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ABSTRACT. We study the Cauchy problem for the nonlinear Schrödinger equation with power nonlin-
earity in the fractional order Sobolev space 𝐻𝑠(ℝ𝑛). We consider the case where the nonlinear term is
𝐻𝑠-critical and the differentiability thereof is less than 𝑠. We prove the existence of time global solu-
tions of the Cauchy problem for small initial data. To this end, we prove Strichartz type estimates for
linear inhomogeneous Schrödinger equations in mixed Besov spaces.

1. INTRODUCTION

This paper is devoted to the study of nonlinear Schrödinger equation with power nonlinearity:

𝜕𝑡𝑢 + 𝑖Δ𝑢 = 𝑓 (𝑢), (1.1)

𝑢(0, ⋅) = 𝑢0, (1.2)

where 𝑢 ∶ ℝ1+𝑛 → ℂ, and 𝑓 (𝑢) = 𝜅|𝑢|𝑝−1𝑢 or 𝑓 (𝑢) = 𝜅|𝑢|𝑝 with 𝑝 > 1, 𝜅 ∈ ℂ.
The solvability of the Cauchy problem (1.1)-(1.2) in the Sobolev space 𝐻𝑠 ∶= 𝐻𝑠(ℝ𝑛) has been

studied in a large amount of literature. In this paper, we consider the case 0 ≤ 𝑠 < 𝑛∕2 and 𝑝 =
𝑝(𝑠) ∶= 1 + 4∕(𝑛 − 2𝑠). The equation (1.1) is invariant by the scaling 𝑢𝜆(𝑡, 𝑥) = 𝜆2∕(𝑝−1)𝑢(𝜆2𝑡, 𝜆𝑥)
for any 𝜆 > 0, and ‖𝑢𝜆(0, ⋅)‖�̇�𝑠 ∶= ‖(−Δ)𝑠∕2𝑢𝜆(0, ⋅)‖𝐿2 is also invariant if 𝑝 = 𝑝(𝑠). Namely, from
the scaling point of view, 𝑝(𝑠) is the critical exponent in 𝐻𝑠(ℝ𝑛).

Cazenave and Weissler [3] have shown the time local well-posedness, and the existence of the
time global solutions for small data of the Cauchy problem (1.1)-(1.2) for 0 ≤ 𝑠 < 𝑛∕2 and [𝑠] + 1 <
𝑝 ≤ 𝑝(𝑠), where [𝑠] denotes the largest integer less than or equal to 𝑠 (see also [12, Theorem 6.1] by
Kato). The condition [𝑠] + 1 < 𝑝 is the required regularity for 𝑓 (𝑢), which can be improved to 𝑠 < 𝑝
based on the nonlinear estimates by Ginibre, Ozawa and Velo in [6], and the first author and Ozawa
in [14] (see Lemma 2.2 in the present paper).
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The well-posedness has been also considered under the conditions 0 ≤ 𝑠 < 𝑛∕2 and 𝑝0(𝑠) < 𝑝 <
𝑝(𝑠), where 𝑝0(𝑠) is defined by

𝑝0(𝑠) ∶=

⎧⎪⎨⎪⎩
1 for 𝑠 ≤ 2,
𝑠 − 1 for 2 < 𝑠 < 4,
𝑠 − 2 for 4 ≤ 𝑠.

The existence of time local solutions of (1.1)-(1.2) under these conditions has been shown by Tsut-
sumi [21] for 𝑠 = 0, Ginibre and Velo [7, Theorem 3.1] for 𝑠 = 1 (see also [8]), Tsutsumi [20] for
𝑠 = 2 for 𝑓 (𝑢) = 𝜆|𝑢|𝑝−1𝑢 with 𝑖𝜆 ∈ ℝ mainly by the use of the 𝐿𝑝 − 𝐿𝑞 estimate and the regular-
ization technique. Kato [10,11] used the Strichartz estimate and gave alternative proofs for the cases
𝑠 = 0, 1, 2 both for 𝑓 (𝑢) = 𝜆|𝑢|𝑝−1𝑢 and 𝑓 (𝑢) = 𝜆|𝑢|𝑝 with 𝜆 ∈ ℂ. Pecher [16] used the fractional
Besov space for the time variable and proved the result when 𝑠 is a real number with 1 < 𝑠 < 𝑛∕2
and 𝑝0(𝑠) < 𝑝 < 𝑝(𝑠). He has also shown the existence of time global solutions for small data.

While the condition 𝑝0(𝑠) < 𝑝 for 𝑠 ≤ 2 and 𝑠 ≥ 4 is natural since 1 < 𝑝 and the 𝑠-derivative
of 𝑢 by the spatial variables requires the (𝑠 − 2)-derivative of 𝑓 (𝑢) by (1.1), the condition 𝑝0(𝑠) < 𝑝
for 2 < 𝑠 < 4 is discontinuous at 𝑠 = 4, and it should be replaced by 𝑠∕2 < 𝑝 since one time
derivative corresponds to two spatial derivatives. In this direction, the special case 𝑠 = 2 and 1 <
𝑝 ≤ 𝑝(2) was proved in [3, Theorem 1.4] (see also [2]). Although the other case has been left open for
long time, we need fractional order time derivatives of 𝑢 to implement this procedure. To this end,
Pecher [16, Propositions 2.5, 2.6] introduced a modification of the Strichartz estimates by which we
can replace the spatial derivative of order 𝑠 with the fractional order time derivative of order 𝑠∕2 in
terms of Besov spaces (see also [5,22,23]). The second author and Uchizono improved the condition
𝑝0(𝑠) < 𝑝 < 𝑝(𝑠) to 𝑠∕2 < 𝑝 < 𝑝(𝑠) for 2 < 𝑠 < 4 in [23] (see also [24]) based on the method in [16].
However, the methods in [16] and [23] are not applicable to time global solutions for the critical case
𝑝 = 𝑝(𝑠) by the technical conditions on the Strichartz estimates there. Especially, the interpolation
argument to construct the Strichartz estimates prevent us from treating the critical point 𝑝 = 𝑝(𝑠) in
its application to the Cauchy problem. In [15], the present authors have considered the critical case
0 ≤ 𝑠 < 𝑛∕2 and 𝑠∕2 < 𝑝 = 𝑝(𝑠) by the modification of the Strichartz estimates in [16] and [23]
to the scaling invariant estimates. However, in the most difficult case where 𝑠∕2 < 𝑝(𝑠) < 2 with
3 ≤ 𝑠 < min{4; 𝑛∕2}, or equivalently where 11 ≤ 𝑛 ≤ 13 and

3 ≤ 𝑠 <

⎧⎪⎨⎪⎩
(𝑛 − 4)∕2, 𝑛 = 11, 12,

(17 −
√
17)∕4, 𝑛 = 13,

(1.3)

we further imposed a technical assumption

(i) 𝑛 = 11; or (ii) 𝑛 = 12 and 7 −
√
15 ≤ 𝑠 < 5 −

√
3 (1.4)

to obtain time global solutions for small data. The reason why we imposed (1.4) in [15] is explained at
the end of §4. In this paper, we have succeeded in removing this technical assumption. Furthermore,
compared with the proofs in [15] for the existence of the time global solutions to (1.1)-(1.2), our
proof has become much simpler by the use of Theorem 1.2 below, especially the mixed space-time
inequality in the Besov space given by (1.9).
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To state our result, we set the condition for the nonlinear term 𝑓 (𝑢). For 1 < 𝑝 < ∞, we say that
𝑓 satisfies 𝑁(𝑝) if 𝑓 ∈ 𝐶1(ℂ,ℂ) in the sense of the derivatives by 𝑧 and �̄�, 𝑓 (0) = 𝑓 ′(0) = 0, and

|𝑓 ′(𝑧1) − 𝑓 ′(𝑧2)| ≤ {
𝐶 max
𝑤=𝑧1,𝑧2

|𝑤|𝑝−2|𝑧1 − 𝑧2| if 𝑝 ≥ 2,

𝐶|𝑧1 − 𝑧2|𝑝−1 if 1 < 𝑝 < 2
(1.5)

for any 𝑧1, 𝑧2 ∈ ℂ. We note that 𝑓 (𝑧) = 𝜅|𝑧|𝑝−1𝑧 and 𝑓 (𝑧) = 𝜅|𝑧|𝑝 with 𝜅 ∈ ℂ satisfy 𝑁(𝑝)
(see [9, Remark 2.3′]). We obtain the following time global solutions:

Theorem 1.1. Let 1 < 𝑠 < min{4; 𝑛∕2} and 𝑠∕2 < 𝑝 = 𝑝(𝑠) = 1 + 4∕(𝑛 − 2𝑠). Let 𝑓 satisfy the
condition 𝑁(𝑝). Then, for any 𝑢0 ∈ 𝐻𝑠(ℝ𝑛) with ‖𝑢0‖𝐻𝑠 sufficiently small, there exists a unique
solution 𝑢 ∈ 𝐶(ℝ,𝐻𝑠(ℝ𝑛)) to (1.1)-(1.2).

To prove Theorem 1.1, we derive Strichartz type estimates in mixed Besov spaces. For 𝜃 ∈ ℝ,
1 ≤ 𝑞, 𝛼 ≤ ∞ and a Banach space 𝑉 , 𝐿𝑞(ℝ, 𝑉 ) and 𝐵𝜃𝑞,𝛼(ℝ, 𝑉 ) denote the 𝑉 -valued Lebesgue and
Besov spaces on ℝ respectively. In what follows, we often write 𝐿𝑞(𝑉 ) = 𝐿𝑞(ℝ, 𝑉 ) and 𝐵𝜃𝑞,𝛼(𝑉 ) =
𝐵𝜃𝑞,𝛼(ℝ, 𝑉 ) for short. We refer to (2.1) in Section 2 for the definition of the Besov space𝐵𝜃𝑞,𝛼(𝑉 ). The
Chemin-Lerner type space 𝓁2(𝐿𝑞(𝐿𝑟)) ∶= 𝓁2(ℤ+, 𝐿𝑞(ℝ, 𝐿𝑟(ℝ𝑛))), which was introduced in [4], is
defined by the totality of all functions on ℝ1+𝑛 with

‖𝑢‖𝓁2(𝐿𝑞(𝐿𝑟)) = {‖𝜓 ∗𝑥 𝑢‖2𝐿𝑞(𝐿𝑟) + ∞∑
𝑘=1

‖𝜑𝑘 ∗𝑥 𝑢‖2𝐿𝑞(𝐿𝑟)}1∕2
< ∞.

Here, 𝜓 and 𝜑𝑘 are Littlewood-Paley functions on ℝ𝑛 defined in §2. The space 𝓁2(𝐵𝜃𝑞,𝛼(𝐿
𝑟)) ∶=

𝓁2(ℤ+, 𝐵𝜃𝑞,𝛼(ℝ, 𝐿
𝑟(ℝ𝑛))) is defined analogously.

