

Title

パラレルリンク型アクティブ吸振器付き搬送台車による液体タンク の制振搬送制御(外乱抑制制御と周波数依存型最適サーボの併用に よる凹凸路面走行)

Author(s) 矢島 貴史, 浜口 雅史

Journal 日本機械学会論文集 86 巻 883 号

Published 2020-03-25

URL https://doi.org/10.1299/transjsme.19-00333

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

パラレルリンク型アクティブ吸振器付き搬送台車による 液体タンクの制振搬送制御 (外乱抑制制御と周波数依存型最適サーボの併用による凹凸路面走行)

矢島 貴史*1, 浜口 雅史*2

Damping control of sloshing in liquid container on cart with active vibration reducer having parallel linkage (Running on an uneven road by using both disturbance suppression control and frequencydependent optimal servo)

Takashi YAJIMA^{*1} and Masafumi HAMAGUCHI^{*2} ^{*1} Graduate school of Nature Science and Technology, Shimane University 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan ^{*2} Institute of Science and Engineering, Academic Assembly, Shimane University 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan

Received: 11 September 2019; Revised: 4 December 2019; Accepted: 3 February 2020

Abstract

In this paper, we consider transporting a liquid container on a cart containing an active vibration reducer, which has a parallel linkage mechanism with six degrees of freedom. Sloshing in the liquid container is generated by the movement of the cart running on an uneven road. To damp the sloshing, the liquid container is tilted and moved horizontally by using the active vibration reducer. The damping control system consists of both disturbance suppression control (DS) and a frequency-dependent optimal servo (FS). The acceleration added to the container while the cart is running on uneven roads is reduced by using DS. The residual sloshing is suppressed by using FS. In this study, only (1, 1) mode sloshing is modeled as a pendulum-type sloshing model in the control system. When a suddenly changing acceleration is added to the liquid container, higher-mode sloshing that is not modeled in the control system is easily generated and causes spillover. DS is also useful to avoid this phenomenon. The weighting matrix of the quadratic performance index for FS is efficiently determined using a genetic algorithm (GA). The amplitude of sloshing is considered for GA fitness. Further, the usefulness of the proposed control system is verified through an experiment. Using both DS and FS, the damping performance improves by approximately 79% compared to without control, and 18% compared to using FS alone.

Keywords : Sloshing, Damping control, Parallel linkage, Frequency-dependent optimal servo, Disturbance suppression control

1. 緒 言

構造物や車両の制振には、動吸振器やサスペンションなどが用いられており、その制御方法として最適レギュレータ理論(吉村他,1997)や、スカイフック理論(吉田,永井,1998)が提案されている.また、天井走行クレーンの制振には、固有振動数成分を除去する方法も提案されている(栗原他,2018).液体タンクの制振搬送については、スライディングモード制御(Bandyopadhyay et al., 2009)やロバスト制御(Yano and Terashima, 2001)などを用いた手法が提案されている.

No.19-00333 [DOI: 10.1299/transjsme.19-00333], J-STAGE Advance Publication date : 13 February, 2020

*1 学生員, 島根大学大学院 自然科学研究科 (〒690-8504 島根県松江市西川津町 1060)

^{*2} 正員, 島根大学 学術研究院理工学系

E-mail of corresponding author: hamaguchi@ecs.shimane-u.ac.jp

Fig. 1 Experimental apparatus.

Fig. 2 Pendulum-type sloshing model.

本研究では、パラレルリンク型アクティブ吸振器を搭載した搬送台車によって液体タンクを搬送することを考える.液体タンクの液面振動(スロッシング)の制振はアクティブ吸振器によって行う.スロッシングの制振制 御について、パラレルリンク型アクティブ吸振器を用いた研究(浜口他,2015)、(Hamaguchi, 2019)があるが、 これらは水平路面のみを対象としており、凹凸路面の場合を対象としていない.工場や廊下などの整備された屋 内であれば水平路面での走行を考えれば良い.しかし、建物の構造上、水平にできない路面や、屋外の整地され ていない路面での搬送を対象とすることにより、より実用的な搬送システムを構築できるものと考える.

本研究では、パラレルリンク型アクティブ吸振器を搭載した搬送台車に凹凸路面上を直線走行させた場合の液 体タンクの制振搬送制御を行うことを目的とする.前報(浜口他,2015)では、高次モードスロッシングの励起 を抑えるために規範モデル追従制御を用い、低次モードスロッシングは最適サーボを用いて制振されていた.し かし、この方法では、二つの制御則に吸振器の可動範囲を予め設定する必要があり、その配分率の決定に困難さ を有していた.文献(Hamaguchi,2019)では、規範モデルを用いずに周波数依存型最適サーボを用いることによ り、制御入力によって励起される高次モードスロッシングの影響を減じた.本研究では、凹凸路面に起因する外 乱を外乱抑制制御によって抑制し、残留振動を周波数依存型最適サーボを用いて制振する.最適サーボの重み行 列の決定には遺伝的アルゴリズム(GA)を利用する.実験により、提案手法の有効性を確認する.

