogenase (predicted)	6.85	SPAC4F10.17 Unassigned	conserved fungal protein	2.73
SPCC1795.06	map2	P-factor pheromone Map2	6.51	SPACIINKA 17 Unassigned	NAD binding dehydrogenase family protein, human	2 70
SPAC27D7.03c	mei2	RNA-binding protein involved in meiosis Mei2	6.34	Si Aconica.17 Onassigned	DHDH ortholog	2.70
SPCC548.07c	ght1	hexose transporter Ght1	5.73	SPBC32F12.03c gpx1	glutathione peroxidase Gpx1	2.70
SPAC4F8.08	mug114	Schizosaccharomyces pombe specific protein	5.71	SPCC16A11.15c Unassigned	Schizosaccharomyces specific protein	2.69
SPAC3G9.11c	pdc201	pyruvate decarboxylase (predicted)	5.70	SPAC30D11.01c gto2	alpha-glucosidase (predicted)	2.64
SPBC1683.08	ght4	hexose transporter Ght4	5.53	SPAC15A10.05c mug182	NADHX epimerase (predicted)	2.57
SPAP8A3.04c	hsp9	heat shock protein Hsp9	5.52	SPBC32C12.02 ste11	transcription factor Ste11	2.54
SPCC338.18	Unassigned	Schizosaccharomyces pombe specific protein	5.25	SPAC13F5.07c hpz2	zf PARP type zinc finger protein Hpz2	2.53
SPAC22F8.05	Unassigned	alpha,alpha-trehalose-phosphate synthase (predicted)	4.67	SPBC1105.14 rsv2	transcription factor Rsv2	2.53
SPBC8E4.05c	Unassigned	fumarate lyase superfamily	4.67	SPAPB1A11 03 Unassigned	cytochrome b2 (L-lactate cytochrome-c	2 5 3
SPBC56F2.06	mua147	Schizosaccharomyces pombe specific protein	4.42	SI AI DIAILOS ONUSSIGNEU	oxidoreductase) (predicted)	2.55
SPAC11D3.01c	Unassigned	Con-6 family conserved fungal protein	4.34	SPAPB1A10.14 pof15	F-box protein (predicted)	2.51
SPAC4H3.08	Unassigned	3-hydroxyacyl-CoA dehydrogenase (predicted)	4.33	SPBP4H10.10 rbd3	mitochondrial rhomboid family protease	2.50
SPCC757.03c	hsn3101	Thil domain protein	4.32	SPAC869.03c Unassigned	urea transporter (predicted)	2.50
SPAC9F9.01	Unassigned	dubious	4.22	SPAC3C7.05c mug191	alpha-1,6- mannanase (predicted)	2.50
SPAC26F1 11	Unassigned	dubious	3 93	SPAC32A11.02c Unassigned	DUF4449 family conserved fungal protein	2.50
SPAC1039 11c	ato1	alpha-glucosidase (predicted)	3.88	SPAC1565.04c ste4	adaptor protein Ste4	2.48
SPBC947.09	hsn3103	Thil domain protein	3.80	SPBC1683.09c frp1	ferric-chelate reductase Frp1	2.48
SPBC365 12c	ish1	LEA domain protein	3 70	SPACADZ 02c pac1	phosphatidylglycerol phospholipase C Pgc1	2 /7
SPAC977 16c	dak?	dibydroyyacetone kinase Dak2	3.69	SFAC4D7.02C pgc1	(predicted)	2.47
SPAC5H10 02c	hsn3102	Thil domain protein	3.67	SPAC869.05c Unassigned	sulfate transporter (predicted)	2.46
SPRC21C3 19	rtc3	SBDS family protein Rtc3 (predicted)	3.61	SPBC3D6.16 Unassigned	dubious	2.43
	Unassigned	glucan 1.4 alpha glucosidaso (predicted)	3.60	SPBC19C7.04c Unassigned	DUF2406 family conserved fungal protein	2.42
	rev1	transcription factor Rev1	3.00	SPAC5H10.01 dgc1	mitochondrial D-glutamate cyclase Dgc1 (predicted)	2.36
SPAPR24D3 10c	aal1	alnha-glucosidase Agl1	3.55	SPCC338.12 pbi2	proteinase B inhibitor Pbi2 (predicted)	2.35
SPRC725 02	Ilnassigned	nvridovamine 5'-nhosnhate ovidase (predicted)	2 / 2	SPBC4.01 dni2	tetraspan protein Dni2 (predicted)	2.33
SPAC11E3 06	man1	MADS-box transcription factor Man1	3.42		NADH/NADPH dependent indole-3-acetaldehvde	
SPCPB1644 06c	Unassigned	Schizosaccharomyces nombe specific protein	2 20	SPAC19G12.09 Unassigned	reductase	2.29
51 61 010/14.000	Shassigned	semilasacema omyces pombe specific protein	5.55	SPBC24C6.06 apa1	G-protein alpha subunit	2.29