Definition. Let 𝑛 ≥ 1. A pair of numbers (𝑞, 𝑟) is said to be admissible if 2 ≤ 𝑞, 𝑟 ≤ ∞ and
2∕𝑞 = 𝛿(𝑟) ∶= 𝑛∕2 − 𝑛∕𝑟 with (𝑛, 𝑞, 𝑟) ≠ (2, 2,∞).

We obtain the following Strichartz type estimates:

Theorem 1.2. Let 𝑛 ≥ 1, 0 < 𝜃 < 1, and 0 < 𝜎 < 2. Let (𝑞, 𝑟) and (𝛾, 𝜌) be admissible pairs with
𝜌 ≠ ∞. Let 1 < 𝑞0, 𝑞1, �̄�0, �̄�1 <∞ satisfy 2∕𝑞0 − 𝛿(�̄�0) = 2(1 − 𝜃), 2∕𝑞1 − 𝛿(�̄�1) = 2 − 𝜎 and 𝑞1 ≤ 𝑞.
Then, the solution 𝑢 to

𝜕𝑡𝑢 + 𝑖Δ𝑢 = 𝑓, 𝑢(0, ⋅) = 𝑢0 (1.6)

satisfies the following inequalities:

‖𝑢‖𝐵𝜃𝑞,2(𝐿𝑟) ≲ ‖𝑢0‖𝐻2𝜃 + ‖𝑓‖𝐵𝜃
𝛾′ ,2

(𝐿𝜌′ ) + ‖𝑓‖𝓁2(𝐿𝑞0 (𝐿�̄�0 )), (1.7)

‖𝑢‖𝐿𝑞(𝐵𝜎𝑟,2) ≲ ‖𝑢0‖𝐻𝜎 + ‖𝑓‖𝐵𝜎∕2
𝛾′ ,2

(𝐿𝜌′ ) + ‖𝑓‖𝓁2(𝐿𝑞1 (𝐿�̄�1 )). (1.8)

We have 𝑢 ∈ 𝐶(ℝ,𝐻𝜎(ℝ𝑛)) if the right-hand side of (1.8) is finite. Moreover, if 𝜃 > 𝜎∕2, then 𝑢
satisfies the following inequality:

‖𝑢‖𝐵𝜃−𝜎∕2𝑞,2 (𝐵𝜎𝑟,2)
≲ ‖𝑢0‖𝐻2𝜃 + ‖𝑓‖𝐵𝜃

𝛾′ ,2
(𝐿𝜌′ ) + ‖𝑓‖𝓁2(𝐿𝑞0 (𝐿�̄�0 )) + ‖𝑓‖

𝓁2(𝐵𝜃−𝜎∕2𝑞1 ,2
(𝐿�̄�1 )). (1.9)

If 𝑞0 ≤ 𝑞, then we do not need the last term in the right-hand side of (1.9).

The inequality (1.9), which is essentially used to get rid of the technical assumption (1.4), is a
new ingredient in this paper; on the other hand (1.7) and (1.8) have already been proved in [15]. As
we have mentioned above, these types of estimates were first derived in Pecher [16]. The advantage
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of Theorem 1.2 is that the homogeneous counterparts of (1.7)-(1.9) are scale-invariant, so that these
estimates are applicable to critical nonlinear problem, while the estimates in [16] are not. In [16], es-
timates like (1.7) and (1.8) are proved, but (𝑞, 𝑟) is restricted to (𝛾, 𝜌) or (∞, 2), and more importantly,
𝑙2(𝐿𝑞0 (𝐿�̄�0 )) in (1.7) is replaced with ∩±𝐿𝑞± (𝐿�̄�± ), where the pair (𝑞±, �̄�±) is defined by

(1∕𝑞±, 1∕�̄�±) = (1 − 𝜃 ∓ 𝜀)(1∕𝛾 ′, 1∕𝜌′) + (𝜃 ± 𝜀)(1∕𝑞, 1∕𝑟) (1.10)

for 𝜀 > 0; similarly 𝑙2(𝐿𝑞1 (𝐿�̄�1 )) in (1.8) is also replaced with ∩±𝐿𝑞± (𝐿�̄�± ), where (𝑞±, �̄�±) is in this
case defined by (1.10) with 𝜃 replaced with 𝜎∕2. The space𝐿𝑞± (ℝ, 𝐿𝑟± (ℝ𝑛)) has different scale from
�̇�𝜃𝑞,2(ℝ, 𝐿

𝑟(ℝ𝑛)) because of the presence of 𝜀 in (1.10).
The methods to prove Theorems 1.1, 1.2 will be applicable to the analogous equation to (1.1)

which has different order of derivatives for time and spatial variables.

2. PRELIMINARIES

We first review the definition of Besov spaces. For the detail, we refer the reader to [1, 17, 19].
Let 𝜑 be a function on ℝ whose Fourier transform �̂� is a non-negative, even smooth function which
satisfies supp �̂� ⊂ {𝜏 ∈ ℝ; 1∕2 ≤ |𝜏| ≤ 2} and

∑∞
𝑗=−∞ �̂�(𝜏∕2

𝑗) = 1 for 𝜏 ≠ 0. For 𝑗 ∈ ℤ, we
set 𝜑𝑗 = ℱ −1�̂�(⋅∕2𝑗) and 𝜓𝑗 =

∑𝑗
𝑘=−∞ 𝜑𝑘. If 𝑗 = 0, we simply write 𝜓 = 𝜓0. Let 𝜃 ∈ ℝ and

1 ≤ 𝑞, 𝛼 ≤ ∞. For a Banach space 𝑉 , we define the 𝑉 -valued Besov space 𝐵𝜃𝑞,𝛼(𝑉 ) ∶= 𝐵𝜃𝑞,𝛼(ℝ, 𝑉 )
by the set of all 𝑢 ∈ 𝒮 ′(ℝ, 𝑉 ) satisfying ‖𝑢‖𝐵𝜃𝑞,𝛼(𝑉 ) <∞, where

‖𝑢‖𝐵𝜃𝑞,𝛼(𝑉 ) = ‖𝜓 ∗𝑡 𝑢‖𝐿𝑞(𝑉 ) +

⎧⎪⎪⎨⎪⎪⎩

{ ∞∑
𝑗=1

(
2𝜃𝑗‖𝜑𝑗 ∗𝑡 𝑢‖𝐿𝑞(𝑉 )

)𝛼 }1∕𝛼
if 𝛼 < ∞,

sup
𝑗≥1 2

𝜃𝑗‖𝜑𝑗 ∗𝑡 𝑢‖𝐿𝑞(𝑉 ) if 𝛼 = ∞.
(2.1)

We also need Littlewood-Paley decomposition on ℝ𝑛. For 𝑥 ∈ ℝ𝑛, we define 𝜓𝑘(𝑥) and 𝜑𝑘(𝑥) by

𝜓𝑘(𝑥) =
1

(2𝜋)𝑛 ∫ℝ𝑛 𝑒
𝑖𝑥𝜉�̂�𝑘(|𝜉|) 𝑑𝜉 and 𝜑𝑘(𝑥) =

1
(2𝜋)𝑛 ∫ℝ𝑛 𝑒

𝑖𝑥𝜉�̂�𝑘(|𝜉|) 𝑑𝜉
respectively. If 𝑛 = 1, then these functions coincide with previous ones. For 𝑠 ∈ ℝ and 1 ≤ 𝑟, 𝛼 ≤ ∞,
the Besov space 𝐵𝑠𝑟,𝛼 ∶= 𝐵𝑠𝑟,𝛼(ℝ

𝑛) is defined by the set of all 𝑢 ∈ 𝒮 ′(ℝ𝑛) satisfying

‖𝑢‖𝐵𝑠𝑟,𝛼 = ‖𝜓 ∗𝑥 𝑢‖𝐿𝑟 + { ∞∑
𝑘=1

(
2𝑠𝑘‖𝜑𝑘 ∗𝑥 𝑢‖𝐿𝑟)𝛼 }1∕𝛼

< ∞,

with trivial modification as above if 𝛼 = ∞. In this paper, we use the notation 𝜑𝑘∕2 = �̂�𝑘(−Δ) =
ℱ −1
𝜉 �̂�𝑘(|𝜉|2). This is an abuse of symbol, but no confusion is likely to arise. This notation matches

the equivalence

‖𝑢‖𝐵𝑠𝑟,𝛼 ∼ ‖ℱ −1
𝑥 �̂�(|𝜉|2)�̂�(𝜉)‖𝐿𝑟 + { ∞∑

𝑘=1
(2𝑠𝑘∕2‖𝜑𝑘∕2 ∗𝑥 𝑢‖𝐿𝑟 )𝛼}1∕𝛼

,

with trivial modification if 𝛼 = ∞. For the proof, see [15, Lemma 2.3].
We prepare the following estimates. The first result is the interpolation inequality in the Besov

space for the time variable.
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Lemma 2.1 (see e.g., [15, Lemma 2.2]). Let 𝑠 ∈ ℝ, 0 < 𝜃 < 1, 1 ≤ 𝑞0, 𝑞1 ≤ ∞, 1 ≤ 𝛼 ≤ ∞.
Put 1∕𝑞 ∶= (1 − 𝜃)∕𝑞0 + 𝜃∕𝑞1. Let 𝑉 , 𝑉0, 𝑉1 be Banach spaces which satisfy 𝑉0 ∩ 𝑉1 ⊂ 𝑉 and‖𝑢‖𝑉 ≲ ‖𝑢‖1−𝜃𝑉0

‖𝑢‖𝜃𝑉1 for any 𝑢 ∈ 𝑉0 ∩ 𝑉1. Then the inequality

‖𝑢‖𝐵𝜃𝑠𝑞,𝛼∕𝜃(𝑉 ) ≲ ‖𝑢‖1−𝜃
𝐵0
𝑞0 ,∞(𝑉0)

‖𝑢‖𝜃𝐵𝑠𝑞1 ,𝛼(𝑉1)
holds for any 𝑢 ∈ 𝐵0

𝑞0,∞
(ℝ, 𝑉0) ∩ 𝐵𝑠𝑞1,𝛼(ℝ, 𝑉1).

The second result is the estimate for the nonlinear term in the Besov space for the spatial variables.