2. 実験装置

実験装置(図1参照)は前報(浜口他,2015)と同じものを用いた.搬送台車に6自由度パラレルリンク型ア クティブ吸振器を搭載し、その上に搬送物である液体タンクを設置した.搬送台車には、3軸加速度センサと2個 のジャイロセンサが取り付けられており、搬送台車のX、Y、Z軸方向の加速度ならびにX、Y軸回りの角速度が 検出される.液体タンク上部には2個のレーザー変位計を設置し、タンク内の2箇所(X、Y軸上の観測点)の 液位変動量を測定する.各センサ値をもとにDSPによって制御入力を算出し、その入力によって吸振器を制御す る.

3. システム方程式

本研究では、搬送時に最も支配的となる(1,1)モードスロッシングを対象とし、図2に示す単振子型モデル(浜口,谷口,2012)でスロッシングを近似した.図2のO-XYZ座標系は地面に固定された絶対座標系である.振子の支点 ox回りのモーメントの釣り合いから回転の運動方程式は式(1)で与えられる.図2に示すように、液体タンク中心から距離がLの位置に取り付けられたレーザー変位計で計測される液位変動量h,は式(2)で与えられる.

$$J\frac{d^{2}\theta_{x}}{dt^{2}} = -cl\frac{d(\theta_{x} - \phi_{x} - \theta_{cx})}{dt}l\cos^{2}\theta_{x} - m(g + \ddot{z}_{c} + \ddot{z}_{p})l\sin\theta_{x} - ml_{0}\cos(\phi_{x} + \theta_{cx})\frac{d^{2}\phi_{x}}{dt^{2}}l\cos\theta_{x}$$

$$-ml_{0}\sin(\phi_{x} + \theta_{cx})\frac{d^{2}\phi_{x}}{dt^{2}}l\sin\theta_{x} - m(\ddot{y}_{c} + \ddot{y}_{p})l\cos\theta_{x}$$
(1)

[DOI: 10.1299/transjsme.19-00333]

© 2020 The Japan Society of Mechanical Engineers

$$h_{v} = -L \tan\left(\theta_{x} - \phi_{x} - \theta_{cx}\right) \tag{2}$$

ここで、*J*: o_x点回りの慣性モーメント(*J=ml*²)、*Q*: 鉛直方向からの振子の傾き、*Q*: 鉛直方向からの搬送台の傾き、*m*: タンク内の液体質量、*c*:等価粘性係数、*L*: タンク中心から観測点までの距離、*l*:等価振子長さ、*g*: 重力加速度、*h*: 吸振器の回転中心 O_rから振子支点 o_xまでの距離、*y*_c: 搬送台車の凹凸路面走行によって生じる点 o_xに加わる Y 軸方向加速度、 z_c : 搬送台車の凹凸路面走行によって生じる点 o_xに加わる Z 軸方向加速度、 z_c : 搬送台車の傾斜角、*y*_p: 吸振器の動作によって生じる搬送台の Y 軸方向変位、*z*_p: 吸振器の動作によって生じる搬送台の Z 軸方向変位であり、*h*_yは静止液位 *h*_s=10 [cm]より上方を正、回転角は各軸の右ねじの向きを正とした. *Q_x*、*Q_x*、*Q_x*を微小とし、式(1)、(2)を線形近似することにより次式が得られる.

$$\ddot{\theta}_x = -\frac{c}{m} \left(\dot{\theta}_x - \dot{\phi}_x - \dot{\theta}_{cx} \right) - \frac{g + \ddot{z}_c + \ddot{z}_p}{l} \theta_x - \frac{l_0}{l} \ddot{\phi}_x - \frac{1}{l} (\ddot{y}_c + \ddot{y}_p)$$
(3)

$$h_{y} = -L(\theta_{x} - \phi_{x} - \theta_{cx}) \tag{4}$$

したがって、Y 軸方向のシステム方程式は式(5)となる.ここで、 u_y :水平方向の制御入力(= \ddot{y}_p)、 u_{ϕ_x} :回転に関する制御入力(= $\ddot{\phi}_x$)とし、 d_y は外乱を表す.

$$\begin{cases} \dot{\boldsymbol{x}}_{y} = \boldsymbol{A}\boldsymbol{x}_{y} + \boldsymbol{B}\boldsymbol{u}_{y} + \boldsymbol{B}_{d}\boldsymbol{d}_{y} \\ \boldsymbol{y}_{y} = \boldsymbol{C}\boldsymbol{x}_{y} + \boldsymbol{c}_{y} \end{cases}$$
(5)

ここで

である. 搬送実験を行う際は、システムを連続形ではなく離散形で扱う. 式(5)を離散化し、次式を得る.