Upregulated genes in $\Delta pka1$ (continued)

Systematic ID	Gene name	Function	Fold change	SPAC1F8.06	fta5	cell surface glycoprotein	0.39
SPAC15E1.02c	Unassigned	DUF1761 family protein	2.28	SPBC1861.02	abp2	ARS binding protein Abp2	0.39
SPBC19C2.04c	ubp11	ubiquitin C-terminal hydrolase Ubp11	2.26	SPCC594.03	Unassigned	Schizosaccharomyces specific protein	0.40
SPBC1604.01	egt1	Ergothioneine biosynthesis protein Egt1	2.23	SPBC4C3.03	thr1	homoserine kinase Thr1 (predicted)	0.40
SPAC23E2.03c	ste7	meiotic suppressor protein Ste7	2.21	CDA C220.00	Un a sei an a d	mitochondrial 2-oxoadipate and 2-oxoglutarate	0.42
SPAC513.06c	dhd1	D-xylose 1-dehydrogenase (NADP+) (predicted)	2.21	SPAC328.09	Unassigned	transporter (predicted)	0.42
SPBC1685.05	htr11	serine protease (predicted)	2.21	SPAC750.03c	Unassigned	methyltransferase (predicted)	0.43
SPCC4G3.03	Unassigned	WD40/YVTN repeat-like protein	2.20	SPBC1198.02	dea2	adenine deaminase Dea2	0.43
SPCC417.15	Unassigned	dubious	2.17	SPBC8E4.03	Unassigned	agmatinase 2 (predicted)	0.43
SPAC26F1.04c	etr1	enoyl-[acyl-carrier protein] reductase (predicted)	2.17	SPBP8B7.01c	pop7	RNAseP RNAse MRP subunit Pop7 (predicted)	0.43
SPAC20H4.11c	rho5	Rho family GTPase Rho5	2.16	SPCC1682.09c	aca1	mitochondrial guanine nucleotide transporter Gcs1	0.43
SPAC2E1P3.01	Unassigned	dehydrogenase (predicted)	2.15		5 5	(predicted)	
SPBC1773.05c	tms1	hexitol dehydrogenase (predicted)	2.14	SPAC186.01	pfl9	cell surface glycoprotein (predicted), DIPSY family	0.44
SPBC11C11.06c	Unassigned	Schizosaccharomyces specific protein	2.14	SPAC186.09	pdc102	pyruvate decarboxylase (predicted)	0.44
SPCC191.01	Unassigned	Schizosaccharomyces specific protein	2.10	SPCC1672.03c	gud1	guanine deaminase Gud1 (predicted)	0.45
SPAC29A4.17c	Unassigned	mitochondrial FUN14 family protein	2.08	SPAC977.03	Unassigned	methyltransferase (predicted)	0.46
SPAC688.04c	gst3	glutathione S-transferase Gst3	2.05	SPBC1/11.05	srp40	nucleocytoplasmic transport chaperone Srp40 (predicted)	0.46
SPAC688.03c	Unassigned	human AMMECR1 homolog	2.03	SPAC5H10 10	Unassigned	small alpha beta-unsaturated carbonyl compounds	0 47
SPAC3F10.10c	тар3	pheromone M-factor receptor Map3	2.03	51 ACS1110.10	onussigned	(predicted)	0.47
SPAC8C9.03	cgs1	cAMP-dependent protein kinase regulatory subunit Cgs1	2.03	SPCC1682.08c	mpf2	meiotic pumilio family RNA-binding protein Mpf2	0.48
SPAC26F1.14c	aif1	apoptosis-inducing factor homolog Aif1 (predicted)	2.03	SPAC6F6.11c	Unassigned	pyridoxine-pyridoxal-pyridoxamine kinase (predicted)	0.49
SPAC3C7.02c	pil2	meiotic eisosome BAR domain protein Pil2	2.02	SPAC26F1.05	mug106	Schizosaccharomyces specific protein	0.49
SPBP4H10.12	Unassigned	protein with a role in ER insertion of tail-anchored membrane proteins (predicted)	2.00	SPBPB2B2.18 SPBP4G3.02	Unassigned pho1	conserved fungal plasma membrane protein acid phosphatase Pho1	0.49 0.49

