
 
 
 
 
 
  

 

 
Title 
Excitation Gap in the Kondo Insulator with Coulomb Interaction between 
Conduction Electrons 
 
Author(s) 
Aya Masuyama and Tetsuya Mutou 
 
Journal 
Journal of the Physical Society of Japan vol.89, No.4 
 
Published 
2020-03-23 
 
URL 
https://doi.org/10.7566/JPSJ.89.044708 

 

 
 

この論文は出版社版でありません。 

引用の際には出版社版をご確認のうえご利用ください。 

島 根 大 学 学 術 情 報 リ ポ ジ ト リ  

S W A N 
Shimane University Web Archives of kNowledge 

https://doi.org/10.7566/JPSJ.89.044708
https://doi.org/10.7566/JPSJ.89.044708


Journal of the Physical Society of Japan

Excitation Gap in the Kondo Insulator
with Coulomb Interaction between Conduction Electrons

Aya Masuyama and Tetsuya Mutou*

Interdisciplinary Faculty of Science and Engineering, Shimane University, Matsue

690-8504, Japan

We have investigated the effects of the Coulomb interaction between conduction electrons

on the excitation gap of the Kondo insulator . As a theoretical model of the Kondo insulator,

the periodic Anderson model (PAM) has been used under particle-hole symmetry. We have

treated the PAM with the Coulomb interaction between the conduction electrons, denoted by

Uc, using the dynamic mean-field theory (DMFT) with the iterated perturbation theory as

the DMFT impurity solver. With increasing Uc, the gap of the density of states at absolute

zero widens and the characteristic temperature at which the electronic state begins to be

reconstructed increases. We have found, via the perturbative approach, that the gap in the

theoretical model of the Kondo insulator is widened by Uc, at least in the weak-coupling

regime.

1. Introduction

The Kondo insulator is one of the heavy fermion systems, and the origin of the Kondo

insulator excitation gap has attracted significant interest.1, 2) Although it has been established

that the characteristic electronic states of the heavy fermion systems originate from the strong

correlation between almost localized f electrons that hybridize with conduction electrons,3)

there are various views with regard to the origin of the Kondo insulator gap. In one view,

the Kondo insulator gap is considered as an open hybridization gap in the renormalized hy-

bridization band consisting of f electrons and conduction electrons.4, 5) The renormalized hy-

bridization band in heavy fermions is theoretically described by the periodic Anderson model

(PAM).3) In contrast, when considering almost localized f electrons as having completely lo-

calized spins in heavy fermion systems, the theoretical model suitable for describing such a

situation is the Kondo lattice model (KLM). In the KLM, a localized f spin couples with a
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spin of a conduction electron at the same site via the antiferromagnetic exchange interaction

between them. The KLM is an effective low-energy model of the PAM in the case that the

Coulomb interaction energy between f electrons is sufficiently greater than the hybridization

energy of the PAM. In studies on the one-dimensional KLM, it was pointed out that the KLM

excitation gap in the strong-coupling limit is understood as the spin excitation gap of the sin-

glet state between a localized f spin and a spin of a conduction electron on the same site.

Moreover, it was reported that both spin- and charge-excitation gaps exist for any exchange

coupling strength.6, 7)

In the PAM, the hybridization gap becomes small when the Coulomb interaction between

f electrons is strong and/or the hybridization energy is small.4, 5) It was also reported in KLM

studies that the excitation gap decreases when the exchange interaction energy decreases.6, 7)

In the case of such a small gap, it should no longer be valid to neglect the Coulomb interaction

between conduction electrons; however, this is usually neglected in both models. The effect of

the Coulomb interaction between conduction electrons, denoted here by Uc, has been already

studied in both KLM8) and PAM.9) However, there was a discrepancy in the effect of Uc on

the gap between the former and the latter.

In the numerical study of the one-dimensional KLM with Uc by the density-matrix

renormalization-group (DMRG) method, it was shown that the excitation gap increases with

the increase of Uc.8) One the other hand, in the numerical study of the PAM with Uc by the

Gutzwiller variational method, it was reported that switching Uc tends to reduce the gap in

the PAM.9) As the models used in these two studies are different, discrepancies in the results

are expected. Nevertheless, since the KLM is an effective model of PAM with some limiting

cases mentioned above, these two models should have common features in the low-energy

excitation, including the excitation gap. Therefore, it is expected that there will be some com-

mon points about the effect of Uc on the excitation gap in both models.

To consider the cause of the discrepancies between the above two studies, the Coulomb

interaction between f electrons, denoted here by U f , in the PAM should be noted. In Ref.