Lemma 2.2. Let 1 < 𝑝 < ∞, 0 < 𝑠 < min{2; 𝑝}, 1 ≤ 𝑟0, 𝑟1, 𝜌, 𝛼 ≤ ∞. Let 𝑓 satisfy 𝑁(𝑝). Let
1∕𝑟0 = (𝑝 − 1)∕𝜌 + 1∕𝑟1. Then we have

‖𝑓 (𝑢)‖�̇�𝑠𝑟0 ,𝛼 ≲ ‖𝑢‖𝑝−1𝐿𝜌 ‖𝑢‖�̇�𝑠𝑟1 ,𝛼 (2.2)

for any 𝑢 ∈ 𝐿𝜌(ℝ𝑛) ∩ �̇�𝑠𝑟1,𝛼(ℝ
𝑛). Moreover, if 𝑠 < min{1; 𝑝 − 1}, then the estimate

‖𝑓 (𝑢) − 𝑓 (𝑣)‖�̇�𝑠𝑟0 ,𝛼
≲

⎧⎪⎨⎪⎩
‖𝑢 − 𝑣‖𝑝−1𝐿𝜌 ‖𝑢‖�̇�𝑠𝑟1 ,𝛼 + ‖𝑣‖𝑝−1𝐿𝜌 ‖𝑢 − 𝑣‖�̇�𝑠𝑟1 ,𝛼 if 𝑝 ≤ 2,(‖𝑢‖𝐿𝜌∩�̇�𝑠𝑟1 ,𝛼 + ‖𝑣‖𝐿𝜌∩�̇�𝑠𝑟1 ,𝛼)𝑝−1 ‖𝑢 − 𝑣‖𝐿𝜌∩�̇�𝑠𝑟1 ,𝛼 if 𝑝 > 2

(2.3)

holds for 𝑢, 𝑣 ∈ 𝐿𝜌(ℝ𝑛) ∩ �̇�𝑠𝑟1,𝛼(ℝ
𝑛).

Proof. For the proof of (2.2), see [6, Lemma 3.4] or [15, Lemma 2.1]. We prove (2.3); we only
consider the case 𝑝 ≤ 2, but we can treat the case 𝑝 > 2 similarly. For 𝑢 ∶ ℝ𝑛 → ℂ, 𝜏 ∈ ℝ𝑛 and
0 ≤ 𝜃 ≤ 1, we set 𝛿𝜏𝑢 = 𝑢(⋅ + 𝜏) − 𝑢 and 𝑢𝜃 = 𝑢 + 𝜃𝛿𝜏𝑢. We use the representation

‖𝑢‖�̇�𝑠𝑟1 ,𝛼 ∼ (
∫ℝ𝑛 ‖𝛿𝜏𝑢‖𝛼𝐿𝑟1 |𝜏|−𝛼𝑠−𝑛𝑑𝜏

)1∕𝛼

for 0 < 𝑠 < 1, We have 𝛿𝜏𝑓 (𝑢) = 𝑓 (𝑢(⋅ + 𝜏)) − 𝑓 (𝑢) = ∫ 1
0 𝑓

′(𝑢𝜃)𝛿𝜏𝑢 𝑑𝜃, so that

𝛿𝜏 (𝑓 (𝑢) − 𝑓 (𝑣)) = ∫
1

0
(𝑓 ′(𝑢𝜃) − 𝑓 ′(𝑣𝜃))𝛿𝜏𝑢 𝑑𝜃 + ∫

1

0
𝑓 ′(𝑣𝜃)𝛿𝜏 (𝑢 − 𝑣) 𝑑𝜃.

By (1.5) and the Hölder inequality, we see

‖𝛿𝜏 (𝑓 (𝑢) − 𝑓 (𝑣))‖𝐿𝑟0 ≲ ∫
1

0
‖𝑢𝜃 − 𝑣𝜃‖𝑝−1𝐿𝜌 ‖𝛿𝜏𝑢‖𝐿𝑟1 𝑑𝜃

+ ∫
1

0
‖𝑣𝜃‖𝑝−1𝐿𝜌 ‖𝛿𝜏 (𝑢 − 𝑣)‖𝐿𝑟1 𝑑𝜃.

Since ‖𝑢𝜃‖𝐿𝜌 ≲ ‖𝑢‖𝐿𝜌 , we can easily show (2.3). □

The third result is the estimate for the nonlinear term in the Besov space for the time variable.
Although the result for some special 𝑠, 𝛾 , 𝜌, 𝑞0, 𝑟0, 𝑞 and 𝑟 has been shown in [15, Claim 4.3, Claim
4.6], we give more general estimate to prove our theorem.

Lemma 2.3. Let 0 < 𝑠 < 4, 𝑠 ≠ 2, max{1; 𝑠∕2} < 𝑝. Let 𝑓 satisfy 𝑁(𝑝). Let 1 ≤ 𝜌, 𝑟0, 𝑟, 𝑞0 ≤ ∞,
and let 1 < 𝛾 ≤ ∞, 1 ≤ 𝑞 < ∞. Let 𝛾, 𝜌, 𝑟0, 𝑟, 𝑞0, 𝑞 satisfy

1
𝛾 ′

=
𝑝 − 1
𝑞0

+ 1
𝑞
, 1
𝜌′

=
𝑝 − 1
𝑟0

+ 1
𝑟
.
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Let 1 ≤ 𝛼 < ∞. Then the inequality

‖𝑓 (𝑢)‖𝐵𝑠∕2
𝛾′ ,𝛼

(𝐿𝜌′ ) ≲ ‖𝑢‖𝑝−1𝐿𝑞0 (𝐿𝑟0 )‖𝑢‖𝐵𝑠∕2𝑞,𝛼 (𝐿𝑟)

holds for any 𝑢 ∈ 𝐿𝑞0 (ℝ, 𝐿𝑟0 (ℝ𝑛)) ∩ 𝐵𝑠∕2𝑞,𝛼 (ℝ, 𝐿𝑟(ℝ𝑛)).

Proof. First, we consider the case 0 < 𝑠 < 2. By 𝑠∕2 < 1, we are able to use the equivalent norm
(see [17] and [23, (2.3)])

‖𝑓 (𝑢)‖𝐵𝑠∕2
𝛾′ ,𝛼

(𝐿𝜌′ ) = ‖𝑓 (𝑢)‖𝐿𝛾′ (𝐿𝜌′ ) +{
∫

∞

0

(
𝜏−𝑠∕2‖𝑓 (𝑢(⋅)) − 𝑓 (𝑢(⋅ + 𝜏))‖𝐿𝛾′ (𝐿𝜌′ ))𝛼 𝑑𝜏𝜏

}1∕𝛼
.

Here, the difference is taken with respect to 𝑡. The first term in the right-hand side is bounded by‖𝑢‖𝑝−1𝐿𝑞0 (𝐿𝑟0 )‖𝑢‖𝐿𝑞(𝐿𝑟) by the Hölder inequality. The second term is bounded by ‖𝑢‖𝑝−1𝐿𝑞0 (𝐿𝑟0 )‖𝑢‖𝐵𝑠∕2𝑞,𝛼 (𝐿𝑟)
by the inequality

|𝑓 (𝑢(⋅)) − 𝑓 (𝑢(⋅ + 𝜏))| ≲ (|𝑢(⋅)| + |𝑢(⋅ + 𝜏)|)𝑝−1 |𝑢(⋅) − 𝑢(⋅ + 𝜏)|.
So that, we obtain the required inequality.

Next, we consider the case 2 < 𝑠 < 4. Put 𝜃 ∶= 𝑠∕2 − 1. By 𝜃 < 2, we are able to use the
equivalent norm

‖𝑓 (𝑢)‖𝐵𝜃+1
𝛾′ ,𝛼

(𝐿𝜌′ ) = ‖𝑓 (𝑢)‖𝐿𝛾′ (𝐿𝜌′ )
+
{
∫

∞

0

(
𝜏−𝜃−1‖𝑓 (𝑢(⋅)) − 2𝑓 (𝑢(⋅ + 𝜏)) + 𝑓 (𝑢(⋅ + 2𝜏))‖𝐿𝛾′ (𝐿𝜌′ ))𝛼 𝑑𝜏𝜏

}1∕𝛼
(2.4)

(see [17, p. 22, Remark 1, p. 27, Theorem 3]). The first term in the right-hand side is bounded by‖𝑢‖𝑝−1𝐿𝑞0 (𝐿𝑟0 )‖𝑢‖𝐿𝑞(𝐿𝑟) by the Hölder inequality. To estimate the second term, we put 𝑣(⋅) ∶= 𝑢(⋅ + 𝜏)
and 𝑤(⋅) ∶= 𝑢(⋅ + 2𝜏). We use the inequality

|𝑓 (𝑢) − 2𝑓 (𝑣) + 𝑓 (𝑤)| ≲ (|𝑢| + |𝑣| + |𝑤|)𝑝−1|𝑢 − 2𝑣 +𝑤|
+

{
(|𝑢 − 𝑣| + |𝑣 −𝑤|)𝑝−1 |𝑢 − 𝑣| if 𝑝 < 2,
(|𝑢| + |𝑣| + |𝑤|)𝑝−2(|𝑢 − 𝑣| + |𝑣 −𝑤|)2 if 𝑝 ≥ 2

to have

‖𝑓 (𝑢) − 2𝑓 (𝑣) + 𝑓 (𝑤)‖𝐿𝛾′ (𝐿𝜌′ ) ≲ ‖𝑢‖𝑝−1
𝐿𝑝𝛾′ (𝐿𝑝𝜌′ )

‖𝑢 − 2𝑣 +𝑤‖𝐿𝑞(𝐿𝑟)
+

{ ‖𝑢 − 𝑣‖𝑝
𝐿𝑝𝛾′ (𝐿𝑝𝜌′ )

if 𝑝 < 2,‖𝑢‖𝑝−2𝐿𝑞0 (𝐿𝑟0 )‖𝑢 − 𝑣‖2𝐿𝑞∗ (𝐿𝑟∗ ) if 𝑝 ≥ 2,

where we have put 2∕𝑞∗ ∶= 1∕𝑞0 + 1∕𝑞 and 2∕𝑟∗ ∶= 1∕𝑟0 + 1∕𝑟. So that, the second term in the
right-hand side in (2.4) is bounded by

‖𝑢‖𝑝−1𝐿𝑞0 (𝐿𝑟0 )‖𝑢‖𝐵𝜃+1𝑞,𝛼 (𝐿𝑟) +

⎧⎪⎨⎪⎩
‖𝑢‖𝑝

𝐵(𝜃+1)∕𝑝
𝑝𝛾′ ,𝑝𝛼

(𝐿𝑝𝜌′ )
if 𝑝 < 2,

‖𝑢‖𝑝−2𝐿𝑞0 (𝐿𝑟0 )‖𝑢‖2𝐵(𝜃+1)∕2
𝑞∗ ,2𝛼

(𝐿𝑟∗ )
if 𝑝 ≥ 2,
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where we have used (𝜃+1)∕𝑝 < 1 and (𝜃+1)∕2 < 1 by 𝑠∕2 < 𝑝 and 𝑠 < 4. By Lemma 2.1, we have

‖𝑢‖𝐵(𝜃+1)∕𝑝
𝑝𝛾′ ,𝑝𝛼

(𝐿𝑝𝜌′ ) ≲ ‖𝑢‖1−1∕𝑝
𝐵0
𝑞0 ,∞(𝐿𝑟0 )

‖𝑢‖1∕𝑝
𝐵𝜃+1𝑞,𝛼 (𝐿𝑟)

,

‖𝑢‖𝐵(𝜃+1)∕2
𝑞∗ ,2𝛼

(𝐿𝑟∗ ) ≲ ‖𝑢‖1∕2
𝐵0
𝑞0 ,∞(𝐿𝑟0 )

‖𝑢‖1∕2
𝐵𝜃+1𝑞,𝛼 (𝐿𝑟)

.