Downregulated genes in Δ *pka1*

Systematic ID	Gene name	Function	Fold change
SPAC186.05c	gdt1	Golgi calcium and manganese antiporter Gdt1	0.09
SPAC1039.02	Unassigned	extracellular 5'-nucleotidase, human NT5E family (predicted)	0.10
SPBPB21E7.07	aes1	enhancer of RNA-mediated gene silencing	0.13
SPBPB2B2.01	Unassigned	amino acid transmembrane transporter (predicted)	0.13
SPBC1271.07c	Unassigned	N-acetyltransferase (predicted)	0.15
SPBPB10D8.01	Unassigned	cysteine transporter (predicted)	0.19
SPBC428.11	met17	homocysteine synthase Met17	0.20
SPBPB2B2.05	Unassigned	class I glutamine amidotransferase family protein	0.23
SPCC330.03c	Unassigned	NADPH-hemoprotein reductase (predicted)	0.25
SPBPB2B2.06c	Unassigned	extracellular 5'-nucleotidase, human NT5E family (predicted)	0.26
SPAC5H10.03	Unassigned	phosphoglycerate mutase family	0.29
SPBCPT2R1.08c	tlh2	RecQ type DNA helicase Tlh1	0.30
SPAC212.11a	tlh1	RecQ type DNA helicase	0.30
SPAC11D3.03c	Unassigned	aminomethyltransferase-like and DUF1989 family protein	0.32
SPAC977.01	ftm1	sub-telomeric 5Tm protein family Ftm1	0.33
SPAC750.05c	ftm4	sub-telomeric 5Tm protein family Ftm4	0.33
SPBC1348.02	ftm5	sub-telomeric 5Tm protein family Ftm5	0.34
SPAC11D3.02c	Unassigned	ELLA family acetyltransferase (predicted)	0.34
SPBC947.04	pfl3	cell surface glycoprotein (predicted), DIPSY family	0.34
SPAC56F8.12	Unassigned	DUF2434 family conserved fungal multispanning membrane protein	0.35
SPAC5H10.06c	adh4	alcohol dehydrogenase Adh4	0.37

Upregulated genes in∆*cgs1*

Systematic ID	Gene name	Function	Fold change
SPBPB2B2.18	Unassigned	conserved fungal plasma membrane protein	4.83
SPCC737.04	Unassigned	S. pombe specific UPF0300 family protein 6	2.58
SPBC19C7.04c	Unassigned	DUF2406 family conserved fungal protein	2.18
SPCC417.06c	mug27	meiosis specific protein kinase Mug27/Slk1	2.11
SPAC869.01	Unassigned	hydrolase activity, implicated in cellular detoxification (predicted)	2.05
SPAC212.02	Unassigned	Schizosaccharomyces specific protein	2.04

Downregulated genes in $\Delta cgs1$

Systematic ID	Gene name	Function	Fold change
SPAC27D7.03c	mei2	RNA-binding protein involved in meiosis Mei2	0.42
SPAC1F8.06	fta5	cell surface glycoprotein	0.47
SPAC186.01	pfl9	cell surface glycoprotein (predicted), DIPSY family	0.49