9, the authors took the strongly asymmetric case with the infinite U f and the sufficiently

deep f level in the PAM, i.e., they considered the PAM in the subspace excluded the double

occupancy of f electrons in a single site. Although KLM is considered to be a low-energy

effective model of PAM in the above subspace, it is not a trivial problem whether the effect

of Uc on the gap in the PAM with a finite value of U f is the same as that with an infinite U f

or not.

In the present study, we investigate the effect of Uc on the hybridization gap in PAM
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with the finite value of U f to reveal the cause of the discrepancy between the results obtained

in Refs. 8 and 9. Specifically, we address the correlation effect on the gap opened in the

density of states of the system. In the present study, the dynamic mean-field theory (DMFT)

is used to treat the correlation effect in the model. DMFT is one of the established methods to

treat the correlation effect in the strongly correlated electron systems.10) DMFT is expected

to be useful in investigating the correlation effects caused by both U f and Uc on the same

footing. Moreover, quantitative results can be obtained in the weak-coupling regime described

by the perturbative approach with the use of the iterated perturbation theory (IPT) as the

DMFT impurity solver.11) To estimate the hybridization gap of the density of states, IPT

is effective because it facilitates obtaining a real-frequency spectrum in a wide temperature

range, including absolute zero.12) Concerning the effect of Uc in the PAM, several studies have

been carried out.13–17) In Ref. 14, particularly, the authors carried out a systematic analysis of

the effect of Uc on the PAM gap using the linearized DMFT. In the present study, we treat the

effect of Uc using the perturbative approach to obtain a clear Uc-dependence of the gap, at

least in a system weak-coupling regime, and our approach is expected to be complementary

to that of Ref. 14.

2. Model and Formulation

We consider the PAM with the Coulomb interaction between the conduction electrons.

The Hamiltonian of the current system is defined by

H ≡ H − µNe,

H ≡
∑
k,σ

εkc†kσckσ + ε f

∑
i,σ

f †iσ fiσ + V
∑
i,σ

(c†iσ fiσ + H.c.)

+U f

∑
i

f †i↑ fi↑ f †i↓ fi↓ + Uc

∑
i

c†i↑ci↑c
†
i↓ci↓,

Ne ≡
∑
i,σ

(c†iσciσ + f †iσ fiσ),

(1)

where µ denotes the chemical potential. Annihilation (creation) operators of conduction and

f electrons with a spin σ on the i-th site are denoted by c(†)
iσ and f (†)

iσ , respectively. For the

conduction-electron operator, c(†)
kσ is the Fourier transformation of c(†)

iσ . The kinetic energy

of a conduction electron and the energy level of an f electron are denoted by εk and ε f ,

respectively. The hybridization matrix element between f and the conduction electrons is

assumed to be local and real, and it is denoted by V . The fourth and fifth terms of H in Eq.

(1) are the on-site Coulomb interaction energies between the f electrons and the conduction

electrons, respectively.
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In the PAM, a conduction electron hybridizes with an f electron and forms a hybridization

band. Under the condition of the particle-hole symmetry in the PAM with a non-dispersive

f -electron energy level, the band has a hybridization gap at the Fermi level and the ground

state of the system is insulating for the non-interacting case: U f = 0. Even for the interacting

case, the ground state of the system under the particle-hole symmetric condition remains

guaranteed to be insulated with the renormalized hybridization gap because of the Luttinger’s

theorem .18) Thus, the conventional PAM with the particle-hole symmetry has been used as the

theoretical model of the Kondo insulator / semiconductor. 4, 5) In the present system, described

by the above Hamiltonian Eq. (1) under the particle-hole symmetric condition expressed as

ε f +
U f

2
=

Uc

2
= µ, (2)

the Luttinger’s theorem also ensures that the Fermi level is always in the renormalized hy-

bridization gap at the absolute zero. Therefore, the PAM with Uc under the condition Eq. (2)

is suitable to investigate the effects of Uc on the renormalized hybridization gap.

We apply the DMFT to the present model described by Eq. (1) with a local approximation

for the self energy of the Green’s function. To investigate the correlation effect on the renor-

malized hybridization gap, an excitation gap clearly defined at the absolute zero is required.

For the calculation in a wide temperature range, including the absolute zero, we use the IPT

as the DMFT impurity solver as mentioned in Sect. 1. It is known that IPT is effective for the

single-band Hubbard model with the particle-hole symmetry since the second-order self en-

ergy obtained by the IPT becomes exact in the atomic limit.10) As shown below, it is expected

that IPT is also effective for the PAM with Uc under the particle-hole symmetric condition.