$$\begin{cases} \boldsymbol{x}_{y}\left(k+1\right) = \boldsymbol{A}_{d}\,\boldsymbol{x}_{y}\left(k\right) + \boldsymbol{B}_{d}\,\boldsymbol{u}\left(k\right) + \boldsymbol{B}_{dd}\,\boldsymbol{d}_{y}\left(k\right) \\ \boldsymbol{y}_{y}\left(k\right) = \boldsymbol{C}\boldsymbol{x}_{y}\left(k\right) + \boldsymbol{c}_{y}\left(k\right) \end{cases}$$
(7)

ただし

$$\boldsymbol{A}_{d} = \exp(\boldsymbol{A}T_{s}), \quad \boldsymbol{B}_{d} = \int_{0}^{T_{s}} \exp(\boldsymbol{A}T_{s}) d\tau \boldsymbol{B}, \quad \boldsymbol{B}_{dd} = \int_{0}^{T_{s}} \exp(\boldsymbol{A}T_{s}) d\tau \boldsymbol{B}_{d}$$
(8)

ここで、・(*k*)は *k* 番目のサンプル値を、*T*_s はサンプリング周期を表す.本研究では *T*_s = 0.001 [s]である.なお、*d*_y ならびに c_y は搬送台車に取り付けたジャイロセンサと加速度センサならびに実験装置の運動学を用いて算出することができる.また、X 軸方向のシステムも同様にして得られる.

4. 制振搬送制御系

本研究では外乱抑制制御と周波数依存型最適サーボを制振制御系として用いる.

4 · 1 外乱抑制制御(DS)

本研究では、外乱による影響を軽減させるために外乱抑制制御(以降 DS と表記)を用いる. ここでは図3の 路面を走行する場合について述べるが、他の形状の路面上を走行する場合も同様に考えて、搬送台車の姿勢変化 によって液体タンクに加わる加速度を DS によって軽減することができる. 具体的には、実験装置の運動学モデ ル(図4参照)を用いて、ベース座標系における搬送台の変位・姿勢を算出する. 搬送台が初期位置・姿勢に保 たれるように吸振器を動作させることにより、路面形状に起因する外乱を抑制する. 運動学より式(9)が得られる.

$$\begin{aligned} \mathbf{T}_{2} &= \mathbf{A}_{1}\mathbf{A}_{2} = \begin{bmatrix} \frac{\mathbf{R}_{1}\mathbf{R}_{2}}{0 \ 0 \ 0 \ 1} \end{bmatrix}, \quad \boldsymbol{\phi}_{e} = \boldsymbol{\theta}_{e} + \boldsymbol{\phi}, \quad \boldsymbol{\theta}_{e} = \begin{bmatrix} \theta_{ex} \\ \theta_{ey} \\ \theta_{ey} \\ \theta_{ez} \end{bmatrix}, \quad \boldsymbol{\phi} = \begin{bmatrix} \phi_{x} \\ \phi_{y} \\ \phi_{z} \end{bmatrix} \\ \mathbf{A}_{1} &= \begin{bmatrix} \frac{\mathbf{R}_{1}}{0 \ 0 \ 1 \ 1} \end{bmatrix}, \quad \mathbf{A}_{2} = \begin{bmatrix} \frac{\mathbf{R}_{2}}{0 \ 0 \ 0 \ 1} \end{bmatrix} \begin{bmatrix} \mathbf{P}_{2} \\ 0 \ 0 \ 0 \ 1 \ 0 \end{bmatrix} \\ \mathbf{R}_{1} &= \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ \cos \theta_{ex} & -\sin \theta_{ex} \\ 0 \ \sin \theta_{ex} & \cos \theta_{ex} \end{bmatrix} \begin{bmatrix} \cos \theta_{ey} \ 0 \ \sin \theta_{ey} \\ -\sin \theta_{ey} \ 0 \ \cos \theta_{ey} \end{bmatrix} \begin{bmatrix} \cos \theta_{ez} & -\sin \theta_{ez} \\ \sin \theta_{ez} & \cos \theta_{ez} \end{bmatrix} \\ \begin{bmatrix} \cos \phi_{z} & -\sin \theta_{ez} \\ 0 \ 0 \ 0 \ 1 \end{bmatrix} \\ \mathbf{R}_{2} &= \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ \cos \phi_{x} & -\sin \phi_{x} \\ 0 \ \sin \phi_{x} & \cos \phi_{x} \end{bmatrix} \begin{bmatrix} \cos \phi_{y} \ 0 \ \sin \phi_{y} \\ 0 \ 1 \ 0 \\ -\sin \phi_{y} \ 0 \ \cos \phi_{y} \end{bmatrix} \\ \begin{bmatrix} \cos \phi_{z} & -\sin \phi_{z} \\ \cos \phi_{z} & -\sin \phi_{z} \\ 0 \ 0 \ 1 \end{bmatrix} \\ \begin{bmatrix} \cos \phi_{z} & -\sin \phi_{z} \\ 0 \ \sin \phi_{z} & \cos \phi_{z} \end{bmatrix} \\ \begin{bmatrix} \cos \phi_{z} & -\sin \phi_{z} \\ 0 \ \sin \phi_{z} & \cos \phi_{z} \end{bmatrix} \\ \begin{bmatrix} \cos \phi_{z} & -\sin \phi_{z} \\ 0 \ \sin \phi_{z} & \cos \phi_{z} \end{bmatrix} \\ \end{bmatrix} \end{aligned}$$