Condition	Strain	CoQ	10 (µg)	CoQ10 (µg)/10 ⁹ cells		CoQ10 (mg)/g-DCW		mg-DCW
3%Glc 1day	PR110	3.3	±1.0	10.7	±1.7	0.183	±0.029	17.7 ±3.8
	YMP179	1.8	±0.5	29.0	±3.8	0.174	\pm 0.010	10.0 ±2.1
3%Glc 2days	PR110	48.5	±4.1	33.9	±2.4	0.610	\pm 0.053	79.8 ±7.8
	YMP179	54.2	±2.3	56.3	±6.4	0.650	\pm 0.007	83.5 ±3.0
3%Glc 5days	PR110	68.7	±2.5	41.4	±2.8	0.688	\pm 0.070	100.7 \pm 13.1
	YMP179	91.0	±17.1	49.2	±13.1	0.643	±0.038	141.0 \pm 20.3
3%Glc 7days	PR110	65.1	±3.8	40.0	±1.4	0.618	±0.027	105.3 ±3.7
10%Glc 7days	PR110	89.8	±10.4	48.3	±7.1	0.953	±0.117	94.3 [±] 1.9
3%Mal 7days	PR110	93.8	±12.0	51.7	±6.6	0.643	±0.061	145.8 ± 10.5
0.02%Glc 2days	PR110	3.1	±0.4	67.9	±4.0	0.438	±0.031	7.0 ±0.4
3%Glc 2days	PR110	31.2	±0.9	36.5	±1.8	0.570	±0.027	54.7 ±1.3
3%Glc 4days*	PR110	69.2	±2.6	45.3	±1.1	0.802	±0.086	86.8 ±8.3
	YMP179	108.1	±5.3	91.6	±6.5	0.957	±0.054	113.0 ±3.8
2%Gly+1%EtOH +0.5%Cas 4days*	PR110	72.5	±15.3	80.8	±5.7	0.920	±0.049	78.5 \pm 13.7
	YMP179	100.5	±5.2	175.5	\pm 10.8	0.984	\pm 0.021	102.1 ±4.9

Table 2. CoQ₁₀ production under various conditions

Note: The starting cell number of main culture is 1×10^5 cells/ml. CoQ_{10} (µg) denotes CoQ_{10} amount contained in 50 ml of each medium.

* indicates 10⁶ cells/ml inoculation.

Applied Microbiology and Biotechnology

 CoQ_{10} production in *Schizosaccharomyces pombe* is increased by reduction of glucose levels or deletion of *pka1*

Ikuhisa Nishida¹, Kazumasa Yokomi¹, Kouji Hosono¹, Kazuhiro Hayashi¹, Yasuhiro Matsuo^{1, 2}, Tomohiro Kaino^{1, 2}, & Makoto Kawamukai^{1, 2}

¹Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan. ²Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.

Corresponding author: Makoto Kawamukai: E-mail:kawamuka@life.shimane-u.ac.jp.

Telephone/Fax: 81-852-32-6587, Fax: 81-852-32-6092.

Table S1 Yeast strains used in this study

Strain	Genotype	Source
JZ633	h ⁹⁰ leu1-32 ura4-D18 pka1::ura4	H. Kunimoto et al., 2000
PR109	h ⁻ leu1-32 ura4-D18	P. Russell
PR110	h+ leu1-32 ura4-D18	P. Russell
RM19	h+ leu1-32 ura4-D18 dlp1::kanMX6	R. Miki et al., 2008
KH3 (RM2)	h+ leu1-32 ura4-D18 coq3::kanMX6	K. Hayashi et al., 2014
KH4 (LV974)	h+ leu1-32 ura4-D18 coq4::kanMX6	K. Hayashi et al., 2014
KH5 (RM7)	h+ leu1-32 ura4-D18 coq5::kanMX6	R. Miki et al., 2008
KH8 (OG2)	h+ leu1-32 ura4-D18 coq8::kanMX6	K. Hayashi et al., 2014
YMP28	h ⁻ leu1-32 ura4-D18 cyr1::ura4	Y. Matsuo and M. Kawamukai, 2017
YMP36	h leu1-32 ura4-D18 pka1∷ura4	Y. Matsuo and M. Kawamukai, 2017
YMP37	h+ leu1-32 ura4-D18 pka1::ura4	Lab stock
YMP39	h ⁻ leu1-32 ura4-D18 gpa2::ura4	Y. Matsuo and M. Kawamukai, 2017
YMP40	h leu1-32 ura4-D18 cgs1∷ura4	Y. Matsuo and M. Kawamukai, 2017
YMP41	h+ leu1-32 ura4-D18 cgs1∷ura4	Lab stock
YMP43	h+ leu1-32 ura4-D18 git3∷ura4	Y. Matsuo and M. Kawamukai, 2017
YMP130	h ⁻ leu1-32 ura4-D18 rst2::kanMX6	K. Takenaka et al., 2018
YMP131	h+ leu1-32 ura4-D18 rst2::kanMX6	Lab stock
YMP177	<i>h</i> ⁺ <i>leu1-32, ura4-D18 cgs1∷natMX6</i>	Lab stock
YMP179	h+ leu1-32, ura4-D18 pka1::natMX6	Lab stock
YMP201	h ⁻ leu1-32 ura4-D18 rst2::natMX6	Lab stock
YMP220	h ⁻ leu1-32 ura4-D18 pka1::ura4 rst2::natMX6	Lab stock