Under the particle-hole symmetric condition Eq. (2), Green’s function matrix is expressed as Gcck(z) Gc f k(z)

G f ck(z) G f f k(z)

 =
 z − εk − Σ̃cc(z) −V − Σc f (z)

−V − Σ f c(z) z − Σ̃ f f (z)


−1

, (3)

where Σ̃λλ(z) (λ = c, f ) denotes the diagonal element of the self-energy matrix without the

Hartree term and the off-diagonal element of the self-energy matrix is denoted by Σc f (z)

(which is equal to Σ f c(z)). In Eq. (3), the spin index is omitted, as we consider only the

paramagnetic state.

With the local approximation, self-energy becomes k-independent, and the k-dependence

of Green’s function is expressed only through εk. Thus, we can express Green’s function as

Gλλ′(z; εk) ≡ Gλλ′k(z) (λ, λ′ = c, f ). (4)

Consequently, the k-summation is also replaced by the energy integral with the density of
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states (DOS) for the unperturbed (non-interacting) system ρ0(ν) defined by

ρ0(ν) ≡ 1
N

∑
k

δ(ν − εk). (5)

Hereafter, ρ0(ν) is referred to as free DOS. In Eq. (5), N denotes a number of k-points in the

first Brillouin zone.

The local approximation of the self energy becomes exact in the infinite-dimensional

limit, and it is well-known that the DOS of the tight-binding model with nearest-neighbor

hoppings in the hypercubic lattice in infinite dimensions has the Gaussian shape.19) In the

system with the Gaussian DOS, strictly speaking, the hybridization gap does not open because

there are no band edges in the Gaussian DOS. To consider a well-defined hybridization gap,

we use a semi-elliptic form for the free DOS with clearly defined band edges. The semi-

elliptic form is known as the DOS for the Bethe lattice with infinite connectivity.20) In the

present calculation, we define the semi-elliptic free DOS as

ρ0(ν) =


2
πD

√
1 −

(
ν

D

)2
(|ν| ≤ D)

0 (|ν| > D)
, (6)

where the half band width is denoted by D.

The hybridization gap is defined by the energy difference between the bottom of the up-

per hybridization band and the top of the lower hybridization band. Under the particle-hole

symmetric condition Eq. (2), the energy dispersion, denoted by E±0 (εk) of the hybridization

band of the non-interacting system, is expressed as

E±0 (εk) =
1
2

(
εk ±

√
ε2

k + 4V2
)
. (7)

Subsequently, the hybridization gap ∆0 of the non-interacting system is obtained as follows

∆0 ≡ E+0 (−D) − E−0 (D) =
√

D2 + 4V2 − D. (8)

By using the free DOS ρ0(ν), the local Green’s function matrix is expressed as

Ĝ(z) ≡

 Gcc(z) Gc f (z)

G f c(z) G f f (z)

 = ∫
dνρ0(ν)

 Gcc(z; ν) Gc f (z; ν)

G f c(z; ν) G f f (z; ν)

 . (9)

In the DMFT, the local Green’s function is also expressed by introducing the Weiss function

(or the cavity Green’s function) as

Ĝ−1(z) = Ĝ−1(z) − Σ̂(z), (10)
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where the Weiss-function matrix Ĝ(z) and the self-energy matrix Σ̂(z) are defined by

Ĝ(z) ≡

 G̃cc(z) Gc f (z)

G f c(z) G̃ f f (z)

 , (11)

Σ̂(z) ≡

 Σ̃cc(z) Σc f (z)

Σ f c(z) Σ̃ f f (z)

 . (12)

In the expression of the Weiss-function matrix Eq. (11), G̃λλ(z) denotes the Weiss function in

which the Hartree term of the self energy is subtracted from Gλλ(z) (λ = c, f ).

In the IPT scheme, the self energy is approximated by the second-order perturbative con-

tribution composed of the Weiss functions as

Σλλ′(z) ≃ −UλUλ′T
∑

l

T
∑

m

Gλλ′(iεl)Gλλ′(iεm)Gλλ′(z − iεl + iεm) (λ, λ′ = c, f ), (13)

where T denotes the temperature of the system, and εl and εm are fermionic Matsubara fre-

quencies. In Eq. (13), the tilde marks in the notations of the diagonal elements of the Weiss-

function matrix and the self-energy matrix have been omitted for simplicity. Using the spec-

tral representation, the right side of Eq. (13) is also expressed as

UλUλ′
$

dε1dε2dε3ϱλλ′(ε1)ϱλλ′(ε2)ϱλλ′(ε3)
f (ε1) f (−ε2) f (ε3) + f (−ε1) f (ε2) f (−ε3)

z − ε1 + ε2 − ε3
, (14)

where ϱλλ′(ε) is defined by the imaginary part of the Weiss function as

ϱλλ′(ε) ≡ −
1
π

ImGλλ′(ε + iη) (λ, λ′ = c, f ), (15)

with a positive infinitesimal η. In Eq. (14), f (ε) is the Fermi distribution function defined as

f (ε) ≡ 1/(eε/T + 1). By self-consistently solving Eqs. (3), (9), (10) , and (14), we can obtain

f -electron local DOS ρ f (ε) and conduction-electron local DOS ρc(ε) defined as

ρ f (ε) ≡ −
1
π

Im G f f (ε + iη), (16)