We note that the embedding 𝐿𝑞0 (ℝ, 𝑉 ) ↪ 𝐵0
𝑞0,∞

(ℝ, 𝑉 ) holds for any 1 ≤ 𝑞 ≤ ∞ and any Banach
space 𝑉 since ‖𝜑𝑗 ∗𝑡 𝑢‖𝐿𝑞(𝑉 ) ≤ ‖𝜑‖𝐿1(𝑉 )‖𝑢‖𝐿𝑞(𝑉 ) for any 𝑗 ≥ 1 holds by the Young inequality in
the definition of the Besov space (2.1). Therefore, we obtain the required result by the embedding
𝐿𝑞0 (ℝ, 𝐿𝑟0 ) ↪ 𝐵0

𝑞0,∞
(ℝ, 𝐿𝑟0 ). □

3. PROOF OF THEOREM 1.2

We have only to prove (1.9) since (1.7) and (1.8) has been proved in [15]. We set𝑈 (𝑡) = exp(−𝑖𝑡Δ).
We can estimate homogeneous and inhomogeneous parts independently.

Estimate of homogeneous part. We derive the estimate of 𝑈 (𝑡)𝑢0. By the formula 𝜑𝑗 ∗𝑡 𝑒𝑖𝑡|𝜉|2 =
𝑒𝑖𝑡|𝜉|2 �̂�𝑗(|𝜉|2), we have 𝜑𝑗 ∗𝑡 𝑈 (𝑡)𝑢0 = 𝑈 (𝑡)𝜑𝑗∕2 ∗𝑥 𝑢0. From this equality together with the
Strichartz estimate [3, 8, 10, 13, 18, 25], we obtain

∞∑
𝑗=1

∞∑
𝑘=1

2(2𝜃−𝜎)𝑗+𝜎𝑘‖𝜑𝑗 ∗𝑡 𝜑𝑘∕2 ∗𝑥 𝑈 (𝑡)𝑢0‖2𝐿𝑞(𝐿𝑟)
≲

∞∑
𝑗=1

∞∑
𝑘=1

2(2𝜃−𝜎)𝑗+𝜎𝑘‖𝜑𝑗∕2 ∗𝑥 𝜑𝑘∕2 ∗𝑥 𝑢0‖2𝐿2

≲
∞∑
𝑘=1

22𝜃𝑘‖𝜑𝑘∕2 ∗𝑥 𝑢0‖2𝐿2 ≲ ‖𝑢0‖2𝐻2𝜃 .

Here, we have used the fact that �̂�𝑗(|𝜉|2)�̂�𝑘(|𝜉|2) ≠ 0 implies |𝑗 − 𝑘| ≤ 1.Since the low frequency
parts are easier to treat, we obtain

‖𝑈 (𝑡)𝑢0‖𝐵𝜃−𝜎∕2𝑞,2 (𝐵𝜎𝑟,2)
≲ ‖𝑢0‖𝐻2𝜃 . □

Estimate of inhomogeneous part. In what follows, 𝑓 (𝜏, 𝜉) denotes the Fourier transform of 𝑓 in the
space-time, whereas 𝑓 (𝑡, 𝜉) denotes the Fourier transform with respect to the spatial variables. We
put �̂�𝑗(𝜏) =

∑𝑗+2
𝑘=𝑗−2 �̂�𝑘(𝜏) and �̂�𝑘∕2(𝜉) = �̂�𝑘(|𝜉|2).

We estimate the solution to (1.6) with 𝑢0 = 0. By the Fourier transform, the solution can be
expressed as

�̂�(𝑡, 𝜉) = ∫
𝑡

0
𝑒𝑖(𝑡−𝑡

′)|𝜉|2𝑓 (𝑡′, 𝜉)𝑑𝑡′ = ∫
∞

−∞

𝑒𝑖𝑡𝜏 − 𝑒𝑖𝑡|𝜉|2
2𝜋𝑖(𝜏 − |𝜉|2)𝑓 (𝜏, 𝜉) 𝑑𝜏.

We define 𝑣 and 𝑣0 by

�̂�(𝑡, 𝜉) = p.v.-∫
∞

−∞
𝑒𝑖𝑡𝜏

𝑓 (𝜏, 𝜉)
2𝜋𝑖(𝜏 − |𝜉|2) 𝑑𝜏 = 1

2 ∫
∞

−∞
sign(𝑡 − 𝑡′)𝑒𝑖(𝑡−𝑡

′)|𝜉|2𝑓 (𝑡′, 𝜉)𝑑𝑡′
and �̂�0(𝜉) = �̂�(0, 𝜉) respectively, so that �̂� = �̂�−𝑒𝑖𝑡|𝜉|2 �̂�0. Here, we have used the formula p.v.- ∫ ∞

−∞{(𝜏−|𝜉|2)}−1𝑒𝑖𝑡𝜏 𝑑𝜏 = 𝜋𝑖 sign(𝑡)𝑒𝑖𝑡|𝜉|2 . Hence we have

𝑢(𝑡) = 𝑣(𝑡) − 𝑈 (𝑡)𝑣0 = 𝐺𝑓 (𝑡) − 𝑈 (𝑡)𝑣0,
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where 𝐺𝑓 (𝑡) = 1
2 ∫ ∞

−∞ sign(𝑡 − 𝑡′)𝑈 (𝑡 − 𝑡′)𝑓 (𝑡′)𝑑𝑡′. We have

‖𝑢‖𝐵𝜃−𝜎∕2𝑞,2 (𝐵𝜎𝑟,2)
≲ ‖𝑢‖𝐵𝜃𝑞,2(𝐿𝑟) + ‖𝑢‖𝐿𝑞(𝐵𝜎𝑟,2) + 𝐽 ,

where 𝐽 =
{∑∞

𝑗=1
∑∞
𝑘=1 2

(2𝜃−𝜎)𝑗+𝜎𝑘‖𝜑𝑗 ∗𝑡 𝜑𝑘∕2 ∗𝑥 𝑢‖2𝐿𝑞(𝐿𝑟)}1∕2
. Since the first two terms can be

estimated by (1.7) and (1.8) respectively, it suffices to estimate 𝐽 . Since 𝑣0 = 𝑣(0), like homogeneous
part we have

𝐽 2 ≲
∞∑
𝑗=1

∞∑
𝑘=1

2(2𝜃−𝜎)𝑗+𝜎𝑘‖𝜑𝑗 ∗𝑡 𝜑𝑘∕2 ∗𝑥 𝑣‖2𝐿𝑞(𝐿𝑟) + ∞∑
𝑘=1

22𝜃𝑘‖𝜑𝑘∕2 ∗𝑥 𝑣‖2𝐿∞(𝐿2).

Taking the relation �̂�𝑘(|𝜉|2) = �̂�𝑘(|𝜉|2)�̂�(|𝜉|2) into account, we decompose

𝜑𝑘∕2 ∗𝑥 𝑣 = 𝜒𝑘 ∗𝑡 𝜑𝑘∕2 ∗𝑥 𝑣 + (𝜑𝑘∕2 ∗𝑥 𝑣 − 𝜒𝑘 ∗𝑡 𝜑𝑘∕2 ∗𝑥 𝑣)

= 𝐺(𝜒𝑘 ∗𝑡 𝜑𝑘∕2 ∗𝑥 𝑓 ) +𝐾𝑘 ∗𝑡,𝑥 𝜒𝑘∕2 ∗𝑥 𝑓,

where

𝐾𝑙(𝑡, 𝑥) =
1

(2𝜋)1+𝑛 ∬ℝ1+𝑛
𝑒𝑖𝑡𝜏+𝑖𝑥𝜉

�̂�𝑙(|𝜉|2)(1 − �̂�𝑙(𝜏))
𝑖(𝜏 − |𝜉|2) 𝑑𝜏𝑑𝜉 = 2𝑛𝑙∕2𝐾0(2𝑙𝑡, 2𝑙∕2𝑥).

Hence, we see

𝐽 ≲
( ∞∑
𝑗=1

∞∑
𝑘=1

2(2𝜃−𝜎)𝑗+𝜎𝑘‖𝜑𝑗 ∗𝑡 𝐺(𝜒𝑘 ∗𝑡 𝜑𝑘∕2 ∗𝑥 𝑓 )‖2𝐿𝑞(𝐿𝑟))1∕2

+
( ∞∑
𝑗=1

∞∑
𝑘=1

2(2𝜃−𝜎)𝑗+𝜎𝑘‖𝐾𝑘 ∗𝑡,𝑥 𝜑𝑗 ∗𝑡 𝜒𝑘∕2 ∗𝑥 𝑓‖2𝐿𝑞(𝐿𝑟))1∕2

+
( ∞∑
𝑘=1

22𝜃𝑘‖𝐺(𝜒𝑘 ∗𝑡 𝜑𝑘∕2 ∗𝑥 𝑓 )‖2𝐿∞(𝐿2)

)1∕2

+
( ∞∑
𝑘=1

22𝜃𝑘‖𝐾𝑘 ∗𝑡,𝑥 𝜒𝑘∕2 ∗𝑥 𝑓‖2𝐿∞(𝐿2)

)1∕2

=∶ 𝐽1 + 𝐽2 + 𝐽3 + 𝐽4.

Using the Strichartz inequality, we see

𝐽 2
1 ≲

∞∑
𝑗=1

∞∑
𝑘=1

2(2𝜃−𝜎)𝑗+𝜎𝑘‖𝜑𝑗 ∗𝑡 𝜒𝑘 ∗𝑡 𝑓‖2𝐿𝛾′ (𝐿𝜌′ )
≲

∞∑
𝑗=1

22𝜃𝑗‖𝜑𝑗 ∗𝑡 𝑓‖2𝐿𝛾′ (𝐿𝜌′ ) ≲ ‖𝑓‖2
𝐵𝜃
𝛾′
(𝐿𝜌′ )

.