Table S2. Kinase gene deletion mutants used in this study

Strains name	Genotype	Product	-		
MBY1747-2	/CC1322.12::ura4 (bub1)	serine/threonine protein kinase	- MBY1802	/AC1D4 13ura4 (bvr1)	MAP kinase kinase
MBY1748	/CC74.03C::ura4 (ssp2)	serine/threonine protein kinase	MBV1802	/CC1885 03::uro4 (woo1)	M nhase inhibitor protein kinase
MBY1749	/CC63.08::ura4 (atg1)	autophagy and CVT pathway serine/threonine protein	MDV1805	(AC2C7 OC autra 4 (weer)	soring (through a protein kingge moiotic
		kinase	IVID 11805	/AC3C7.08C::ura4 (pit1)	serine/threohine protein kinase, melotic
MBY1750	/CC417.06c::ura4 (mug27)	meiosis specific protein kinase	MB11806	/AC1F3.02c::ura4 (mkn1)	MEK KINASE (MEKK)
MBY1751	/CC24B10.07::ura4 (gad8)	AGC family protein kinase	MBY1807	/AC27E2.09::ura4 (mak2)	histidine kinase
MBY1753	/CC1020.10::ura4 (oca2)	serine/threonine protein kinase	MBY1808	/AC19E9.02::ura4 (fin1)	serine/threonine protein kinase, NIMA related
MBY1754	/BC8D2.01::ura4 (gsk31)	serine/threonine protein kinase	MBY1809	/AC1805.05::ura4 (cki3)	serine/threonine protein kinase
MBY1755	/BC725.06c::ura4 (ppk31)	serine/threonine protein kinase	MBY1810	/CC18B5.11c::ura4 (cds1)	replication checkpoint kinase
MBY1756	/BC6B1.02::ura4 (ppk30)	Ark1/Prk1 family protein kinase	MBY1811	/AC24B11.06::ura4 (sty1)	MAP kinase
MBY1/5/	/BC557.04::ura4 (ppk29)	Ark1/Prk1 family protein kinase	MBY1812	/AC1687.15::ura4 (gsk3)	serine/threonine protein kinase
	/BC337.04::ura4 (ppk27)	serine/threonine protein kinase	MBY1813	/BC12D12 04c.:ura4 (nck2)	protein kinase C (PKC)-like
MBV1760	/BCBC21.03c::ura4 (ppk23)	serine/threenine protein kinase	MBV1814	/BC660 14::uro4 (mik1)	mitatic inhibitar kinasa
MBV1761	/BC18H10 15::ura4 (ppk24)	serine/threenine protein kinase	MDV1014		kistidia kiass
MBY1762	/BC1861 09::ura4 (ppk23)	serine/threonine protein kinase	IVIB 1815	/AC1834.08::ura4 (mak1)	
MBY1763	/BC16F9 13::ura4 (ksp1)	serine/threonine protein kinase	MBY1816	/BC530.14c::ura4 (dsk1)	SR protein-specific kinase
MBY1764	/BC119.07::ura4 (ppk19)	serine/threonine protein kinase	MBY1817	/BC1347.06c::ura4 (cki1)	serine/threonine protein kinase
MBY1765	/AC890.03::ura4 (ppk16)	serine/threonine protein kinase	MBY1818	/AC57A10.02::ura4 (cdr2)	serine/threonine protein kinase
MBY1766	/AC4G8.05::ura4 (ppk14)	serine/threonine protein kinase	MBY1820	/CC297.03::ura4 (ssp1)	serine/threonine protein kinase
MBY1767	/AC3H1.13::ura4 (ppk13)	serine/threonine protein kinase	MBY1821	/BC543.07::ura4 (pek1)	MAP kinase kinase
MBY1768	/AC2F3.15::ura4 (lsk1)	P-TEFb-associated cyclin-dependent protein kinase	MBY1822	/CC4G3.08::ura4 (psk1)	serine/threonine protein kinase
MBY1769	/AC2C4.14c::ura4 (ppk11)	PAK-related kinase	MBY1823	/AC14C4 03ura4 (mek1)	Cds1/Bad53/Chk2 family protein kinase
MBY1770	/AC29A4.16::ura4 (hal4)	halotolerence protein 4	MBV1825	/AC1D4 06c::ura4 (csk1)	cyclin-dependent kinase activating kinase