ここで、 r_e , $\phi: \Sigma_0 座標系における搬送台中心の位置ベクトルと姿勢、<math>{}^{0}p_1$, ${}^{1}p_2$: 始点の座標系から見た終点の座 標系までの位置ベクトルであり、左上の添え字、右下の添え字はそれぞれ始点、終点を表す. A_1 , A_2 : 座標変換 行列, R_1 , R_2 : 回転行列, θ_c , ϕ : それぞれ Σ_0 座標系で定義される Σ_1 座標系の姿勢、 Σ_1 座標系で定義される Σ_2 座標系の姿勢である. なお、 Σ_0 は $\theta_c = 0$ のときに四輪下部が接する平面における前輪の車軸中心(初期姿勢に おいて、前輪の車軸中心と搬送台中心は同一軸上にある)に、 Σ_1 はベースプレート中心(搬送台車)に、 Σ_2 は エンドプレート中心(搬送台)に固定された座標系である. 搬送台中心の初期の位置と姿勢をそれぞれ r_{e0} , ϕ_0 と すると、搬送台中心の変化量は $\Delta r_e = r_e - r_{e0}$ 、 $\Delta \phi = \phi - \phi_0$ となる. この変化量を零とするため、搬送台中心の位 置と姿勢が $-\Delta r_e$ と $-\Delta \phi$ になるように吸振器を動作させる. なお、 θ_c は搬送台車に取り付けたジャイロセンサ 値を積分することにより、 ϕ は吸振器の順運動学より算出される. なお、後述する周波数依存型最適サーボ(以 降 FS と表記)と DS を併用する場合は、DS による搬送台の変位と姿勢をそれぞれ' p_2 、 ϕ として式(9)に与えるこ とにより、FS による入力が DS によってキャンセルされないようにする.

 ϕ , ${}^{1}p_{2}$ は吸振器の順運動学から算出されるが、 ${}^{0}p_{1}$ は図 5~7を用いて以下のようにして求める.ここで、台車の姿勢が変化することによって生じる ${}^{0}p_{1}$ の変化量を $\Delta {}^{0}p_{1}$ 、変化前の ${}^{0}p_{1}$ や、変化後を ${}^{0}p_{1}$ とする.まず、 θ_{ev}

© 2020 The Japan Society of Mechanical Engineers

Fig. 4 Kinematics model of cart and active vibration reducer. This model is used for the disturbance suppression control.

Fig. 5 Kinematics model in case of changing roll angle of cart when $\theta_{cy} \ge 0$.

のみが変化することによって生じる△p1を算出する.

(i) $\theta_{cy} \ge 0$ かつ $\theta_{cx} = 0$ の場合

図5より、 $^{\circ}p_{1}^{\circ}$ は次式となる.

$${}^{0}\boldsymbol{p}_{1}^{0} = \overrightarrow{OB} = \begin{bmatrix} 0\\0\\H_{b} \end{bmatrix}, \quad \overrightarrow{OA} = \begin{bmatrix} W_{c}/2\\0\\0 \end{bmatrix}, \quad \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{bmatrix} 0\\0\\H_{b} \end{bmatrix} - \begin{bmatrix} W_{c}/2\\0\\0 \end{bmatrix} = \begin{bmatrix} -W_{c}/2\\0\\H_{b} \end{bmatrix}$$
(10)

ここで、 H_b は地面からベースプレートまでの高さ、 W_c は駆動輪間距離(トレッド)である. Y 軸回りの回転行列 R_y を用いて変化後の $\overline{AB'}$ 、 $\overline{OB'}$ を求めると

$$\boldsymbol{R}_{y} = \begin{bmatrix} \cos\theta_{cy} & 0 & \sin\theta_{cy} \\ 0 & 1 & 0 \\ -\sin\theta_{cy} & 0 & \cos\theta_{cy} \end{bmatrix}, \quad \overline{AB'} = \boldsymbol{R}_{y}\overline{AB} = \begin{bmatrix} -W_{c}\cos\theta_{cy}/2 + H_{b}\sin\theta_{cy} \\ 0 \\ W_{c}\sin\theta_{cy}/2 + H_{b}\cos\theta_{cy} \end{bmatrix}$$
(11)

$$\overrightarrow{OB'} = {}^{0}\boldsymbol{p}_{1}' = \overrightarrow{OA} + \overrightarrow{AB'} = \begin{bmatrix} W_{c}(1 - \cos\theta_{cy})/2 + H_{b}\sin\theta_{cy} \\ 0 \\ W_{c}\sin\theta_{cy}/2 + H_{b}\cos\theta_{cy} \end{bmatrix}$$
(12)

よって、 Δ° p1 は次式となる.

Fig. 6 Kinematics model in case of changing pitch angle of cart when $\theta_{cx} \ge 0$.