Similarly we can obtain 𝐽3 ≲ ‖𝑓‖𝐵𝜃
𝛾′
(𝐿𝜌′ ). Let (𝑞0, 𝑟0) be a pair satisfying 1 ≤ 𝑞0 ≤ ∞, 1 ≤ 𝑟0 ≤ 2

and 2∕𝑞0 − 𝛿(𝑟0) = 2(1 − 𝜃). For this pair, we define the pair (𝑞∗, 𝑟∗) by 1∕𝑞∗ = 1 − 1∕𝑞0 and
1∕𝑟∗ = 1 + 1∕2 − 1∕𝑟0. By the change of variables, we have

‖𝐾𝑘‖𝐿𝑞∗ ,1(𝐿𝑟∗ ) = 2(1∕𝑞0−𝛿(𝑟0)∕2−1)𝑘‖𝐾0‖𝐿𝑞∗ (𝐿𝑟∗ ) = 𝐶2−𝜃𝑘.

Then, by the Hölder and the Young inequalities, we see

‖𝐾𝑘 ∗𝑡,𝑥 𝜒𝑘∕2 ∗𝑥 𝑓‖𝐿∞(𝐿2) ≲ ‖𝐾𝑘‖𝐿𝑞∗ ,1(𝐿𝑟∗ )‖𝜒𝑘∕2 ∗𝑥 𝑓‖𝐿𝑞0 ,∞(𝐿𝑟0 )

= 𝐶2−𝜃𝑘‖𝜒𝑘∕2 ∗𝑥 𝑓‖𝐿𝑞0 ,∞(𝐿𝑟0 ),



9

which implies 𝐽4 ≲ ‖𝑓‖𝓁2(𝐿𝑞0 ,∞(𝐿𝑟0 )). Let (𝑞1, 𝑟1) be a pair satisfying 1 ≤ 𝑞1 ≤ 𝑞, 1 ≤ 𝑟1 ≤ 𝑟 and
2∕𝑞1 − 𝛿(𝑟1) = 2 − 𝜎. Similarly as above, but using generalized Young inequality instead of the
Hölder inequality, we can obtain the following estimates:

‖𝐾𝑘 ∗𝑡,𝑥 𝜑𝑗 ∗𝑡 𝜒𝑘∕2 ∗𝑥 𝑓‖𝐿𝑞(𝐿𝑟) ≲ ‖𝜑𝑗 ∗𝑡 𝑓‖𝐿𝛾′ (𝐿𝜌′ ),‖𝐾𝑘 ∗𝑡,𝑥 𝜑𝑗 ∗𝑡 𝜒𝑘∕2 ∗𝑥 𝑓‖𝐿𝑞(𝐿𝑟) ≲ 2−𝜎𝑘∕2‖𝜑𝑗 ∗𝑡 𝜒𝑘∕2 ∗𝑥 𝑓‖𝐿𝑞1 ,∞(𝐿𝑟1 ).

Hence, we see

𝐽2 ≲
( ∞∑
𝑗=1

𝑗∑
𝑘=1

2(2𝜃−𝜎)𝑗+𝜎𝑘‖𝜑𝑗 ∗𝑡 𝑓‖2𝐿𝛾′ (𝐿𝜌′ ))1∕2

+
( ∞∑
𝑗=1

∞∑
𝑘=𝑗+1

2(2𝜃−𝜎)𝑗‖𝜑𝑗 ∗𝑡 𝜒𝑘∕2 ∗𝑥 𝑓‖2𝐿𝑞1 ,∞(𝐿𝑟1 )

)1∕2

=∶ 𝐽2,1 + 𝐽2,2.

Since
∑𝑗
𝑘=1 2

𝜎𝑘 ≲ 2𝜎𝑗 , we have 𝐽2,1 ≲ ‖𝑓‖𝐵𝜃
𝛾′ ,2

(𝐿𝜌′ ). On the other hand, we see

𝐽 2
2,2 =

∞∑
𝑘=1

𝑘−1∑
𝑗=1

2(2𝜃−𝜎)𝑗‖𝜑𝑗 ∗𝑡 𝜒𝑘∕2 ∗𝑥 𝑓‖2𝐿𝑞1 ,∞(𝐿𝑟1 )

≤ ∞∑
𝑘=1

‖𝜒𝑘∕2 ∗𝑥 𝑓‖2𝐵𝜃−𝜎∕2𝑞1 ,∞ (𝐿𝑟1 )
≲ ‖𝑓‖2

𝓁2(𝐵𝜃−𝜎∕2𝑞1 ,∞ (𝐿𝑟1 ))
.

Collecting these estimates, we obtain

𝐽 ≲ ‖𝑓‖𝐵𝜃
𝛾′ ,2

(𝐿𝜌′ ) + ‖𝑓‖𝓁2(𝐿𝑞0 ,∞(𝐿𝑟0 )) + ‖𝑓‖2
𝓁2(𝐵𝜃−𝜎∕2𝑞1 ,∞ (𝐿𝑟1 ))

.

Now, if (𝑞𝑗 , 𝑟𝑗) ≠ (𝑞𝑗 , �̄�𝑗), then we choose (𝑞𝑗 , 𝑟𝑗) as follows: (i) if �̄�𝑗 < 𝜌′, then we choose 𝑟𝑗 = 𝜌′, so
that by [15, Lemma 2.4 (1)], ‖𝑓‖𝓁2(𝐿𝑞0 ,∞(𝐿𝑟0 )) and ‖𝑓‖

𝓁2(𝐵𝜃−𝜎∕2𝑞1 ,∞ (𝐿𝑟1 )) are bounded by ‖𝑓‖𝐵𝜃
𝛾′ ,2

(𝐿𝜌′ ); (ii)

if �̄�𝑗 ≥ 𝜌′, then we choose 𝑟𝑗 satisfying 𝜌′ ≤ 𝑟𝑗 ≤ �̄�𝑗 , so that by [15, Lemma 2.5], ‖𝑓‖𝓁2(𝐿𝑞0 ,∞(𝐿𝑟0 )) and‖𝑓‖
𝓁2(𝐵𝜃−𝜎∕2𝑞1 ,∞ (𝐿𝑟1 )) are bounded by ‖𝑓‖𝐵𝜃

𝛾′ ,2
(𝐿𝜌′ )+‖𝑓‖𝓁2(𝐿𝑞0 (𝐿�̄�0 )) and ‖𝑓‖𝐵𝜃𝛾,2(𝐿𝜌′ )+‖𝑓‖

𝓁2(𝐵𝜃−𝜎∕2𝑞1 ,∞ (𝐿𝑟1 ))
respectively. Thus we obtain

𝐽 ≲ ‖𝑓‖𝐵𝜃
𝛾′ ,2

(𝐿𝜌′ ) + ‖𝑓‖𝓁2(𝐿𝑞0 (𝐿�̄�0 )) + ‖𝑓‖2
𝓁2(𝐵𝜃−𝜎∕2𝑞1 ,∞

(𝐿�̄�1 ))
,

which proves (1.9).
Finally, we show that we can drop the term ‖𝑓‖

𝓁2(𝐵𝜃−𝜎∕2𝑞1 ,∞
(𝐿�̄�1 )) if 𝑞0 ≤ 𝑞. To this end, we estimate

𝐽2,2 differently. In this case, let (𝑞1, 𝑟1) be a pair (𝑞1, 𝑟1) be a pair satisfying 1 ≤ 𝑞1 ≤ 𝑞, 1 ≤ 𝑟1 ≤ 𝑟
and 2∕𝑞1 − 𝛿(𝑟1) = 2(1 − 𝜃). Then, by the generalized Young inequality, we have

‖𝐾𝑘 ∗𝑡,𝑥 𝜑𝑗 ∗𝑡 𝜒𝑘∕2 ∗𝑥 𝑓‖𝐿𝑞(𝐿𝑟) ≲ 2−𝜃𝑘‖𝜑𝑗 ∗𝑡 𝜒𝑘∕2 ∗𝑥 𝑓‖𝐿𝑞1 ,∞(𝐿𝑟1 ).
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Hence, using [15, Lemma 2.5] if necessary, we have

𝐽 2
2,2 ≲

∞∑
𝑘=1

𝑘−1∑
𝑗=1

2(2𝜃−𝜎)𝑗−(2𝜃−𝜎)𝑘‖𝜒𝑘∕2 ∗𝑥 𝑓‖2𝐿𝑞1 ,∞(𝐿𝑟1 )

≲
∞∑
𝑘=1

‖𝜒𝑘∕2 ∗𝑥 𝑓‖2𝐿𝑞1 ,∞(𝐿𝑟1 ) ≲ ‖𝑓‖2
𝓁2(𝐿𝑞1 ,∞(𝐿𝑟1 ))

≲ ‖𝑓‖2
𝐵𝜃
𝛾′ ,2

(𝐿𝜌′ )
+ ‖𝑓‖2

𝓁2(𝐿𝑞0 (𝐿�̄�0 ))
.

By this estimate, together with ‖𝑢‖𝐿𝑞(𝐵𝜎𝑟,2) ≤ ‖𝑢‖𝐿𝑞(𝐵2𝜃
𝑟,2)

, we obtain the desired result. □

4. PROOF OF THEOREM 1.1

Except for the case 3 ≤ 𝑠 < 4, the proof of Theorem 1.1 has been shown in [15]. We only consider
the case 3 ≤ 𝑠 < 4. We define 𝑟 by 1∕𝑟 ∶= 1∕2 − 1∕𝑛 throughout this section.

We use the following corollary of Theorem 1.2.

Corollary 4.1. Let 𝑛 ≥ 3, 3 ≤ 𝑠 < 4. The solution to the Cauchy problem (1.6) satisfies the
inequality:

max
{‖𝑢‖𝐿∞(𝐻𝑠), ‖𝑢‖𝐵𝑠∕22,2 (𝐿

𝑟), ‖𝑢‖𝐵(𝑠−1)∕2
2,2 (𝐵1

𝑟,2)

}
≲ ‖𝑢0‖𝐻1 + ‖𝑢1‖𝐻𝑠−2 + ‖𝑓‖𝐵𝑠∕22,2 (𝐿

𝑟′ ) + ‖𝑓‖𝐵(𝑠−1)∕2
2,2 (𝐿2) + ‖𝑓‖𝐿∞(𝐻𝑠−2). (4.1)

Here, we put 𝑢1 ∶= 𝜕𝑡𝑢(0, ⋅). Moreover, if the right-hand side of (4.1) is finite with𝑓 ∈ 𝐶(ℝ,𝐻𝑠−2(ℝ𝑛)),
then 𝑢 ∈ 𝐶(ℝ,𝐻𝑠(ℝ𝑛)).