MBY1771	/AC23H4.17c::ura4 (srb10)	cyclin-dependent protein Srb mediator subunit kinase	MDV1025		NIM1 family spring /throaning protein kingse
MBY1772	/AC23H4.02::ura4 (ppk9)	serine/threonine protein kinase	NID11020	/AC044.000ura4 (curi)	
MBY1773	/AC22G7.08::ura4 (ppk8)	serine/threonine protein kinase	MBY1827	/AC16C9.07::ura4 (pom2)	serine/threonine protein kinase
MBY1774	/AC22E12.14c::ura4 (sck2)	serine/threonine protein kinase	MBY1828	/BC1778.10c::ura4 (ppk21)	serine/threonine protein kinase
MBY1775	/AC222.07c::ura4 (hri2)	eIF2 alpha kinase	MBY1830	/CP1E11.02::ura4 (ppk38)	Ark1/Prk1 family protein kinase
MBY1776	/AC20G4.03c::ura4 (hri1)	eIF2 alpha kinase	MBY1831	/AC140.05::ura4 (ppk1)	serine/threonine protein kinase
MBY1777	/AC823.03::ura4 (ppk15)	serine/threonine protein kinase	MBY1832	/APJ736.02c::ura4 (ppk6)	serine/threonine protein kinase
MBY1778	/AC1D4.11c::ura4 (lkh1)	dual specificity protein kinase	MBY1836	/BP35G2.05c::ura4 (cki2)	serine/threonine protein kinase
MBY1779	/AC15A10.13::ura4 (ppk3)	HEAT repeat protein	MBY1837	/CC16C4.11::ura4 (pef1)	Pho85/PhoA-like cyclin-dependent kinase
MBY1780	/AC12B10.14c::ura4 (ppk2)	serine/threonine protein kinase	MBY1838	/BC216.05ura4 (rad3)	ATR checkpoint kinase
MBY1/81	/AC167.01::ura4 (ire1)	serine/threonine protein kinase Ppk4/ sensor for	MBV1840	/BC336 14c::ura4 (npk26)	sering/threening protein kinase PAN complex subunit
MDV1700	(CC162 10red (ppk22)	unfolded proteins in the EK	MDV1040	(CC1010 02cuuro4 (cmk2)	AMD activated protein kinase, PAN complex subunit
MRV1783	/CC1322.08:ura4 (ppk55)	MARK-activated protein kinase	NID11041		Amp-activated protein kinase beta subunit
MBV178/	/AC961 02::ura4 (six1)	MAP kinase kinase kinase	MBY1842	/AC1006.09::ura4 (Win1)	MAP kinase kinase kinase
MBY1785	/BC21C3 18::ura4 (spo4)	serine/threonine protein kinase	MBY1844	/BP23A10.10::ura4 (ppk32)	serine/threonine protein kinase
MBY1786	/AC1E5.09cura4 (shk2)	PAK-related kinase	MBY1845	/AC17G8.14c::ura4 (pck1)	protein kinase C (PKC)-like
MBY1787	/BC106.10::ura4 (pka1)	cAMP-dependent protein kinase catalytic subunit			
MBY1789	/BC8D2.19::ura4 (mde3)	serine/threonine protein kinase, meiotic			
MBY1790	/AC23C4.12::ura4 (hhp2)	serine/threonine protein kinase			
MBY1791	/AC23A1.06c::ura4 (cmk2)	MAPK-activated protein kinase			
MBY1792	/CC1259.13::ura4 (chk1)	Chk1 protein kinase			
MBY1793	/BC1D7.05::ura4 (byr2)	MAP kinase kinase kinase			
MBY1795	/BC119.08::ura4 (pmk1)	MAP kinase			
MBY1796	/AC2F7.03c::ura4 (pom1)	DYRK family protein kinase			
MBY1797	/BC1271.16c::ura4 (mph1)	dual specificity protein kinase			
MBY1798	/CC74.06::ura4 (mak3)	histidine kinase			
MBY1799	/BC3H7.15::ura4 (hhp1)	serine/threonine protein kinase			
MBY1800	/ACUNK12.02::ura4 (cmk1)	calcium/calmodulin-dependent protein kinase			
MBY1801	/CC1450.11c::ura4 (cek1)	serine/threonine protein kinase	_		