ρc(ε) ≡ −
1
π

Im Gcc(ε + iη). (17)

Here, let us comment on the reason why it is valid that the IPT is also effective for the

PAM with Uc under the particle-hole symmetric condition. In the usual PAM without Uc

under the particle-hole symmetric condition, the f -component G f f (iεn) of the local Green’s

function matrix in the atomic limit U f /V → ∞ is expressed as

G f f (iεn) =
1
2

(
1

iεn − ε f
+

1
iεn − (ε f + U f )

)
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=
1
2

 1

iεn +
U f

2

+
1

iεn −
U f

2


=

iεn −
U2

f

4iεn

−1

. (18)

In the IPT, the self energy without the Hartree term is obtained similarly to the case in the

single-band Hubbard model10) as

Σ̃ f f (iεn) =
U2

f

4iεn
, (19)

with setting in Eqs. (13) and (14) as

G̃ f f (iεn) = 1/(iεn). (20)

Since G f f (iεn) is expressed as (G f f (iεn))−1 = (G̃ f f (iεn))−1 − Σ̃ f f (iεn) in the DMFT scheme,

Eqs. (18), (19), and (20) show that the Weiss function and the self energy in the IPT can

consistently construct the exact local Green’s function of the PAM in the atomic limit with

the particle-hole symmetry. Thus, it is also expected that the IPT is effective for the PAM with

Uc under the particle-hole symmetric condition as long as we focus on the weak-coupling

regime for Uc smaller than U f in the present study.

3. Results

In the present calculation, we take the half band width D in the free DOS Eq. (6) as the

energy unit: D = 1. The hybridization energy V is set to 0.5 in the numerical results shown

below.

First, we show the U f -dependences of ρ f (ε) (Fig. 1) and ρc(ε) (Fig. 2) for Uc = 0 at the

absolute zero. The hybridization gap opens at the Fermi level (ε = 0) and narrows with the

increase of U f . The narrowing of the hybridization gap reflects the renormalization effect of

U f . As the enhancement of the correlation effect with the increase of U f corresponds to the

relative suppression of the effective hybridization energy, the form of the conduction-electron

DOS near the Fermi level approaches that of the original free DOS Eq. (6) with an increase in

U f , as shown in Fig. 2. Sharp peaks are found to appear at high energy for higher U f values.

These peaks correspond to the lower and upper Hubbard bands.

Figure 3 shows the Uc-dependence of ρ f (ε) for U f = 2.0 at the absolute zero. It can

be seen that the hybridization gap widens as Uc increases. As Uc is smaller than U f in the

present case, only the low-energy structure of the spectrum, including the hybridization gap,

is affected by Uc. This trend is much clearer in the spectrum for U f = 5.0, as shown in Fig. 4.
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Fig. 1. (Color online) Spectra of the f -electron local DOS ρ f (ε) at T = 0 for Uc = 0 and several U f values.

The lower panel shows the enlarged DOS figure.
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Fig. 2. (Color online) Spectra of the conduction-electron local DOS ρc(ε) at T = 0 for Uc = 0 and several U f

values.

To quantitatively investigate the correlation effect by Uc on the spectrum at the absolute

zero, we estimate the renormalized hybridization gap of the quasiparticle band. In the quasi-

particle picture, the energy dispersion of the renormalized hybridization band is expressed
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Fig. 3. (Color online) (a) Spectra of the f -electron local DOS ρ f (ε) at T = 0 for U f = 2.0 and several Uc

values. (b) Enlarged DOS figure near the Fermi level.
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Fig. 4. (Color online) (a) Spectra of the f -electron local DOS ρ f (ε) at T = 0 for U f = 5.0 and several Uc

values. (b) Enlarged DOS figure near the Fermi level.

as

E±(εk) =
1
2

(
zcεk ±

√
(zcεk)2 + 4Ṽ2

)
, (21)

where renormalization factors zc and z f , and the effective hybridization energy (EHE) Ṽ are

defined by

zc ≡
(
1 − d ReΣcc(ε + iη)

dε

∣∣∣∣∣
ε=0

)−1

, (22)

z f ≡
(
1 −

d ReΣ f f (ε + iη)
dε

∣∣∣∣∣
ε=0

)−1

, (23)