Fig. 7 Kinematics model in case of changing pitch angle of cart when $\theta_{cx} < 0$.

$$\Delta^{0} \boldsymbol{p}_{1} = {}^{0} \boldsymbol{p}_{1}' - {}^{0} \boldsymbol{p}_{1}^{0} = \begin{bmatrix} W_{c} (1 - \cos \theta_{cy}) / 2 + H_{b} \sin \theta_{cy} \\ 0 \\ W_{c} \sin \theta_{cy} / 2 + H_{b} (\cos \theta_{cy} - 1) \end{bmatrix}$$
(13)

(ii) $\theta_{cy} < 0$ かつ $\theta_{cx} = 0$ の場合

 $\Delta^{o} p_{1}$ は(i)の $\Delta^{o} p_{1}$ のX成分が正負逆となり、Z成分は同値となる.

(i), (ii)より, θ_{cy}のみが変化することによって生じるΔ⁰ p₁は次式で表される.

$$\Delta^{0} \boldsymbol{p}_{1} = \begin{bmatrix} \operatorname{sgn}\left(\theta_{cy}\right) \left\{ W_{c}\left(1 - \cos\left|\theta_{cy}\right|\right) / 2 + H_{b} \sin\left|\theta_{cy}\right| \right\} \\ 0 \\ W_{c} \sin\left|\theta_{cy}\right| / 2 + H_{b} \left(\cos\left|\theta_{cy}\right| - 1\right) \end{bmatrix}$$
(14)

次に、 θ_{cx} のみが変化することによって生じる $\Delta^{\circ} p_1$ を算出する.

(iii) $\theta_{cx} \ge 0$ かつ $\theta_{cy} = 0$ の場合 図 6 より、 ${}^{o}p_{1}{}^{o}$ は次式となる.

$${}^{0}\boldsymbol{p}_{1}^{0} = \overrightarrow{OB} = \begin{bmatrix} 0\\0\\H_{b} \end{bmatrix}, \quad \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{bmatrix} 0\\0\\H_{b} \end{bmatrix} - \begin{bmatrix} 0\\-L_{c}\\0 \end{bmatrix} = \begin{bmatrix} 0\\L_{c}\\H_{b} \end{bmatrix}$$
(15)

ここで、 L_c はホイールベースである. X 軸回りの回転行列 R_x を用いて変化後の $\overline{AB'}$ 、 $\overline{OB'}$ を求めると

$$\boldsymbol{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{cx} & -\sin\theta_{cx} \\ 0 & \sin\theta_{cx} & \cos\theta_{cx} \end{bmatrix}, \quad \overrightarrow{AB'} = \boldsymbol{R}_{x}\overrightarrow{AB} = \begin{bmatrix} 0 \\ L_{c}\cos\theta_{cx} - H_{b}\sin\theta_{cx} \\ L_{c}\sin\theta_{cx} + H_{b}\cos\theta_{cx} \end{bmatrix}$$
(16)

$$\overrightarrow{OB'} = {}^{0}\boldsymbol{p}_{1}' = \overrightarrow{OA} + \overrightarrow{AB'} = \begin{bmatrix} 0 \\ L_{c}(\cos\theta_{cx} - 1) - H_{b}\sin\theta_{cx} \\ L_{c}\sin\theta_{cx} + H_{b}\cos\theta_{cx} \end{bmatrix}$$
(17)

よって、 $\Delta^{\circ} p_1$ は次式となる.

$$\Delta^{0} \boldsymbol{p}_{1} = {}^{0} \boldsymbol{p}_{1}^{\prime} - {}^{0} \boldsymbol{p}_{1}^{0} = \begin{bmatrix} 0 \\ L_{c} (\cos \theta_{cx} - 1) - H_{b} \sin \theta_{cx} \\ L_{c} \sin \theta_{cx} + H_{b} (\cos \theta_{cx} - 1) \end{bmatrix}$$
(18)

(iv) $\theta_{cx} < 0$ かつ $\theta_{cy} = 0$ の場合

図7より、 ${}^{o}p_{1}{}^{o}$ 、 ${}^{o}p_{1}{}^{\prime}$ 、 $\Delta {}^{o}p_{1}$ は次式となる.

$${}^{0}\boldsymbol{p}_{1}^{0} = \overrightarrow{OB} = \begin{bmatrix} 0\\0\\H_{b} \end{bmatrix}, {}^{0}\boldsymbol{p}_{1}' = \boldsymbol{R}_{x}\overrightarrow{OB} = \begin{bmatrix} 0\\-H_{b}\sin\theta_{cx}\\H_{b}\cos\theta_{cx} \end{bmatrix}, {}^{\Delta^{0}}\boldsymbol{p}_{1} = {}^{0}\boldsymbol{p}_{1}' - {}^{0}\boldsymbol{p}_{1}^{0} = \begin{bmatrix} 0\\-H_{b}\sin\theta_{cx}\\H_{b}(\cos\theta_{cx}-1) \end{bmatrix}$$
(19)