Fig. S1 Effect of kinase gene disruption on CoQ₁₀ production. CoQ₁₀ productivity in 87 kinase gene disruptants was compared with that of the reference strain PR109. Strains were grown at 30°C in YES complete medium. The preculture was inoculated at 1×10^5 cells/mL and harvested after 48 hours growth. CoQ₁₀ was extracted and analyzed. Bars represent CoQ₁₀ content normalized against cell number (μ g/100 mL/1 \times 10⁹ cells). For the wild type, data are represented as means ± SD of four measurements.

Fig. S2 Evaluation of CoQ₁₀ production in various *pka1* and *cgs1* disruptants. CoQ₁₀ productivity was compared between $\Delta cgs1$ or $\Delta pka1$ and the wild type strains (PR109 and PR110). Experimental conditions were similar to those in Fig. 4b. Data are means \pm SD of three or four measurements. Asterisks on bars denote statistically significant differences (** *p*<0.01, * *p*≤0.05) relative to parental strain (Student's t test).

Fig. S3 Effect of *rst2* overexpression on CoQ₁₀ production. CoQ₁₀ productivity in PR110 harboring pREP3x (an empty vector), pREP3x-Rst2 (*nmt1-rst2*), or pREP3x-Rst2 C2H2 Δ (*nmt1-rst2* C2H2 Δ). The experimental procedure is similar to that of Fig. 5b. Media were inoculated at 1×10⁶ cells/mL and harvested after 24 hours growth. Asterisks on bars denote statistically significant differences (** *p*<0.01; * *p*<0.05) relative to the vector control (Student's t test).

Fig. S4 Effect of shorter incubations in maltose on CoQ_{10} production. CoQ_{10} productivity was tested in YES containing 3% maltose (w/v) with a shorter incubation time. The experimental conditions were similar to those in Fig. 6b.

Fig. S5 Western blotting for detection of Cdc2, Dlp1, Coq3, Coq4, Coq5, and Coq8. Each sample was subjected to 10.5% SDS–polyacrylamide gel electrophoresis, and analyzed by immunoblotting using rabbit antibodies against Dlp1, Coq3, Coq4, Coq5, and Coq8. Rabbit anti-PSTAIRE antibody (Cdc2) was used as a loading control of whole cell extracts. Horseradish peroxidase–fused anti-rabbit IgG was used as a secondary antibody. Arrows indicate bands corresponding to the target proteins. PR110 (W. T.); RM19 ($\Delta dlp1$); RM2 ($\Delta coq3$); LV974 ($\Delta coq4$); RM7 ($\Delta coq5$); OG2 ($\Delta coq8$). Protein bands are indicated at right.

Fig. S6 Model: How cAMP/PKA signaling affects production of CoQ_{10} . When glucose levels decrease, the synthesis of cAMP declines due to lack of activation of adenylyl cyclase. When cAMP levels are low, PKA is inactive due to formation of a complex between its catalytic subunit (Pka1) and regulatory subunit (Cgs1). Under low-glucose conditions or following deletion of the *pka1* gene, CoQ_{10} is produced at high levels.