Proof. The continuity of the solution follows directly from Theorem 1.2 and the equation (1.1). By
the time-derivative of (1.1), the function 𝜕𝑡𝑢 satisfies

(𝜕𝑡 + 𝑖Δ)𝜕𝑡𝑢 = 𝜕𝑡𝑓.

We divide the proof of the required inequality (4.1) into three parts (1), (2) and (3) as follows.
(1) We have ‖𝜕𝑡𝑢‖𝐿∞(𝐻𝑠−2) ≲ ‖𝑢1‖𝐻𝑠−2 + ‖𝜕𝑡𝑓‖𝐵(𝑠−2)∕2

2,2 (𝐿𝑟′ ) + ‖𝜕𝑡𝑓‖𝓁2(𝐿2∕(4−𝑠)(𝐿2))

by (1.8), where we have put 𝜎 = 𝑠−2, 𝑞 = ∞, 𝛾 = 2, 𝜌 = 𝑟, 𝑞1 = 2∕(4− 𝑠), �̄�1 = 2, and we note that
1 ≤ 𝜎 < 2 and 2∕𝑞1 − 𝛿(�̄�1) = 2 − 𝜎 hold. Since we have‖𝜕𝑡𝑓‖𝐵(𝑠−2)∕2

2,2 (𝐿𝑟′ ) ≲ ‖𝑓‖𝐵𝑠∕22,2 (𝐿
𝑟′ ), (4.2)

‖𝜕𝑡𝑓‖𝓁2(𝐿2∕(4−𝑠)(𝐿2)) ≲ ‖𝜕𝑡𝑓‖𝓁2(𝐵(𝑠−3)∕2
2,2 (𝐿2)) ≲ ‖𝑓‖𝐵(𝑠−1)∕2

2,2 (𝐿2) (4.3)

by the embedding 𝐵(𝑠−3)∕2
2,2 (𝐿2) ↪ 𝐿2∕(4−𝑠)(𝐿2), we obtain‖𝜕𝑡𝑢‖𝐿∞(𝐻𝑠−2) ≲ ‖𝑢1‖𝐻𝑠−2 + ‖𝑓‖𝐵𝑠∕22,2 (𝐿

𝑟′ ) + ‖𝑓‖𝐵(𝑠−1)∕2
2,2 (𝐿2). (4.4)

We have ‖𝑢‖𝐿∞(𝐿2) ≲ ‖𝑢0‖𝐿2 + ‖𝑓‖𝐿2(𝐿𝑟′ ) (4.5)

by the endpoint Strichartz estimate [13]. We also have‖𝑢‖𝐿∞(�̇�𝑠) = ‖Δ𝑢‖𝐿∞(�̇�𝑠−2) ≤ ‖𝜕𝑡𝑢‖𝐿∞(�̇�𝑠−2) + ‖𝑓‖𝐿∞(�̇�𝑠−2) (4.6)
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by the equation 𝜕𝑡𝑢 + 𝑖Δ𝑢 = 𝑓 . Thus, we obtain

‖𝑢‖𝐿∞(𝐻𝑠) ≲ ‖𝑢‖𝐿∞(𝐿2) + ‖𝑢‖𝐿∞(�̇�𝑠)

≲ ‖𝑢0‖𝐿2 + ‖𝑢1‖𝐻𝑠−2 + ‖𝑓‖𝐵𝑠∕22,2 (𝐿
𝑟′ )

+ ‖𝑓‖𝐵(𝑠−1)∕2
2,2 (𝐿2) + ‖𝑓‖𝐿∞(𝐻𝑠−2) (4.7)

by (4.4), (4.5) and (4.6), where we have used the embedding 𝐻𝑠−2(ℝ𝑛) ↪ �̇�𝑠−2(ℝ𝑛).
(2) Similarly to the argument in (1), we have

‖𝜕𝑡𝑢‖𝐵(𝑠−2)∕2
2,2 (𝐿𝑟) ≲ ‖𝑢1‖𝐻𝑠−2 + ‖𝜕𝑡𝑓‖𝐵(𝑠−2)∕2

2,2 (𝐿𝑟′ ) + ‖𝜕𝑡𝑓‖𝓁2(𝐿2∕(4−𝑠)(𝐿2))

by (1.7), where we have put 𝜃 = (𝑠 − 2)∕2, 𝑞 = 2, 𝛾 = 2, 𝜌 = 𝑟, 𝑞0 = 2∕(4 − 𝑠), �̄�0 = 2, and we note
that 1∕2 ≤ 𝜃 < 1 and 2∕𝑞0 − 𝛿(�̄�0) = 2(1 − 𝜃) hold. By (4.2) and (4.3), we obtain

‖𝜕𝑡𝑢‖𝐵(𝑠−2)∕2
2,2 (𝐿𝑟) ≲ ‖𝑢1‖𝐻𝑠−2 + ‖𝑓‖𝐵𝑠∕22,2 (𝐿

𝑟′ ) + ‖𝑓‖𝐵(𝑠−1)∕2
2,2 (𝐿2). (4.8)

We have ‖𝑢‖𝐿2(𝐿𝑟) ≲ ‖𝑢0‖𝐿2 + ‖𝑓‖𝐿2(𝐿𝑟′ ) (4.9)

by the endpoint Strichartz estimate. We also have

‖𝑢‖�̇�𝑠∕22,2 (𝐿
𝑟) = ‖𝜕𝑡𝑢‖�̇�(𝑠−2)∕2

2,2 (𝐿𝑟). (4.10)

Thus, we obtain

‖𝑢‖𝐵𝑠∕22,2 (𝐿
𝑟) ≲ ‖𝑢‖𝐿2(𝐿𝑟) + ‖𝑢‖�̇�𝑠∕22,2 (𝐿

𝑟)

≲ ‖𝑢0‖𝐿2 + ‖𝑢1‖𝐻𝑠−2 + ‖𝑓‖𝐵𝑠∕22,2 (𝐿
𝑟′ ) + ‖𝑓‖𝐵(𝑠−1)∕2

2,2 (𝐿2) (4.11)

by (4.8), (4.9) and (4.10).
(3) Similarly to the arguments in (1) and (2), we have

‖𝑢‖𝐿2(𝐵1
𝑟,2)

≲ ‖𝑢0‖𝐻1 + ‖𝑓‖𝐵1∕2
2,2 (𝐿𝑟′ ) + ‖𝑓‖𝓁2(𝐿2(𝐿2))

by (1.8), where we have put 𝜎 = 1, 𝑞 = 2, 𝛾 = 2, 𝜌 = 𝑟, 𝑞1 = 2, �̄�1 = 2, and we note that
2∕𝑞1 − 𝛿(�̄�1) = 2 − 𝜎 holds. Since we have 𝓁2(𝐿2(𝐿2)) = 𝐿2(𝐵0

2,2) = 𝐿2(𝐿2), we obtain

‖𝑢‖𝐿2(𝐵1
𝑟,2)

≲ ‖𝑢0‖𝐻1 + ‖𝑓‖𝐵1∕2
2,2 (𝐿

𝑟′ ) + ‖𝑓‖𝐿2(𝐿2). (4.12)

When 𝑠 = 3, we have

‖𝑢‖�̇�1
2,2(𝐵

1
𝑟,2)

≲ ‖𝜕𝑡𝑢‖𝐿2(𝐵1
𝑟,2)

≲ ‖𝑢1‖𝐻1 + ‖𝜕𝑡𝑓‖𝐵1∕2
2,2 (𝐿

𝑟′ ) + ‖𝜕𝑡𝑓‖𝐿2(𝐿2)

≲ ‖𝑢1‖𝐻1 + ‖𝑓‖𝐵3∕2
2,2 (𝐿𝑟′ ) + ‖𝑓‖𝐵1

2,2(𝐿
2), (4.13)

where we have used (4.12) with 𝑢 replaced by 𝜕𝑡𝑢. When 3 < 𝑠 < 4, we have

‖𝑢‖�̇�(𝑠−1)∕2
2,2 (𝐵1

𝑟,2)
≲ ‖𝜕𝑡𝑢‖�̇�(𝑠−3)∕2

2,2 (𝐵1
𝑟,2)

≲ ‖𝑢1‖𝐻𝑠−2 + ‖𝜕𝑡𝑓‖𝐵(𝑠−2)∕2
2,2 (𝐿𝑟′ )

+ ‖𝜕𝑡𝑓‖𝓁2(𝐿2∕(4−𝑠)(𝐿2)) + ‖𝜕𝑡𝑓‖𝓁2(𝐵(𝑠−3)∕2
2,2 (𝐿2)) (4.14)
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by (1.9), where we have put 𝜃 = (𝑠 − 2)∕2, 𝜎 = 1, 𝑞 = 2, 𝛾 = 2, 𝜌 = 𝑟, 𝑞0 = 2∕(4 − 𝑠), �̄�0 = 2,
𝑞1 = 2, �̄�1 = 2, and we note that 1∕2 < 𝜃 < 1, 2∕𝑞0 − 𝛿(�̄�0) = 2(1 − 𝜃) and 2∕𝑞1 − 𝛿(�̄�1) = 2 − 𝜎
hold. Since we have

‖𝜕𝑡𝑓‖𝓁2(𝐵(𝑠−3)∕2
2,2 (𝐿2)) ≲ ‖𝜕𝑡𝑓‖𝐵(𝑠−3)∕2

2,2 (𝐿2) ≲ ‖𝑓‖𝐵(𝑠−1)∕2
2,2 (𝐿2),

we obtain ‖𝑢‖�̇�(𝑠−1)∕2
2,2 (𝐵1

𝑟,2)
≲ ‖𝑢1‖𝐻𝑠−2 + ‖𝑓‖𝐵𝑠∕22,2 (𝐿

𝑟′ ) + ‖𝑓‖𝐵(𝑠−1)∕2
2,2 (𝐿2) (4.15)

by (4.2) and (4.3). Thus, we obtain

‖𝑢‖𝐵(𝑠−1)∕2
2,2 (𝐵1

𝑟,2)
≲ ‖𝑢‖𝐿2(𝐵1

𝑟,2)
+ ‖𝑢‖�̇�(𝑠−1)∕2

2,2 (𝐵1
𝑟,2)

≲ ‖𝑢0‖𝐻1 + ‖𝑢1‖𝐻𝑠−2 + ‖𝑓‖𝐵𝑠∕22,2 (𝐿
𝑟′ ) + ‖𝑓‖𝐵(𝑠−1)∕2

2,2 (𝐿2) (4.16)

by (4.12) and (4.15).
By (4.7), (4.11) and (4.16), we obtain the required inequality □

Lemma 4.1. Let 𝑛 ≥ 5, 2 < 𝑠 < min{4; 𝑛∕2}. Let 𝑓 satisfy 𝑁(𝑝) with 1 < 𝑝 ≤ 𝑝(𝑠). Then the
following estimates hold.