Ṽ ≡ √zcz f V∗, (24)

V∗ ≡ V + Re Σc f (ε + iη)
∣∣∣
ε=0
= V + ReΣc f (iη). (25)
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The renormalized hybridization gap denoted by ∆QP for the quasiparticle is defined as ∆QP ≡
E+(−D) − E−(D). We introduce the renormalized band width defined by

D̃ ≡ zcD, (26)

to obtain the ∆QP expression as

∆QP =
√

D̃2 + 4Ṽ2 − D̃, (27)

which is similar to Eq. (8).
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     = 5.0

∆
DOS

U
f
 = 1.0

= 2.0
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= 4.0

= 5.0

∆
QP

Fig. 5. (Color online) Uc-dependence of ∆DOS and ∆QP for several U f values.

As the renormalization factor and the EHE are obtained from the numerical results of the

self energies by Eqs. (22)-(25), we can estimate the renormalized hybridization gap ∆QP in

the quasiparticle picture with the use of Eq. (27). On the other hand, the hybridization gap can

be directly obtained from the local DOS spectrum ρ f (ε) (or ρc(ε)). Here, we define the DOS

gap, denoted by ∆DOS, as the energy region in which ρ f (ε) has numerically the zero value

around the Fermi level at T = 0. If the value of ∆QP, defined by Eq. (27), is consistent with

that of ∆DOS, the quasiparticulate picture of the system can be expected to be valid. Figure

5 shows the Uc-dependence of the DOS gap ∆DOS and the renormalized hybridization gap

∆QP defined by Eq. (27). It can be seen that the Uc-dependence of ∆DOS is well approximated

by that of ∆QP for all the investigated U f values. Thus, we can conclude that it is valid to

describe the system by the quasiparticle picture in the energy region around the hybridization

gap. Although the DOS gap is narrowed by the renormalization effect of U f , it increases with

the increase of Uc for all U f values.

Uc-dependences of enhancement factors z−1
f and z−1

c are shown in Fig. 6. The larger that
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Fig. 6. (Color online) Uc-dependence of enhancement factors (a) z−1
f and (b) z−1

c for U f = 1.0 at T = 0.
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Fig. 7. (Color online) Uc-dependence of ReΣc f (iη) for U f = 1.0 at T = 0.

U f becomes, the more that the enhancement factor z−1
f is suppressed with increasing Uc, as

shown in Fig. 6(a). The enhancement factor z−1
c shows a quadratic growth of Uc from z−1

c = 1

for any value of U f reflecting the second-order contribution of the self energy Eq. (14). In

Fig. 7, we show the Uc-dependence of the real part (ReΣc f (iη)) of the c- f element of the self-

energy matrix at ε = 0. For small Uc values, ReΣc f (iη) increases linearly with the increase of

Uc, as expected from Eq. (14).

Let us estimate the renormalized hybridization gap ∆QP defined by Eq. (27) by the pertur-

bative approach. The renormalization factors z f and zc are expressed as z f = 1 + O
(
U2

f

)
and

zc = 1+O
(
U2

c

)
based on Eqs. (22) and (23), respectively. The enhanced hybridization energy

V∗ can be expressed up to the lowest order of Uc and U f as

V∗ = V + αc f U f Uc + O
(
U2

f

)
+ O

(
U2

c

)
, (28)

where αc f is a constant independent from U f and Uc. Eqs. (A·10) and (A·11) in the Appendix

ensure that αc f is positive at least in the weak-coupling regime.
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Substitute Eq. (28) in Eq. (24) to obtain

Ṽ =
√

zcz f V∗ = V + αc f UcU f + O
(
U2

f

)
+ O

(
U2

f

)
. (29)

Using Eq. (29) and considering that D̃ = D + O
(
U2

c

)
, by Eq. (26), we can estimate ∆QP from

Eq. (27) ignoring O
(
U2

c

)
and O

(
U2

f

)
as follows;

∆QP ≃
√

D2 + 4(V + αc f UcU f )2 − D

≃ ∆0 +
4αc f V√
D2 + 4V2

UcU f , (30)

where the unperturbed hybridization gap ∆0 is defined by Eq. (8). Is is clear from Eq. (30)

that the effective hybridization gap ∆QP is enhanced by Uc because of the positivity of αc f to

the system with a fixed value of U f .

The finite temperature system results are shown below. For the conventional PAM without

Uc, hybridization between conduction and f electrons is expected to be effectively weakened

at a higher temperature than EHE.12) We call this situation the c- f separation hereafter.12)

In Figs. 8 and 9, temperature dependences of ρ f (ε) and ρc(ε) of the system without Uc for

U f = 2.0 are shown, respectively. As expected, the hybridization gap fills as the temperature

increases and the gap structure disappears completely at much higher temperatures than Ṽ .