(iii)、(iv)より、 θ_{cx} のみが変化することによって生じる $\Delta^{0}p_{1}$ は次式で表される.

$$\Delta^{0} \boldsymbol{p}_{1} = \begin{cases} \begin{bmatrix} 0 \\ L_{c} (\cos \theta_{cx} - 1) - H_{b} \sin \theta_{cx} \\ L_{c} \sin \theta_{cx} + H_{b} (\cos \theta_{cx} - 1) \end{bmatrix} & : \theta_{cx} \ge 0 \\ \begin{bmatrix} 0 \\ -H_{b} \sin \theta_{cx} \\ H_{b} (\cos \theta_{cx} - 1) \end{bmatrix} & : \theta_{cx} < 0 \end{cases}$$
(20)

以上より、 θ_{cx} 、 θ_{cy} が共に変化した場合の $\Delta^{o}p_{1}$ は式(14)と式(20)の和で与えられ、 ${}^{o}p_{1}$ は、 ${}^{o}p_{1}={}^{o}p_{1}{}^{o}+\Delta^{o}p_{1}$ より得られる.

4・2 周波数依存型最適サーボ (FS)

周波数依存型最適サーボ (森田他, 1999), (Hamaguchi, 2019) を用いて制振制御を行う. DS と FS を併用したブロック線図を図 8 に示す. ここでは、X、Y 軸を表す変数名の添え字 x、y を省略する. 状態推定には式(21)の定常カルマンフィルタ (兼田、山本、1989) を用いる. カルマンフィルタゲイン K_{klm} は、 $h_x \ge h_y$ に関する観測 ノイズ分散値をそれぞれ 2.07×10⁻⁹ m², 9.84×10⁻⁹ m², $\phi \ge \phi$ に関するものを 10⁻¹⁴ rad², $x_p \ge y_p$ に関するものを 10⁻¹⁴ rad², $x_p \ge y_p$ に関するものを 10⁻¹⁴ m², システムノイズの共分散値はすべて 5.0×10⁻¹¹ として求めた. x^{FS} , y^{FS} は式(22), (23)で定義し、DS によって得られた各変数値を基準とする. また、液体タンクに加わる外乱は式(24)となり、フィードバックする $h_x \ge h_y$ の値は、式(30)に示すように液位センサ値を用いる.

$$\hat{\boldsymbol{x}}^{FS}(k+1) = \boldsymbol{A}_{d}\,\hat{\boldsymbol{x}}^{FS}(k) + \boldsymbol{B}_{d}\,\boldsymbol{u}^{FS}(k) + \boldsymbol{K}_{klm}\left(\boldsymbol{y}^{FS}(k) - \boldsymbol{C}\hat{\boldsymbol{x}}^{FS}(k) - \boldsymbol{c}(k)\right) + \boldsymbol{B}_{dd}\,\boldsymbol{d}^{FS}(k)$$
(21)

$$\boldsymbol{x}^{FS} = \boldsymbol{x} - \boldsymbol{x}^{DS} = \begin{cases} \begin{bmatrix} \theta_x & \dot{\theta}_x & \phi_x & \dot{\phi}_x & y_p & \dot{y}_p \end{bmatrix}^{\mathrm{T}} - \begin{bmatrix} 0 & 0 & \phi_x^{DS} & \dot{\phi}_x^{DS} & y_p^{DS} & \dot{y}_p^{DS} \end{bmatrix}^{\mathrm{T}} : & \text{for the Y - axis} \\ \begin{bmatrix} \theta_y & \dot{\theta}_y & \phi_y & \dot{\phi}_y & x_p & \dot{x}_p \end{bmatrix}^{\mathrm{T}} - \begin{bmatrix} 0 & 0 & \phi_y^{DS} & \dot{\phi}_y^{DS} & x_p^{DS} & \dot{x}_p^{DS} \end{bmatrix}^{\mathrm{T}} : & \text{for the X - axis} \end{cases}$$
(22)

Fig. 8 Block diagram of frequency-dependent optimal servo. High-order sloshing modes generated by the feedback control input u are suppressed by inserting the pre-filter $F^{-1}(s)$ of the second-order low pass filter. The disturbance d^{FS} added to the plant decreases while using the disturbance suppression control (DS).

$$\boldsymbol{y}^{FS} = \boldsymbol{y} - \boldsymbol{y}^{DS} = \begin{cases} \begin{bmatrix} h_y & \phi_x & y_p \end{bmatrix}^{\mathrm{T}} - \begin{bmatrix} L\phi_x^{DS} & \phi_x^{DS} & y_p^{DS} \end{bmatrix}^{\mathrm{T}} : & \text{for the Y - axis} \\ \begin{bmatrix} h_x & \phi_y & x_p \end{bmatrix}^{\mathrm{T}} - \begin{bmatrix} -L\phi_y^{DS} & \phi_y^{DS} & x_p^{DS} \end{bmatrix}^{\mathrm{T}} : & \text{for the X - axis} \end{cases}$$

