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Abstract. This paper studies the large time behavior of a small solution to the

generalized Benjamin-Ono equation with a short range nonlinearity, i.e., with the

power of nonlinearity greater than 3. In this case, it is well-known that the solution

is asymptotically free as t → ∞. We are interested in the asymptotic expansion of the

solution, and determine the second asymptotic term. In order to specify the second

asymptotic term, we will apply a technique of Fourier series expansion.

1. Introduction

This paper is devoted to the study of the following Benjamin-Ono type equation:

∂tv +
1

2
H ∂2xv + ∂xf(v) = 0, (1.1)

v(0, ·) = v0, (1.2)

where (t, x) ∈ R+ × R, the unknown function v is real-valued, H is the Hilbert

transform, and f(v) = κ|v|p−1v with p > 3, κ ∈ R. The nonlinearity is a kind of gener-

alization from f(v) = κv2 with which the famous Benjamin-Ono equation is described

— it is used to foresee the motion of long internal gravity waves in deep stratified

fluids. For detail of physical background of the original Benjamin-Ono equation, refer

to [3, 23]. The generalization of nonlinearity as in (1.1) has been conducted, from the

mathematical point of view, to see how the dispersive effect caused by 1
2
H ∂2x con-

trols the nonlinearity, for example, in the problems of local or global well-posedness
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and asymptotic behavior of the solutions. Roughly speaking, if a datum is sufficiently

small, the nonlinearity expectedly affects the solution without so serious change and it

behaves like a solution to the associated linearized Benjamin-Ono equation. Namely

one may expect that v(t) ∼ V (t)ψ as t→ ∞, where V (t)ψ is a solution to

∂tw +
1

2
H ∂2xw = 0, (1.3)

w(0, ·) = ψ. (1.4)

To make this observation reasonable enough, we rewrite (1.1) into

∂tv +
1

2
H ∂2xv + (f ′(v)v−1∂xv)v = 0, (1.5)

where f ′(v) = pκ|v|p−1. Regarding f ′(v)v−1∂xv in (1.5) as a time-dependent potential

term, we must consider the boundedness of∥∥∥∥∫ t

0

f ′(v)v−1∂xv(τ)dτ

∥∥∥∥
∞

(1.6)

for large t > 0, where ∥·∥∞ denotes the usual L∞-norm. Since the solution v(t) behaves

like V (t)ψ a priori and it is well-known that ∥∂jxV (t)ψ∥∞ = O(t−1/2) (j = 0, 1) as t→
∞ for some suitable ψ, one may have an estimate like ∥f ′(v)v−1∂xv∥∞ = O(t−(p−1)/2).

It suggests that, if p > 3, then (1.6) is expectedly bounded for large t. Now, under the

constraint of the power of nonlinearity, i.e., p > 3, the solution seemingly exhibits the

free asymptotic profile :

v(t) ∼ V (t)ψ (1.7)

as t→ ∞. In this paper, we are further interested in the asymptotic expansion of v(t).

Precisely speaking, when we put v(t)−V (t)ψ = R(t), we want to determine the profile

of R(t). Our aim in this paper is to give a rigorous proof to (1.7) and to specify a

precise description of R(t). Our goal is the following.

Theorem 1.1. Let p > 3, and let v0 ∈ H2 ∩ H1,1 be a real-valued function with

ε0 ≡ ∥v0∥H2∩H1,1 small enough. Let v ∈ C(R+;H
2∩H1,1) be the solution to (1.1)-(1.2).