The spectrum of ρ f (ε) at high temperature has two peaks near ε ≃ ±U f /2 corresponding to

the upper and lower Hubbard bands. In contrast, the spectrum of ρc(ε) at high temperature

has a similar form to the free DOS ρ0(ε), which is the DOS whose system consists only of

conduction electrons. These results reflect the c- f separation.
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Fig. 8. (Color online) Temperature dependence of ρ f (ε) for U f = 2.0 and Uc = 0.0.
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Fig. 9. (Color online) Temperature dependence of ρc(ε) for U f = 2.0 and Uc = 0.0.

Figures 10(a)-(c) show the temperature dependences of ρ f (ε) and ρc(ε) for U f = 2.0 and

various Uc values. Generally, the gap can be seen to be filled with increasing temperatures.

As Uc increases, the DOS gap widens, and the temperature at which the gap begins to fill

seems to change. In the system with the ∆DOS gap at the Fermi level, the electron begins to

be excited at T ∼ ∆DOS and the electronic state begins to be reconstructed by the correlation

effect. Thus, it is natural to consider that the temperature at which the gap begins to be filled

corresponds to the DOS gap ∆DOS itself.

To investigate the correlation effect of Uc on the temperature at which the electronic state

begins to be reconstructed, it is necessary to define quantitatively the characteristic tempera-

ture that represents the temperature at which the gap begins to be filled. In the present study,

the above characteristic temperature is denoted by T f (c)
gap , and we define T f (c)

gap as follows. First,

we consider the ratio of the value ρ f (c)(0) of the DOS at ε = 0 (the Fermi level) to the peak

value ρ f (c)(ε
f (c)
peak) of the DOS near the gap, where ε f (c)

peak denotes the energy at which the peak

of the DOS ρ f (c)(ε) exists near the gap, as shown in Fig. 11(a). This ratio ρ f (c)(0)/ρ f (c)(ε
f (c)
peak)

at temperature T is denoted by R f (c)(T ). Furthermore, we define the characteristic tempera-

ture T f (c)
gap as the temperature at which the value of ρ f (c)(0) becomes a ten percent of that of

ρ f (c)(ε
f (c)
peak). Namely, T f (c)

gap is defined as the temperature at which the following equation is

supported;

R f (c)(T f (c)
gap ) = 0.1, (31)

as shown in Fig. 11(b).

We show temperature dependences of R f (T ) and Rc(T ) in Figs. 12 and 13, respectively. It

is shown that both R f (T ) and Rc(T ) increase more slowly with the increase of T for a higher
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Fig. 10. (Color online) Temperature dependence of ρ f (ε) for U f = 2.0 and (a) Uc = 0.2, (b) Uc = 0.6, and

(c) Uc = 1.0.

Uc value. The characteristic temperature T f (c)
gap is given by the intersection that satisfies Eq.

(31). In the numerical estimation of the value of T f (c)
gap , we regard a curve between R f (c)(Tn)

and R f (c)(Tn+1) as a straight line for the calculated n-th and (n + 1)-th points of temperature

Tn and Tn+1 in the determination of these intersections.

To compare the correlation effect of Uc on T f (c)
gap to that of ∆DOS, these values are scaled

by those for Uc = 0. Indicating these values as functions of Uc by ∆DOS(Uc) and T f (c)
gap (Uc),
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Fig. 11. (Color online) (a) Schematic explanation of the peak energy ε f
peak. The ratio R f (T ) is defined by

R f (T ) = ρ f (0)/ρ f (ε
f
peak). (b) Schematic explanation of the characteristic temperature T f

gap.
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Fig. 12. (Color online) Temperature dependence of R f (T ) for U f = 2.0 and several Uc values.
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Fig. 13. (Color online) Temperature dependence of Rc(T ) for U f = 2.0 and several Uc values.
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we define scaled quantities δDOS and t f (c)
gap as

δDOS ≡
∆DOS(Uc)
∆DOS(0)

, (32)

t f (c)
gap ≡

T f (c)
gap (Uc)

T f (c)
gap (0)

. (33)

Figure 14 shows Uc-dependences of t f
gap, tc

gap, and δDOS. Evidently, Uc-dependences of t f
gap,

and tc
gap are very similar. Moreover, it should be emphasized that both t f (c)

gap and δDOS are

monotonously increasing functions of Uc in the region we have calculated.
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Fig. 14. (Color online) Uc-dependences of t f
gap, tc

gap, and δDOS for U f = 2.0.