$$\boldsymbol{d}^{FS} = \boldsymbol{d} + \boldsymbol{d}^{DS} = \begin{cases} \begin{bmatrix} \ddot{y}_c + \ddot{y}_p & (\ddot{z}_c + \ddot{z}_p) \theta_x & \dot{\theta}_{cx} \end{bmatrix}^{\mathrm{T}} + \begin{bmatrix} \ddot{y}_p^{DS} & \ddot{z}_p^{DS} \theta_x & \dot{\phi}_x^{DS} \end{bmatrix}^{\mathrm{T}} : & \text{for the Y - axis} \end{cases}$$

$$(23)$$

$$\boldsymbol{d}^{FS} = \boldsymbol{d} + \boldsymbol{d}^{DS} = \begin{cases} \begin{bmatrix} \ddot{y}_c + \ddot{y}_p & (\ddot{z}_c + \ddot{z}_p) \theta_x & \dot{\theta}_{cx} \end{bmatrix}^{\mathrm{T}} + \begin{bmatrix} \ddot{y}_p^{DS} & \ddot{z}_p^{DS} \theta_x & \dot{\phi}_x^{DS} \end{bmatrix}^{\mathrm{T}} : & \text{for the Y - axis} \end{cases}$$

$$(24)$$

最適レギュレータ理論では、2次形式評価関数を最小とするフィードバックゲインが求められる。2次形式評価 関数中の状態と入力に関する重みに周波数特性を持たせたものを周波数依存型最適レギュレータと呼ぶ. ここで は、状態に関する重みを定数とし、入力に関する重みに周波数特性を持たせ、F(s)として与える. これは、図8に 示すようにプレフィルタ $F^{-1}(s)$ を挿入し、フィルタへの入力vを制御入力として最適レギュレータ理論を適用す ることと等価なことが知られている. ここでは、制御入力uによって励起される高次モードスロッシングの影響 を低減させるため、 $F^{-1}(s)$ を式(25)の2次遅れ系で与えた. $F^{-1}(s)$ を2次のローパスフィルタと見なすこともでき る.

$$F^{-1}(s) = \frac{\omega_0^2}{s^2 + 2\zeta_0 \omega_0 s + \omega_0^2} I_{m \times m}$$
(25)

ここで、 ω_0 は角周波数、 ζ_0 は減衰比、 $I_{m\times m}$ は m 行 m 列の単位行列であり、本研究では m = 2 である.本研究では、(1,1)モードスロッシング周波数が 13.1 rad/s であったので、 $\omega_0 = 13.1$ [rad/s]とし、 $\zeta_0 = 1/\sqrt{2}$ とした.このフィルタを状態空間表示すると次式となる.

$$\begin{cases} \dot{\boldsymbol{x}}_F = \boldsymbol{A}_F \boldsymbol{x}_F + \boldsymbol{B}_F \boldsymbol{v} \\ \boldsymbol{u} = \boldsymbol{C}_F \boldsymbol{x}_F \end{cases}$$
(26)

ここで

$$A_{F} = \begin{bmatrix} A_{F_{1}} & 0 \\ 0 & A_{F_{2}} \end{bmatrix}, \ A_{F_{1}} = A_{F_{2}} = \begin{bmatrix} 0 & 1 \\ -\omega_{0}^{2} & -2\zeta\omega_{0} \end{bmatrix}, \ B_{F} = \begin{bmatrix} B_{F_{1}} & 0 \\ 0 & B_{F_{2}} \end{bmatrix}, \ B_{F_{1}} = B_{F_{2}} = \begin{bmatrix} 0 \\ \omega_{0}^{2} \end{bmatrix}$$

$$C_{F} = \begin{bmatrix} C_{F_{1}} & 0 \\ 0 & C_{F_{2}} \end{bmatrix}, \ C_{F_{1}} = C_{F_{2}} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
(27)

である.式(26)を離散化すると

$$\begin{cases} \boldsymbol{x}_{F}(k+1) = \boldsymbol{A}_{Fd}\boldsymbol{x}_{F}(k) + \boldsymbol{B}_{Fd}\boldsymbol{v}(k) \\ \boldsymbol{u}(k) = \boldsymbol{C}_{F}\boldsymbol{x}_{F}(k) \end{cases}$$
(28)

となる.ここで、 A_{Fd} 、 B_{Fd} はそれぞれ A_F と B_F を離散化したものである.