Then there exists ψ ∈ H2 ∩H1,1 and ψ1 ∈ L2 which satisfy

∥V (−t)v(t)− ψ∥H1∩H0,1 = O(t−(p−3)/2) (1.8)

and

∥V (−t)v(t)− ψ − t−(p−3)/2ψ1∥2 = o(t−(p−3)/2) (1.9)

as t→ ∞. Here, V (t) = exp(−tH ∂2x/2). Furthermore, we have

ψ̂1(ξ) =
ipκξ

π(p− 3)

∫ π

−π

∣∣∣eiθψ̂(ξ) + e−iθψ̂(ξ)
∣∣∣p−1 {

eiθψ̂(ξ)− e−iθψ̂(ξ)
}
e−iθ dθ. (1.10)
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Note that the data-solution map V (t) is unitary. Then, as we see in (1.9), we know

that v(t)− V (t)ψ ∼ t−(p−3)/2V (t)ψ1 in L
2 as t→ ∞. This implies that t−(p−3)/2V (t)ψ1

plays a role of the second asymptotic term.

We do not discuss the local well-posedness issue on (1.1) in this paper, since there

have been already several manuscripts on this problem. For example, when f(v) = κv2

(the case of the original Benjamin-Ono equation), Abdelouhab-Bona-Felland-Saut [2]

and Iorio [11] proved the local unique existence of a solution in Hs with s > 3/2 by

applying the energy method. Koch-Tzvetkov [20] solved this problem for s > 5/4 by the

combination of the energy method and Strichartz type estimate, which was improved

thereafter for s > 9/8 by Kenig-Koenig [14]. The global existence of a solution was

proved by Ponce [24] for s ≥ 3/2, Tao [25] for s ≥ 1, Burq-Planchon [4] for s > 1/4

and Ionescu-Kenig [10], Molinet-Pilod [21] for s = 0, i.e., in L2.

Benjamin-Ono equation is an integrable model and exhibits solitary wave solutions

with polynomial decay at x = ±∞. Then one may be curious about spatial decay

of the solutions. At this research target, the local existence of solutions in weighted

Sobolev spaces was proved by Abdelouhab [1], and global existence was proved by

Iorio [12]. The order of weight, which indicates the spatial decay of data, is not chosen

as much as we like. Fonseca-Ponce [6] proved the global existence of the solution

for the data in the weighted Sobolev space Hs,r with r < 5/2, where s denotes the

regularity and r the order of weight. It is remarkable that r = 5/2 is critical for

the persistence of the solution, i.e., if there exists a solution v ∈ C([0, T ];H2,2) such

that v(t1), v(t2) ∈ H5/2,5/2 at distinct times t1, t2 ∈ [0, T ], then the integral of the

initial data must be 0. This means that the strong spatial decay of the solution is

not sustainable in general. Also, in the flame of data with the 0-integral, r = 7/2

is critical, i.e., if there exists a solution v ∈ C([0, T ];H3,3) and
∫
v(t, x) dx = 0 with

v(t1), v(t2), v(t3) ∈ H7/2,7/2 at distinct three times t1, t2, t3 ∈ [0, T ], then v(t, x) ≡ 0.

Fonseca-Linares-Ponce [5] found that the properties of strong spatial decay are required

at three distinct times, which can not be reduced.

We next turn our attention to the nonlinearity : f(v) = κvp for integer p ≥ 3

(the case of the generalized Benjamin-Ono equation). Kenig-Ponce-Vega [15] proved

the local well-posedness in Hs with s > 1 if p = 3, s > 5/6 if p = 4 and s ≥ 3/4

if p ≥ 5, but the smallness of data was assumed. Their proof was based on the

contraction mapping approach with the application of smoothing estimate of Kato

type, and the regularity condition on the data arose from the estimate of maximal

function, i.e., sup0≤t≤T |v(t, x)|. It was improved by Molinet-Ribaud [22]. They proved

the local well-posedness of small-data solutions for s > 1/2 if p = 3, s > 1/3 if p = 4

and s > 1/2 − 1/(p − 1) (the scale-critical regularity) if p ≥ 5, due to the refined

estimate of the maximal function in the inhomogeneous term. Removing the smallness

assumption of data had been serious problem. Vento [26] succeeded in this problem,
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and obtained local well-posedness for arbitrary large initial data with s > 1/3 if p = 4

and s ≥ 1/2 − 1/(p − 1) if p ≥ 5. His idea to overcome the difficulty is to apply

a gauge transform, with which a heavy term in the nonlinearity is included into the

linear operator. The existence of small-data-global solution is discussed when p ≥ 5 in

[15] and when p ≥ 4 in [22]. The methods mentioned above are also applicable, under

minor modifications, in the case of f(v) = κ|v|p−1v with positive real p.