4. Summary and Discussion

In summary, we have treated the theoretical model of the Kondo insulator based on the

PAM with the Coulomb interaction energy Uc between conduction electrons by the DMFT

in which the IPT is used as the impurity solver. We have investigated Uc-dependence of the

hybridization gap and temperature dependence of the density of states.

It is well-known that the hybridization gap in the usual PAM narrows because of the

renormalization effect by the Coulomb interaction energy U f between the f electrons. In

this study, it has been shown that the hybridization gap for the system with a fixed U f value

is widened by Uc. The DOS gap (the gap of the density of states) at absolute zero can be

considered as the renormalized hybridization gap, and the DOS gap can be expressed using

the renormalization factor. Actually, we have confirmed that the DOS gap ∆DOS obtained by

numerical calculation is quantitatively consistent with the renormalized hybridization gap

∆QP that is expressed by the renormalization factor defined by the self energy. Therefore, we

can conclude that it is valid to analyze the interaction-energy dependence of the DOS gap
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using the renormalization factor. This Uc-dependence of the DOS gap at the absolute zero is

qualitatively consistent with the result obtained by the linearized DMFT in Ref.14.

Although the DOS gap at the absolute zero can be estimated by the renormalization factor,

the correlation effect that is reflected in the temperature dependence of the DOS is not trivial.

The temperature at which the electronic state begins to be reconstructed and the DOS begins

to show temperature dependence is expected to be T ∼ ∆DOS. In the present study, we have

defined T f (c)
gap in Eq. (31) as the abovementioned temperature. In addition, Uc-dependence of

T f (c)
gap was investigated. Additionally, it has been shown that T f (c)

gap also increases as Uc increases

similarly to the Uc-dependence of the DOS gap.

As mentioned in Sec.1, Itai and Fazekas reported that the hybridization gap in the PAM

with infinite U f and finite Uc narrows as Uc increases.9) However, Shibata et al. showed

that the excitation gap of the KLM with finite Uc is widened by Uc.8) In Ref.9, a bare V-

value of the hybridization energy appears in EHE Ṽ as Ṽ = √z f zcV . According to our

analysis, however, the hybridization energy contributing to Ṽ is not the bare V but V∗ de-

fined by Eq. (25), which involves the real part of the c- f component of the self energy as

Ṽ = √z f zcV∗ =
√z f zc

(
V + ReΣc f (iη)

)
.

In the EHE expression Ṽ = √z f zcV given by Itai and Fazekas, EHE decreases monotoni-

cally with the increase of Uc as this expression involves only zc, which is simply suppressed

by Uc. In Eq. (29) obtained by the present study, however, it has been found that the en-

hancement of V∗ is stronger than the suppression of zc with the increase of Uc, at least in

the weak-coupling regime, owing to the existence of the Uc-linear term in ReΣ(2)
c f (iη). Thus,

it is concluded that the hybridization gap in the theoretical model of the Kondo insulator is

widened by Uc, at least in the weak-coupling regime.
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Appendix

This Appendix derives the effective hybridization energy in a lower-energy region based

on the perturbative treatment of the self energy. We consider the second-order contribution

Σ
(2)
c f (iεn) of the c- f component of the self-energy matrix under the particle-hole symmetric

condition. The c- f component G(0)
c f (iεn) of the local Green’s function matrix of the unper-
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turbed system has the spectral representation as

G(0)
c f (iεn) =

∫ ∞

−∞
dε
ρ(0)

c f (ε)

iεn − ε
, (A·1)

where

ρ(0)
c f (ε) = −1

π
Im G(0)

c f (ε + iη).

Therefore, the second-order contribution Σ(2)
c f (iεn) to the c- f component of the self-energy

matrix under the particle-hole symmetric condition is expressed as follows:

Σ
(2)
c f (iεn) = −UcU f T

∑
l

T
∑

m

G(0)
c f (iεl)G

(0)
c f (iεm)G(0)

c f (iεn − iεl + iεm)

= UcU f

$
dε1dε2dε3ρ

(0)
c f (ε1)ρ(0)

c f (ε2)ρ(0)
c f (ε3)

f (ε1) f (ε2) f (−ε3) + f (−ε1) f (−ε2) f (ε3)
iεn − ε1 − ε2 + ε3

.