(1) ‖𝑓 (𝑢)‖𝐿∞(𝐻𝑠−2) ≲ ‖𝑢‖𝑝𝐿∞(𝐻𝑠) if 𝑝 > max{1; 𝑠 − 2};

(2) ‖𝑓 (𝑢)‖𝐵(𝑠−1)∕2
2,2 (𝐿2) ≲ ‖𝑢‖𝑝−1𝐿∞(𝐻𝑠)‖𝑢‖𝐵(𝑠−1)∕2

2,2 (𝐵1
𝑟,2)

if 𝑝 > max{1 + 2∕𝑛; (𝑠 − 1)∕2};

(3) ‖𝑓 (𝑢)‖𝐵𝑠∕22,2 (𝐿
𝑟′ ) ≲ ‖𝑢‖𝑝−1𝐿∞(𝐻𝑠)‖𝑢‖𝐵𝑠∕22,2 (𝐿

𝑟) if 𝑝 > max{1 + 4∕𝑛; 𝑠∕2};

Proof. (1) By the assumption 1 < 𝑝 ≤ 𝑝(𝑠), there exists 𝑟♯ which satisfies 0 < 1∕𝑟♯ ≤ 2∕𝑛(𝑝 − 1),
1∕2 − 𝑠∕𝑛 ≤ 1∕𝑟♯ ≤ 1∕2 and 1∕𝑟♯ < 1∕2(𝑝 − 1). We define 𝑟♯♯ by 1∕𝑟♯♯ = 1∕2 − (𝑝 − 1)∕𝑟♯. By
Lemma 2.2 and the embeddings 𝐻𝑠(ℝ𝑛) ↪ 𝐿𝑟♯ (ℝ𝑛), 𝐻𝑠(ℝ𝑛) ↪ 𝐻𝑠−2,𝑟♯♯ (ℝ𝑛), we have

‖𝑓 (𝑢)‖𝐻𝑠−2 ≲ ‖𝑢‖𝑝−1
𝐿𝑟♯

‖𝑢‖
𝐻𝑠−2,𝑟♯♯ ≲ ‖𝑢‖𝑝𝐻𝑠 (4.17)

which yields the required estimate.
(2) By the assumption 1 + 2∕𝑛 ≤ 𝑝 ≤ 𝑝(𝑠), there exists 𝑟∗ which satisfies 1∕𝑛(𝑝 − 1) ≤ 1∕𝑟∗ ≤

2∕𝑛(𝑝 − 1), 1∕2 − 𝑠∕𝑛 ≤ 1∕𝑟∗ ≤ 1∕2 and 0 < 1∕𝑟∗ < 1∕2(𝑝 − 1). We define 𝑟∗∗ by 1∕𝑟∗∗ =
1∕2 − (𝑝 − 1)∕𝑟∗. By Lemma 2.3 and the embeddings 𝐻𝑠(ℝ𝑛) ↪ 𝐿𝑟∗ (ℝ𝑛), 𝐵1

𝑟,2(ℝ
𝑛) ↪ 𝐿𝑟∗∗ (ℝ𝑛),

we have

‖𝑓 (𝑢)‖𝐵(𝑠−1)∕2
2,2 (𝐿2) ≲ ‖𝑢‖𝑝−1𝐿∞(𝐿𝑟∗ )‖𝑢‖𝐵(𝑠−1)∕2

2,2 (𝐿𝑟∗∗ )

≲ ‖𝑢‖𝑝−1𝐿∞(𝐻𝑠)‖𝑢‖𝐵(𝑠−1)∕2
2,2 (𝐵1

𝑟,2)
.

(3) We put 𝑟⋆ ∶= 𝑛(𝑝 − 1)∕2. By the assumption 1 + 4∕𝑛 ≤ 𝑝 ≤ 𝑝(𝑠), 𝑟⋆ satisfies 1∕2 − 𝑠∕𝑛 ≤
1∕𝑟⋆ ≤ 1∕2 and 1∕𝑟′ = (𝑝 − 1)∕𝑟⋆ + 1∕𝑟. By Lemma 2.3 and the embedding 𝐻𝑠(ℝ𝑛) ↪ 𝐿𝑟⋆ (ℝ𝑛),
we have

‖𝑓 (𝑢)‖𝐵𝑠∕22,2 (𝐿
𝑟′ ) ≲ ‖𝑢‖𝑝−1𝐿∞(𝐿𝑟⋆ )‖𝑢‖𝐵𝑠∕22,2 (𝐿

𝑟)

≲ ‖𝑢‖𝑝−1𝐿∞(𝐻𝑠)‖𝑢‖𝐵𝑠∕22,2 (𝐿
𝑟)

as required. □
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Lemma 4.2. Let 𝑛 ≥ 5, 2 < 𝑠 < min{4; 𝑛∕2}. Let 𝑓 satisfy 𝑁(𝑝) with 1 < 𝑝 ≤ 𝑝(𝑠). Then
𝑢1 ∶= −𝑖Δ𝑢0 + 𝑓 (𝑢0) satisfies the inequality

‖𝑢1‖𝐻𝑠−2 ≲ ‖𝑢0‖𝐻𝑠 + ‖𝑢0‖𝑝𝐻𝑠 .

Proof. We obtain the required inequality by (4.17). □

Proof of Theorem 1.1. Let 𝑅 > 0 be a constant. We define a function space 𝑋, 𝑋(𝑅) and the metric
𝑑 by

𝑋 ∶= 𝐿∞(ℝ,𝐻𝑠(ℝ𝑛)) ∩ 𝐵𝑠∕22,2 (ℝ, 𝐿
𝑟(ℝ𝑛)) ∩ 𝐵(𝑠−1)∕2

2,2 (ℝ, 𝐵1
𝑟,2(ℝ

𝑛)),

𝑋(𝑅) ∶=
{
𝑢 ∈ 𝑋; ‖𝑢‖𝑋 ≤ 𝑅

}
and

𝑑(𝑢, 𝑣) ∶= ‖𝑢 − 𝑣‖𝐿∞(𝐿2)∩𝐿2(𝐿𝑟).

We regard the solution of the Cauchy problem (1.1) and (1.2) as the fixed point of the integral equation
given by

𝑢(𝑡) = Φ(𝑢)(𝑡) ∶= 𝑈 (𝑡)𝑢0 + ∫
𝑡

0
𝑈 (𝑡 − 𝑡′)𝑓 (𝑢(𝑡′))𝑑𝑡′

for 𝑡 ∈ ℝ, where 𝑢(𝑡) ∶= 𝑢(𝑡, ⋅). Let 𝑛, 𝑠, 𝑝 satisfy the assumption in the theorem. We show that Φ is
a contraction mapping on the metric space (𝑋(𝑅), 𝑑) for some 𝑅 > 0.

By Corollary 4.1, Lemma 4.1 and Lemma 4.2, we have

‖Φ(𝑢)‖𝑋 ≲ ‖𝑢0‖𝐻1 + ‖𝑢1‖𝐻𝑠−2 + ‖𝑓‖𝐵𝑠∕22,2 (𝐿
𝑟′ ) + ‖𝑓‖𝐵(𝑠−1)∕2

2,2 (𝐿2) + ‖𝑓‖𝐿∞(𝐻𝑠−2)

≲ ‖𝑢0‖𝐻𝑠 + ‖𝑢0‖𝑝𝐻𝑠 + ‖𝑢‖𝑝𝑋 (4.18)

for any 𝑢, 𝑣 ∈ 𝑋. By the endpoint Strichartz estimate, we have

𝑑(Φ(𝑢),Φ(𝑣)) ≲ ‖𝑓 (𝑢) − 𝑓 (𝑣)‖𝐿2(𝐿𝑟′ ) (4.19)

for any 𝑢, 𝑣 ∈ 𝑋. By |𝑓 (𝑢) − 𝑓 (𝑣)| ≲ (|𝑢|𝑝−1 + |𝑣|𝑝−1)|𝑢 − 𝑣| and the Hölder inequality, we have

‖𝑓 (𝑢) − 𝑓 (𝑣)‖𝐿2(𝐿𝑟′ ) ≲ max
𝑤=𝑢,𝑣

‖𝑤‖𝑝−1𝐿∞(𝐿𝑟⋆ )‖𝑢 − 𝑣‖𝐿2(𝐿𝑟)

≲ max
𝑤=𝑢,𝑣

‖𝑤‖𝑝−1𝐿∞(𝐻𝑠)‖𝑢 − 𝑣‖𝐿2(𝐿𝑟) (4.20)

≲ max
𝑤=𝑢,𝑣

‖𝑤‖𝑝−1𝑋 𝑑(𝑢, 𝑣),

where we have put 𝑟⋆ ∶= 𝑛(𝑝− 1)∕2 and we have used the embedding 𝐻𝑠(ℝ𝑛) ↪ 𝐿𝑟⋆ (ℝ𝑛). So that,
we obtain

‖Φ(𝑢)‖𝑋 ≤ 𝐶0(‖𝑢0‖𝐻𝑠 + ‖𝑢0‖𝑝𝐻𝑠 ) + 𝐶𝑅𝑝, 𝑑(Φ(𝑢),Φ(𝑣)) ≤ 𝐶𝑅𝑝−1𝑑(𝑢, 𝑣)

for any 𝑢, 𝑣 ∈ 𝑋(𝑅), where 𝐶0 and 𝐶 are some positive constants which are independent of 𝑢, 𝑣 and
𝑅. Therefore, Φ is a contraction mapping if 𝑅 satisfies

2𝐶0(‖𝑢0‖𝐻𝑠 + ‖𝑢0‖𝑝𝐻𝑠 ) ≤ 𝑅, 𝐶𝑅𝑝−1 ≤ 1
2
.

Since these conditions are satisfied if the norm of the initial data is sufficiently small, we have a
unique solution 𝑢 of (1.1) and (1.2) in 𝑋(𝑅) for some 𝑅 > 0.