When f(v) = κvp with p ≥ 5, the asymptotic profile of the solution is proved in [15],

and it is known that there exists some ψ ∈ H1 such that limt→∞ ∥V (−t)v(t)−ψ∥H1 = 0.

If we are allowed to use the weighted Sobolev space, it is possible to see the asymptotic

profile of the solution for smaller, fractional power of nonlinearity. When f(v) =

κ|v|p−1v with p > 3, Hayashi-Naumkin [7] proved that there exist some ψ ∈ H1 ∩H0,1

such that limt→∞ ∥V (−t)v(t) − ψ∥H1∩H0,1 = 0. To obtain this profile, the L1-L∞

estimate of V (t) was applied.

In the case of p ≤ 3, the nonlinearity of (1.1) affects the solution for large time and

so it becomes complicated to detect the asymptotic state of v(t). However, when p = 3

(we call it the critical power of nonlinearity), Hayashi-Naumkin [8, 7] proved that the

solution asymptotically tends to a modified free state, and found that the modification

is resulted from the long-range nonlinearity. It is interesting to determine the second

asymptotic term in the case of the critical power of nonlinearity, but the estimate turns

out to be rather complicated. We will try this problem in another manuscript.

The problem of seeking for the second asymptotic term of solutions has been con-

sidered in some other equations. On nonlinear Schrödinger equations (NLS), refer to

Kita [16], Kita-Ozawa [17] for short-range nonlinearity and Kita-Wada [18, 19] for long-

range nonlinearity. On Hartree type equations (H), refer to Wada [27]. Theorem 1.1 is

the statement on the asymptotic expansion of solutions to the generalized Benjamin-

Ono equation. Unlike (NLS) and (H), the time-global estimate of v(t) in the weighted

Sobolev space is hard to be obtained. One of the reasons is that the free Schrödinger

group U(t) = exp(it∂2x/2) has a nice factorization U(t) = M(t)D(t)FM(t), but the

operator V (t) does not. Here M(t) denotes the multiplication of exp(ix2/2t), D(t)

the dilation defined by D(t)η(x) = (it)−1/2η(x/t) and F the Fourier transform. This

is also because the operator V (t)xV (−t) does not work so well in the nonlinearity of

(1.1) and the analogy in (NLS) and (H) is not applied so simply. We will reduce (1.1)

into a nonlinear Schrödinger equation (2.1) which contains a nonlinearity described

as P∂xf(2RePu), where the operator P denotes the projection onto the positive fre-

quency part. Then the nonlinearity is no longer gauge-invariant with respect to u, and

so the modified weight operator J = U(t)xU(−t) = x+ it∂x is not applied so success-

fully. To avoid this difficulty, we will make use of the auxiliary operator I = x+2t∂t∂
−1
x

(a modified scaling generator), following the idea in [8].
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We are going to explain the outline of our strategy. Up to the proof of (2.13) in

Proposition 2.4, the standard energy estimates will be provided, and the first asymp-

totic state φ will be obtained. To prove (2.14) in Proposition 2.4, i.e., to specify the

second asymptotic state φ1, we need, after all, handling the quantity :

g(θ, x) = iκp|eiθφ̂(x) + e−iθφ̂(x)|p−1{eiθφ̂(x)− e−iθφ̂(x)}

with θ = tx2/2 − π/4 and positive real p. The idea on estimates is to use the

Fourier series expansion of g(θ, x) with {eimθ}m∈Z. Then, the asymptotic form of

U(−t)P∂xf(2RePu) integrated with respect to t comes from the term with m = 1,

whereas the other terms rapidly oscillate and turn out to be negligible as t→ ∞.