(A·2)

With an analytic continuation iεn → ε+iη, the imaginary part ImΣ(2)
c f (ε+iη) of the self energy

Eq. (A·2) is expressed as

ImΣ(2)
c f (ε + iη) = −πUcU f

$
dε1dε2dε3ρ

(0)
c f (ε1)ρ(0)

c f (ε2)ρ(0)
c f (ε3)

· [ f (ε1) f (ε2) f (−ε3) + f (−ε1) f (−ε2) f (ε3)
]
δ(ε − ε1 − ε2 + ε3). (A·3)

Let us estimate the integral in the right side of Eq. (A·3) at the absolute zero. Because

the Fermi distribution function f (ε) is expressed as f (ε) = θ(−ε) by the step function at the

absolute zero, we can divide the integral in Eq. (A·3) into two terms as$
dε1dε2dε3ρ

(0)
c f (ε1)ρ(0)

c f (ε2)ρ(0)
c f (ε3)

[
f (ε1) f (ε2) f (−ε3) + f (−ε1) f (−ε2) f (ε3)

]
δ(ε − ε1 − ε2 + ε3)

=

[∫ 0

−∞
dε1

∫ 0

−∞
dε2

∫ ∞

0
dε3 +

∫ ∞

0
dε1

∫ ∞

0
dε2

∫ 0

−∞
dε3

]
ρ(0)

c f (ε1)ρ(0)
c f (ε2)ρ(0)

c f (ε3)δ(ε − ε1 − ε2 + ε3).

(A·4)

Here, we consider the sign of the function ρ(0)
c f (ε). By denoting the k-dependent Green’s func-

tion similarly to Eq. (4) , the unperturbed c- f Green’s function under the particle-hole sym-

metric condition is expressed as

G(0)
c f (iεn; εk) =

V
iεn(iεn − εk) − V2 . (A·5)
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Then, ρ(0)
c f (ε) is expressed by using the free DOS from Eq. (6) as

ρ(0)
c f (ε) =

∫
dνρ0(ν)

(
−1
π

Im G(0)
c f (ε + iη; ν)

)
=


V
ε
ρ0

(
ε − V2

ε

) (∣∣∣∣∣∣ε − V2

ε

∣∣∣∣∣∣ ≤ D
)
,

0
(∣∣∣∣∣∣ε − V2

ε

∣∣∣∣∣∣ > D
)
.

(A·6)

Therefore, ρ(0)
c f (ε) is an odd function of ε and the sign of ρ(0)

c f (ε) is equal to that of ε itself.

In the first term of the right side of Eq. (A·4), the region limited by the argument of the

delta function is ε = −[|ε1|+ |ε2|+ |ε3|] ≤ 0 in the intervals of the integral (ε1 ≤ 0, ε2 ≤ 0, ε3 ≥
0). Thus, it holds that ρ(0)

c f (ε1) ≤ 0, ρ(0)
c f (ε2) ≤ 0, ρ(0)

c f (ε3) ≥ 0 in these intervals of the integral,

as the sign of ρ(0)
c f (ε) is equal to that of ε. Therefore, the first term of the right side of Eq. (A·4)

is positive if ε < 0 and is equal to 0 if ε ≥ 0.

On the other hand, in the second term of the right side of Eq. (A·4), the region limited

by the delta function argument is ε = |ε1| + |ε2| + |ε3| ≥ 0 in the intervals of the integral

(ε1 ≥ 0, ε2 ≥ 0, ε3 ≤ 0), and it holds that ρ(0)
c f (ε1) ≥ 0, ρ(0)

c f (ε2) ≥ 0, ρ(0)
c f (ε3) ≤ 0. Thus, the

second term of the right side of Eq. (A·4) is negative if ε > 0 and is equal to 0 if ε ≤ 0. As it

is deduced from these arguments that the sign of the integral in Eq. (A·3) at the absolute zero

is opposite to that of ε, we can conclude that

sgn
(
ImΣ(2)

c f (ε + iη)
)
= sgn(ε). (A·7)

The real part ReΣ(2)
c f (ε + iη) of the self-energy is expressed by the Kramars-Kronig

(Hilbert) transformation of ImΣ(2)
c f (ε + iη) as

ReΣ(2)
c f (ε + iη) =

1
π
P
∫ ∞

−∞
dε′

ImΣ(2)
c f (ε′ + iη)

ε′ − ε , (A·8)

where P denotes the Cauchy principal value of the integral. Additionally, we obtain the value

ReΣ(2)
c f (iη) at the Fermi level (ε = 0) in Eqs. (24) and (25) as follows:

ReΣ(2)
c f (iη) =

1
π
P
∫ ∞

−∞
dε′

ImΣ(2)
c f (ε′ + iη)

ε′
. (A·9)

As Eq. (A·7) is maintained in the integrand of the right side of Eq. (A·9), we can obtain the

relation as

ReΣ(2)
c f (iη) ≥ 0. (A·10)

Therefore, it is found in Eq. (25) that the following relation is always maintained in the weak-

coupling region in the sense of the perturbative treatment;

V∗ ≥ V. (A·11)
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