We will show that the solution 𝑢 obtained above belongs to 𝐶(ℝ,𝐻𝑠(ℝ𝑛)). This follows from
Corollary 4.1 once we prove 𝑓 (𝑢) ∈ 𝐶(ℝ,𝐻𝑠−2(ℝ𝑛)), since the right-hand side of (4.1) is finite by
𝑢 ∈ 𝑋(𝑅) as we have shown in (4.18). We only consider the case 𝑝 ≤ 2, but even if 𝑝 ≥ 2, the proof
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works with a slight modification. Let 0 < 𝜎 < 1. We define 𝜌, 𝜌0 and 𝜌1 by 1∕𝜌 = 1∕2− (𝑠−2)∕𝑛 =
1∕𝜌0 − 𝜎∕𝑛 = 1∕𝜌1 − 𝑠∕2𝑛; we have 𝜌1 < 2 < 𝜌0 < 𝜌 since 3 ≤ 𝑠 < 4. By the Sobolev embedding
theorem, we have the inclusions 𝐵𝑠∕2𝜌1,2

(ℝ𝑛) ↪ 𝐻𝑠−2(ℝ𝑛) ↪ 𝐵𝜎𝜌0,2(ℝ
𝑛) ↪ 𝐿𝜌(ℝ𝑛). We note that

the homogeneous parts of these spaces have the same scale. Similarly as Lemma 4.1, by the use of
Lemma 2.2, we have the inequalities

‖𝑓 (𝑣)‖𝐿𝜌 ≲ ‖𝑓 (𝑣)‖𝐵𝜎𝜌0 ,2 ≲ ‖𝑓 (𝑣)‖𝐵𝑠∕2𝜌1 ,2
≲ ‖𝑣‖𝑝𝐻𝑠 , (4.21)

‖𝑓 (𝑣) − 𝑓 (𝑤)‖𝐿𝜌 ≲ max{‖𝑣‖𝐻𝑠 ; ‖𝑤‖𝐻𝑠}𝑝−1‖𝑣 −𝑤‖𝐻2
𝜌
, (4.22)

‖𝑓 (𝑣) − 𝑓 (𝑤)‖𝐵𝜎𝜌0 ,2 ≲ ‖𝑣 −𝑤‖𝑝−1
𝐻2
𝜌
‖𝑣‖𝐻𝑠 + ‖𝑤‖𝑝−1𝐻𝑠 ‖𝑣 −𝑤‖𝐵𝜎+2𝜌0 ,2

(4.23)

for 𝑣,𝑤 ∈ 𝐻𝑠. We remark that

𝑢 ∈ 𝐶1(ℝ,𝐻𝑠−2(ℝ𝑛)) ↪ 𝐶1(ℝ, 𝐵𝜎𝜌0,2(ℝ
𝑛)) ↪ 𝐶1(ℝ, 𝐿𝜌(ℝ𝑛)).

Let ℎ ∈ ℝ. Using the equation (1.1) and the inequality (4.22), we have

‖Δ(𝑢(𝑡 + ℎ) − 𝑢(𝑡))‖𝐿𝜌 ≤ ‖𝜕𝑡(𝑢(𝑡 + ℎ) − 𝑢(𝑡))‖𝐿𝜌 + 𝐶𝑅𝑝−1‖𝑢(𝑡 + ℎ) − 𝑢(𝑡)‖𝐻2
𝜌
.

Since 𝐶𝑅𝑝−1 < 1∕2, we have

‖𝑢(𝑡 + ℎ) − 𝑢(𝑡)‖𝐻2
𝜌
≲ ‖𝜕𝑡(𝑢(𝑡 + ℎ) − 𝑢(𝑡))‖𝐿𝜌 + ‖𝑢(𝑡 + ℎ) − 𝑢(𝑡)‖𝐿𝜌 ,

hence we obtain 𝑢 ∈ 𝐶(ℝ,𝐻2
𝜌 (ℝ

𝑛)). Similarly, using the inequality (4.23) instead of (4.22), we see

‖𝑢(𝑡 + ℎ) − 𝑢(𝑡)‖𝐵𝜎+2𝜌0 ,2
≲ ‖𝜕𝑡(𝑢(𝑡 + ℎ) − 𝑢(𝑡))‖𝐵𝜎𝜌0 ,2 + 𝑅‖𝑢(𝑡 + ℎ) − 𝑢(𝑡)‖𝑝−1𝐻2

𝜌

+ ‖𝑢(𝑡 + ℎ) − 𝑢(𝑡)‖𝐵𝜎𝜌0 ,2 ,
so that 𝑢 ∈ 𝐶(ℝ, 𝐵𝜎+2𝜌0,2

(ℝ𝑛)). By interpolation, we see

𝐻𝑠−2(ℝ𝑛) = (𝐵𝜎𝜌0,2(ℝ
𝑛), 𝐵𝑠∕2𝜌1,2

(ℝ𝑛))𝜃,2

with 𝜃 = 2(𝑠 − 𝜎 − 2)∕(𝑠 − 2𝜎), see e.g. [1, Theorem 6.4.5]. Hence, by (4.21) and (4.23), we obtain
𝑓 (𝑢) ∈ 𝐶(ℝ,𝐻𝑠−2(ℝ𝑛)).

Let us prove the uniqueness of the solution in 𝐶(ℝ,𝐻𝑠(ℝ𝑛)). Let 𝑢 ∈ 𝑋(𝑅) ∩ 𝐶(ℝ,𝐻𝑠(ℝ𝑛)) be
the solution obtained by the above argument, and let 𝑣 be another solution in 𝐶(ℝ,𝐻𝑠(ℝ𝑛)) for the
same datum 𝑢0. Let 𝑡0 be defined by 𝑡0 ∶= sup{𝑡 ≥ 0; 𝑢(𝜏) = 𝑣(𝜏) for 0 ≤ 𝜏 ≤ 𝑡}. If 𝑡0 < ∞, then
we consider an interval 𝐼 ∶= [𝑡0, 𝑡0 + 𝜀) with 𝜀 > 0. Since 𝑣(𝑡) ∈ 𝐿𝑟⋆ (ℝ𝑛) for any 𝑡 ∈ ℝ by the
embedding 𝐻𝑠(ℝ𝑛) ↪ 𝐿𝑟⋆ (ℝ𝑛) and 𝑝 = 𝑝(𝑠), we have

‖𝑢 − 𝑣‖𝐿2(𝐼,𝐿𝑟) ≲ ‖𝑓 (𝑢) − 𝑓 (𝑣)‖𝐿2(𝐼,𝐿𝑟′ )

≲ max
𝑤=𝑢,𝑣

‖𝑤‖𝑝−1𝐿∞(𝐼,𝐻𝑠)‖𝑢 − 𝑣‖𝐿2(𝐼,𝐿𝑟)

by the similar argument on (4.19) and (4.20). By 𝑢, 𝑣 ∈ 𝐶(ℝ,𝐻𝑠(ℝ𝑛)) and 𝑢 ∈ 𝑋(𝑅) with 𝑅
sufficiently small, we obtain ‖𝑢 − 𝑣‖𝐿2(𝐼,𝐿𝑟) = 0 for a sufficiently small 𝜀 > 0. Thus, 𝑢 = 𝑣 on 𝐼 ,
which contradicts the definition of 𝑡0. We have shown 𝑡0 = ∞, namely, 𝑢 = 𝑣 on [0,∞). Analogously,
we are able to show 𝑢 = 𝑣 on (−∞, 0]. So that, we obtain 𝑢 = 𝑣 on ℝ. □
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Remark. In the previous paper [15], we found the solution to 𝑢 = Φ(𝑢) as follows. We use the space

𝑌 = 𝐿∞(ℝ,𝐻𝑠(ℝ𝑛)) ∩𝑊 1
∞(ℝ,𝐻𝑠−2(ℝ𝑛))

∩ 𝐵𝑠∕2𝑞,2 (ℝ, 𝐿
𝑟(ℝ𝑛)) ∩ 𝐿𝑞(ℝ, 𝐵𝑠𝑟,𝑞(ℝ

𝑛)) ∩𝑊 1
𝑞 (ℝ, 𝐵

𝑠−2
𝑟,𝑞 (ℝ𝑛))

instead of 𝑋. By the contraction mapping principle, for sufficiently small 𝑢0, we find a unique fixed
point of Φ in 𝑌 (𝑅) = {𝑢 ∈ 𝑌 ; ‖𝑢‖𝑌 ≤ 𝑅} equipped with the metric 𝑑. Here, (𝑞, 𝑟) is an admissible
pair to be chosen suitably, and 𝑅 > 0 is sufficiently small number. We first note that in (1.8) we can
replace the third indices 2 of Besov spaces with 𝑞. We choose admissible pairs (𝑞, 𝑟) and (𝛾, 𝜌) so
that 1∕𝛾 ′ = 𝑝∕𝑞 > 𝑠∕2 − 1. As in the proof above, we estimate 𝜕𝑡Φ(𝑢) by (1.7) with 𝜃 = (𝑠 − 2)∕2,
�̄�0 = 𝜌′, and by (1.8) with 𝜎 = 𝑠 − 2, 𝑞1 = 𝑞. Then, ‖𝜕𝑡𝑓 (𝑢)‖𝐵(𝑠−2)∕2

𝛾′ ,2
(𝐿𝜌′ ) and ‖𝜕𝑡𝑓 (𝑢)‖𝑙2(𝐿𝑞0 (𝐿�̄�0 ))

are bounded by ‖𝑢‖𝑝−1𝐿𝑞(𝐵𝑠𝑟,𝑞)
‖𝑢‖𝐵𝑠∕2𝑞,2 (𝐿

𝑟) if 𝑝∕𝑞 > 𝑠∕2 − 1. The most delicate point is the estimate of‖𝜕𝑡𝑓 (𝑢)‖𝑙𝑞(𝐿𝑞1 (𝐿�̄�1 )) ∼ ‖𝜕𝑡𝑓 (𝑢)‖𝐿𝑞(𝐵0
�̄�1 ,𝑞

). By the Leibniz rule with 1∕𝜈2 = 1∕𝑟 − (𝑠 − 2)∕𝑛, we have

‖𝜕𝑡𝑓 (𝑢)‖𝐵0
�̄�1 ,𝑞

≲ ‖𝑓 ′(𝑢)‖𝐿𝜈0∕(𝑝−1)‖𝜕𝑡𝑢‖𝐵0
𝜈2 ,𝑞

+ ‖𝑓 ′(𝑢)‖𝐵0
𝜈0∕(𝑝−1),𝑞

‖𝜕𝑡𝑢‖𝐿𝜈2
≲ (‖𝑢‖𝐻𝑠 + ‖𝑢‖𝐵𝑠2,𝑞(𝑝−1) )𝑝−1‖𝜕𝑡𝑢‖𝐵𝑠−2𝑟,𝑞∧𝜈2

.

The right-hand side is bounded by ‖𝑢‖𝑝−1𝐻𝑠 ‖𝜕𝑡𝑢‖𝐵𝑠−2𝑟,𝑞
provided that 2∕(𝑝 − 1) ≤ 𝑞 ≤ 𝜈2. It is possible

to choose 𝑞 satisfying this condition together with 𝑝∕𝑞 > 𝑠∕2 − 1 only when (1.4) is satisfied.

Acknowledgment. The authors are thankful to the anonymous referee for several comments to
revise the paper.
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