We close this section by introducing several notations used in this paper. The

Lebesgue space Lq (1 ≤ q ≤ ∞) denotes the set of functions with ∥φ∥q <∞, where

∥φ∥q =

{ (∫
R |φ(x)|

q dx
)1/q

(1 ≤ q <∞),

ess. sup|φ(x)| (q = ∞).

The Sobolev space W 1,q denotes the set of functions satisfying

∥φ∥W 1,q = ∥φ∥q + ∥∂xφ∥q <∞.

For integers s and α, the weighted Sobolev space Hs,α denotes the set of functions

satisfying

∥φ∥Hs,α =
α∑

k=0

s∑
j=0

∥xk∂jxφ∥2 <∞.

When the weight α = 0, we simply denote Hs,0 by Hs. The Fourier transform of

a function φ is defined by Fφ(ξ) = φ̂(ξ) = (2π)−1/2
∫
R e

−iξxφ(x)dx, and the inverse

Fourier transform is defined by F−1φ(x) = (2π)−1/2
∫
R e

iξxφ(ξ)dx. The commutator

of operators A and B is given by [A,B] = AB −BA.

2. Proof

Our proof relies on the reduction of (1.1) into nonlinear Schrödinger equation. To

this end, let λ(ξ) = 1 for ξ > 0 and λ(ξ) = 0 for ξ < 0. We set P = F−1λ(ξ)F as a

projection to the positive frequency part. We consider the equation

∂tu−
i

2
∂2xu+ P∂xf(2RePu) = 0, (2.1)

u(0, ·) = v0. (2.2)

Since v0 is real-valued, 2RePv0 = v0. Therefore, if u is a solution to (2.1)-(2.2), then

v = 2RePu is a solution to (1.1)-(1.2).

We set L = ∂t − i∂2x/2, I = x + 2t∂t∂
−1
x (a modified scaling generator) and J =

x + it∂x (a generator of Galilean transform), where ∂−1
x u =

∫ x

−∞ u(x′)dx′. We have
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J = U(t)xU(−t). Note that fundamental commutator relations and operator identity

like

[L, I] ≡ LI − IL = 2L∂−1
x , [L, J ] = 0, I − J = 2tL∂−1

x

hold. Since the nonlinearity in (2.1) is not gauge-invariant with respect to u, the

operator I is more convenient than J . The third identity in the above three relations

will provide the estimates of ∥J∂jxu∥2 (j = 0, 1) through those of ∥I∂jxu∥2.

Lemma 2.1. The following two estimates hold.

(i) For φ ∈ L1, we have

∥U(t)φ∥∞ + ∥PU(t)φ∥∞ ≤ C|t|−1/2∥φ∥1. (2.3)

(ii) For u ∈ C(R+;H
1 ∩H0,1), we have

∥u(t)∥∞ + ∥Pu(t)∥∞ ≤ C|t|−1/2∥u(t)∥1/22 ∥Ju(t)∥1/22 .

Proof. (i) The dispersive estimate for the Schrödinger group U(t) is well-known, and

that for PU(t) was essentially proved in Hayashi-Naumkin [7]. We will prove the latter

for the reader’s sake. We have PU(t)φ(x) =
∫∞
−∞K(t, x− y)φ(y) dy with

K(t, x) =
1

2π

∫ ∞

0

eixξ−itξ2/2 dξ =
1

2π
√
t
eix

2/2t

∫ ∞

−x/
√
t

e−iη2/2 dη.

Since |K(t, x)| ≤ C|t|−1/2, we obtain (2.3).

(ii) It follows from (2.3) that

∥u(t)∥∞ + ∥Pu(t)∥∞ ≤ C|t|−1/2∥U(−t)u(t)∥1

≤ C|t|−1/2∥U(−t)u(t)∥1/22 ∥xU(−t)u(t)∥1/22

= C|t|−1/2∥u(t)∥1/22 ∥Ju(t)∥1/22 . □

Applying Lemma 2.1, we will obtain time-global estimates of u(t).

Lemma 2.2. Let p > 3, and let v0 ∈ H2 ∩ H1,1 be a real-valued function with ε0 ≡
∥v0∥H2∩H1,1 small enough. Then the Cauchy problem (2.1)-(2.2) has a unique solution

u ∈ C(R+;H
2 ∩H1,1) which satisfies

∥U(−t)u(t)∥H2∩H1,1 + ∥Iu(t)∥2 + ∥I∂xu(t)∥2 ≤ Cε0, (2.4)

⟨t⟩1/2(∥u(t)∥W 1,∞ + ∥Pu(t)∥W 1,∞) ≤ Cε0. (2.5)

Proof. The unique existence of time-local solutions to (2.1)-(2.2) is shown due to the

energy method (refer to [9]). In what follows, we will concentrate ourselves in proving
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the time-global estimates. Let u ∈ C([0, T );H2 ∩H1,1) be a solution to (2.1)-(2.2) and

set

|||u|||2,T = sup
0≤t<T

{∥u(t)∥2H2 + ∥Iu(t)∥22 + ∥I∂xu(t)∥22}1/2,

|||v|||∞,T = sup
0≤t<T

⟨t⟩1/2∥v(t)∥W 1,∞ .

We take the H2-inner-product of the both sides of (2.1) and u(t). Then, the real part

gives

d

dt
∥u(t)∥2H2 = −

∫ ∞

−∞
{(1− ∂2x)f

′(v)∂xv}(1− ∂2x)v dx

= −
∫ ∞

−∞
{[(1− ∂2x), f

′(v(t))]∂xv(t)}(1− ∂2x)v(t) dx

− 1

2

∫ ∞

−∞
f ′(v)∂x{(1− ∂2x)v}2 dx.

Using the commutator estimate ∥[(1 − ∂2x), f
′(v)]∂xv∥2 ≤ C∥v∥p−1

W 1,∞∥v∥H2 (see Kato-

Ponce [13]) and the integration by parts, we obtain the differential inequality

d

dt
∥u(t)∥2H2 ≤ C∥v(t)∥p−1

W 1,∞∥u(t)∥2H2 . (2.6)

Next, multiplying I∂x by (2.1) and using the relation [L, I] = 2L∂−1
x together with

I∂xf(v) = f ′(v)I∂xv, we have

LI∂xu = −P∂x{f ′(v)I∂xv + f(v)}.

Taking the L2-inner-product of the both sides of this equality and I∂xu, we obtain

from the real part

d

dt
∥I∂xu(t)∥22 = −

∫ ∞

−∞
∂x{f ′(v)I∂xv + f(v)}I∂xv dx

= −
∫ ∞

−∞
{[∂x, f ′(v)]I∂xv}I∂xv dx−

1

2

∫ ∞

−∞
f ′(v)∂x(I∂xv)

2 dx

−
∫ ∞

−∞
f ′(v)∂xvI∂xv dx

≤ C∥v∥p−1
W 1,∞{∥u∥2H2 + ∥I∂xu∥22}. (2.7)

Here, we have again used the commutator estimate and the integration by parts. Sim-

ilarly, and actually more easily, we can obtain

d

dt
∥Iu(t)∥22 ≤ C∥v∥p−1

W 1,∞{∥u∥2H2 + ∥Iu∥22 + ∥I∂xu∥22}. (2.8)

Adding (2.6)-(2.8) and applying Gronwall inequality, we obtain

∥u(t)∥2H2 + ∥Iu(t)∥22 + ∥I∂xu∥22 ≤ ε20 exp

{
C

∫ t

0

∥v(τ)∥p−1
W 1,∞dτ

}
,
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which yields

|||u|||2,T ≤ ε0 exp(C1|||v|||p−1
∞,T ), (2.9)

where the constant C1 is independent of T . On the other hand, it follows from the

relation J − I = 2tL∂−1
x that

∥J∂jxu(t)∥2 ≤ ∥I∂jxu(t)∥2 + C⟨t⟩−(p−3)/2|||v|||p−1
∞,T∥u(t)∥H1

for j = 0, 1. Hence, it follows from Lemma 2.1 (ii) that

|||u|||∞,T + |||v|||∞,T ≤ C sup
0≤t<T

{∥u(t)∥H1 + ∥Ju(t)∥2 + ∥J∂xu(t)∥}

≤ C1(1 + |||v|||p−1
∞,T )|||u|||2,T . (2.10)

We put δ = min{1, (2C1)
−1/(p−1)} and choose ε0 such that ε0 ≤ δ/8C1. Let T

∗ be the

supremum of T such that |||u|||2,T ≤ 2ε0 and |||v|||∞,T ≤ δ hold. To prove the lemma,

it suffices to show that T ∗ = ∞ by contradiction. We assume that T ∗ < ∞. Then, it

follows from (2.9) and (2.10) that |||u|||2,T ∗ ≤
√
e ε0 and |||v|||∞,T ∗ ≤ 4C1ε0 ≤ δ/2, which

contradict the definition of T ∗. □

Corollary 2.3. Let p > 3, and let v0 ∈ H2 ∩ H1,1 be a real-valued function with

ε0 ≡ ∥v0∥H2∩H1,1 small enough. Then the Cauchy problem (1.1)-(1.2) has a unique

solution v ∈ C(R+;H
2 ∩H1,1) which satisfies

∥v(t)∥H2 + ∥Iv(t)∥2 + ∥I∂xv(t)∥2 ≤ Cε0, (2.11)

⟨t⟩1/2∥v(t)∥W 1,∞ ≤ Cε0. (2.12)

Proof. Let u(t) be the solution to (2.1)-(2.2) obtained in Lemma 2.2, and let v(t) =

2RePu(t). Then v(t) satisfies (1.1)-(1.2). By definition, v̂(t, ξ) = û(t, ξ) for ξ > 0,

and v̂(t, ξ) = û(t,−ξ) for ξ < 0. Since

û(t, 0) = (2π)−1/2

∫ ∞

−∞
u(t, x) dx = (2π)−1/2

∫ ∞

−∞
v0(x) dx

is real-valued, we see that v̂(t,−0) = v̂(t,+0), and hence v ∈ C(R+;H
2 ∩H1,1). The

estimates (2.11) and (2.12) clearly follow from (2.4) and (2.5) respectively. □

Proposition 2.4. Let p > 3, and let v0 ∈ H2 ∩ H1,1 with ε0 ≡ ∥v0∥H2∩H1,1 small

enough. Let u ∈ C(R+;H
2 ∩ H1,1) be the solution to (2.1)-(2.2). Then there exists

φ ∈ H2 ∩H1,1 and φ1 ∈ L2 which satisfy

∥U(−t)u(t)− φ∥H1∩H0,1 = O(t−(p−3)/2) (2.13)

and

∥U(−t)u(t)− φ− t−(p−3)/2φ1∥2 = o(t−(p−3)/2) (2.14)

as t→ ∞.
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Proof. Using Corollary 2.3, we have

∥U(−t′)u(t′)− U(−t)u(t)∥H1 ≤ C

∫ t′

t

∥U(−τ)P∂xf(v(τ))∥H1 dτ

≤ C

∫ t′

t

∥v(τ)∥p−1
W 1,∞∥v(τ)∥H2 dτ

≤ C

∫ t′

t

τ−(p−1)/2 dτ ≤ Ct−(p−3)/2

for 1 < t < t′. From this estimate, we see that there exist φ ∈ H1 such that

s- limt→∞ U(−t)u(t) = φ in H1. Moreover, from the relations [L, I]u = 2L∂−1
x u and

[I, P ]∂x = 0, we have

∥U(−t′)Iu(t′)− U(−t)Iu(t)∥2

≤ C

∫ t′

t

∥PI∂xf(v) + 2Pf(v)∥2 dτ

≤ C

∫ t′

t

∥v(τ)∥p−1
∞ (∥I∂xv(τ)∥2 + ∥v(τ)∥2) dτ ≤ Ct−(p−3)/2.

From this estimate, we see that U(−t)Iu(t) converges in L2. Since I − J = 2tL∂−1
x , it

follows that

∥U(−t)Iu(t)− xU(−t)u(t)∥2 = 2t∥Pf(v)∥2 ≤ Ct−(p−3)/2.

Hence, xU(−t)u(t) converges to xφ in L2. Thus we have proved (2.13). Furthermore,

since U(−t)u(t) is bounded in H2 ∩H1,1 and converges strongly to φ in H1 ∩H0,1, it

converges weakly in H2 ∩H1,1. Therefore, we have φ ∈ H2 ∩H1,1.

We put w(t) = FU(−t)u(t), so that ∥w(t)− φ̂∥H1∩H0,1 = O(t−(p−3)/2) by (2.13). We

can write

v(t) = 2ReU(t)F−1λw(t), ∂xv(t) = −2 ImU(t)F−1xλw(t).

Since U(t) = M(t)D(t)FM(t) where M(t) denotes the multiplication of exp(ix2/2t),

D(t) the dilation defined by D(t)η(x) = (it)−1/2η(x/t) and F the Fourier transform,

expected profiles of v(t) and ∂xv(t) are

va(t) = 2ReM(t)D(t)λφ̂ and va1(t) = −2 ImM(t)D(t)xλφ̂

respectively. Indeed, we can show

∥v(t)− va(t)∥2 + ∥∂xv(t)− va1(t)∥2 → 0

as t→ ∞, for we have

∥v(t)− va(t)∥2 ≤ 2∥U(t)F−1λ(w(t)− φ̂)∥2 + 2∥U(t)(1−M(−t))Pφ∥2
≤ 2∥w(t)− φ̂∥2 + 2∥(1−M(−t))Pφ∥2,
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and the right-hand side goes to zero by (2.13) and the Lebesgue dominated convergence

theorem. Similarly we can show ∥∂xv(t) − va1(t)∥2 → 0. Clearly, we have ∥va(t)∥∞ +

∥va1(t)∥∞ = O(t−1/2). Therefore,

∥∂xf(v(t))− f ′(va(t))va1(t)∥2
≤ ∥{f ′(v(t))− f ′(va(t))}∂xv(t)∥2 + ∥f ′(va(t)){∂xv(t)− va1(t)}∥2
≤ C(∥v(t)∥W 1,∞ + ∥va(t)∥∞)p−1(∥v(t)− va(t)∥2 + ∥∂xv(t)− va1(t)∥2)

= o(t−(p−1)/2).

From this estimate, we obtain

U(−t)u(t)− φ =

∫ ∞

t

PU(−τ)f ′(va(τ))va1(τ) dτ + o(t−(p−3)/2)

in L2 as t → ∞. We will find the precise behavior of the integral in the right-hand

side. Let D0(t)g = g(·/t), so that D(t) = e−iπ/4t−1/2D0(t). We write

U(−t)f ′(va(t))va1(t) = t−p/2U(−t)D0(t)xλ(x)g(θ, x),

where

g(θ, x) = iκp|eiθφ̂(x) + e−iθφ̂(x)|p−1{eiθφ̂(x)− e−iθφ̂(x)}

with θ = tx2/2 − π/4. Clearly, g is 2π-periodic with respect to θ, and satisfies the

estimate∣∣∣∣ ∂j+k

∂θj∂xk
g(θ, x)

∣∣∣∣ ≤ C|φ̂(x)|p−k|∂xφ̂(x)|k, 0 ≤ j + k ≤ 2, 0 ≤ k ≤ 1. (2.15)

We consider the Fourier series expansion of g:

g(θ, x) =
∞∑

n=−∞

a2n+1(x)e
i(2n+1)θ, am(x) =

1

2π

∫ π

−π

e−imθ̃g(θ̃, x) dθ̃. (2.16)

Here, we have used the property g(θ + π, x) = −g(θ, x), so that a2n(x) = 0. It follows

from (2.15) that ⟨n⟩2−k|∂kxan(x)| ≤ C|φ̂(x)|p−k|∂xφ̂(x)|k, and hence

⟨n⟩2−k∥⟨x⟩∂kxan(x)∥2 ≤ C∥φ∥pH1,1 (2.17)
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for 0 ≤ k ≤ 1. Taking (2.16) into account, with the notation
√
m = i

√
|m| for m < 0,

we write

FU(−t)f ′(va(t))va1(t)

=
∞∑

n=−∞

(−i)n t
−(p−1)/2eintξ

2/(2n+1)

√
2n+ 1

D0(2n+ 1)U(1/(2n+ 1)t)ξλ(ξ)a2n+1(ξ)

= t−(p−1)/2ξλ(ξ)a1(ξ)

+
∑
n ̸=0

(−i)n t
−(p−1)/2eintξ

2/(2n+1)

√
2n+ 1

D0(2n+ 1)ξλ(ξ)a2n+1(ξ)

+
∞∑

n=−∞

(−i)n t
−(p−1)/2eintξ

2/(2n+1)

√
2n+ 1

D0(2n+ 1)(U(1/(2n+ 1)t)− 1)ξλ(ξ)a2n+1(ξ)

= I(t) + II(t) + III(t).

Integrating by parts, for n ̸= 0 we can show∣∣∣∣ξ ∫ ∞

t

τ−(p−1)/2eiτnξ
2/(2n+1) dτ

∣∣∣∣ ≤ Cmin{|ξ|−1t−(p−1)/2; |ξ|t−(p−3)/2}

≤ Ct−(p−2)/2. (2.18)

Using (2.17) and (2.18) together with the relation D0(m)ξ = m−1ξD0(m), we obtain∥∥∥∥∫ ∞

t

II(τ) dτ

∥∥∥∥
2

≤ C
∑
n ̸=0

⟨n⟩−3∥φ∥pH1,1t
−(p−2)/2 ≤ Ct−(p−2)/2.

On the other hand, it follows from (2.17) that

∥III(t)∥2 ≤ t−(p−1)/2

∞∑
n=−∞

∥(U(1/(2n+ 1)t)− 1)ξλ(ξ)an(ξ)∥2

≤ Ct−(p−1)/2

∞∑
n=−∞

∥((2n+ 1)t)−1/2∂ξ{ξλ(ξ)a2n+1(ξ)}∥2

≤ Ct−(p−1)/2

∞∑
n=−∞

⟨n⟩−3/2t−1/2 ≤ Ct−p/2,

so that ∥
∫∞
t

III(τ) dτ∥2 ≤ Ct−(p−2)/2. Collecting the estimates above, we obtain

U(−t)u(t)− φ =

∫ ∞

t

τ−(p−1)/2F−1ξλ(ξ)a1(ξ) dτ + o(t−(p−3)/2)

= t−(p−3)/2φ1 + o(t−(p−3)/2)
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with

φ̂1(ξ) =
2

p− 3
ξλ(ξ)a1(ξ)

=
pκiξλ(ξ)

(p− 3)π

∫ π

−π

∣∣∣eiθφ̂(ξ) + e−iθφ̂(ξ)
∣∣∣p−1 {

eiθφ̂(ξ)− e−iθφ̂(ξ)
}
e−iθ dθ. (2.19)

Thus we have proved (2.14). □

Proof of Theorem 1.1. Let u(t) be the solution to (2.1)-(2.2), and let φ, φ1 be as in

Proposition 2.4. Then the solution to (1.1)-(1.2) is given by v(t) = 2RePu(t). We set

ψ = 2RePφ and ψ1 = 2RePφ1. Note that

ψ̂(ξ) =

{
φ̂(ξ) (ξ > 0)

φ̂(−ξ) (ξ < 0).

Similarly as in the proof of Corollary 2.3, we have ψ̂(−0) = ψ̂(+0), so that ψ ∈
H2 ∩H1,1. Since V (−t)v(t) = 2RePU(−t)u(t), the asymptotics (1.8) and (1.9) follow

from (2.13) and (2.14) respectively. The equality (1.10) follows from (2.19) □
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