偏差 $e(k) = y_d(k) - y_s(k)$ とし、拡大系は式(29)となる.ここで、 y_s は目標値に追従させる出力、目標値 y_d は0である(式(30)参照).

$$\begin{bmatrix} \Delta \mathbf{x}^{FS}(k+1) \\ \Delta \mathbf{x}_{F}(k+1) \\ \mathbf{e}(k+1) \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{d} & \mathbf{B}_{d}\mathbf{C}_{F} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{Fd} & \mathbf{0} \\ -\mathbf{C}_{s}\mathbf{A}_{d} & -\mathbf{C}_{s}\mathbf{B}_{d}\mathbf{C}_{F} & \mathbf{I}_{2\times 2} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}^{FS}(k) \\ \Delta \mathbf{x}_{F}(k) \\ \mathbf{e}(k) \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{B}_{Fd} \\ \mathbf{0} \end{bmatrix} \Delta \mathbf{v}(k)$$
(29)

$$\begin{cases} \mathbf{y}_{dy} = \begin{bmatrix} h_{yd} & y_{pd}^{FS} \end{bmatrix}^{T} = \mathbf{0}, \ \mathbf{y}_{sy} = \begin{bmatrix} h_{y} & y_{p}^{FS} \end{bmatrix}^{T} = \mathbf{C}_{s} \mathbf{x}_{y}^{FS} + \mathbf{F}_{s} \mathbf{y}_{y} : \text{ for the Y - axis} \\ \mathbf{y}_{dx} = \begin{bmatrix} h_{xd} & x_{pd}^{FS} \end{bmatrix}^{T} = \mathbf{0}, \ \mathbf{y}_{sx} = \begin{bmatrix} h_{x} & x_{p}^{FS} \end{bmatrix}^{T} = \mathbf{C}_{s} \mathbf{x}_{x}^{FS} + \mathbf{F}_{s} \mathbf{y}_{x} : \text{ for the X - axis} \\ \mathbf{C}_{s} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \ \mathbf{F}_{s} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
(30)

2次形式評価関数Jは次式で定義される.

$$J = \sum_{k=0}^{\infty} \left[\boldsymbol{X}_{F_{SV}}^{T}(k) \boldsymbol{\mathcal{Q}}_{F_{SV}} \boldsymbol{X}_{F_{SV}}(k) + \Delta \boldsymbol{v}^{T}(k) \Delta \boldsymbol{v}(k) \right]$$
(31)

ただし

$$\boldsymbol{X}_{F_{SV}} = \begin{bmatrix} \Delta \boldsymbol{x}^{FS} \left(k \right) \\ \Delta \boldsymbol{x}_{F} \left(k \right) \\ \boldsymbol{e} \left(k \right) \end{bmatrix}, \quad \boldsymbol{\mathcal{Q}}_{F_{SV}} = \text{Block diag} \left(\boldsymbol{\mathcal{Q}}, \quad \boldsymbol{0}, \quad \boldsymbol{\mathcal{Q}}_{e} \right) \ge \boldsymbol{0}$$
(32)

である.式(31)を最小にする制御則は、最適レギュレータ理論により次式で与えられる.

$$\Delta \boldsymbol{\nu}(k) = \boldsymbol{K}_{Fsv} \boldsymbol{X}_{Fsv}(k) = \begin{bmatrix} -\boldsymbol{K}_{r} & -\boldsymbol{K}_{F} & \boldsymbol{K}_{sv} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{x}^{FS}(k) \\ \Delta \boldsymbol{x}_{F}(k) \\ \boldsymbol{e}(k) \end{bmatrix} = -\boldsymbol{K}_{r} \Delta \boldsymbol{x}^{FS}(k) - \boldsymbol{K}_{F} \Delta \boldsymbol{x}_{F}(k) + \boldsymbol{K}_{sv} \boldsymbol{e}(k)$$
(33)

ここで

$$\boldsymbol{\Phi}_{F_{SV}} = \begin{bmatrix} \boldsymbol{A}_{d} & \boldsymbol{B}_{d}\boldsymbol{C}_{F} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{A}_{Fd} & \boldsymbol{0} \\ -\boldsymbol{C}_{s}\boldsymbol{A}_{d} & -\boldsymbol{C}_{s}\boldsymbol{B}_{d}\boldsymbol{C}_{F} & \boldsymbol{I}_{2\times 2} \end{bmatrix}, \quad \boldsymbol{\Gamma}_{F_{SV}} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{B}_{Fd} \\ \boldsymbol{0} \end{bmatrix}, \quad \boldsymbol{K}_{F_{SV}} = \left(\boldsymbol{I}_{2\times 2} + \boldsymbol{\Gamma}_{F_{SV}}^{\mathsf{T}}\boldsymbol{P}_{F_{SV}}\boldsymbol{\Gamma}_{F_{SV}}\right)^{-1} \boldsymbol{\Gamma}_{F_{SV}}^{\mathsf{T}}\boldsymbol{P}_{F_{SV}}\boldsymbol{\Phi}_{F_{SV}}$$
(34)

であり、 P_{Fsv} は離散形 Riccati 方程式の解である.初期偏差 e(0) = 0、初期状態 $\Delta x^{FS}(0) = 0$ とし、式(33)より v(k)に ついて解くと、次式のフィードバック入力が得られる.

$$\mathbf{v}(k) = -\mathbf{K}_{r} \mathbf{x}^{FS}(k) - \mathbf{K}_{F} \mathbf{x}_{F}(k) + \mathbf{K}_{sv} \sum_{j=0}^{k} \mathbf{e}(j), \quad \mathbf{x}^{FS}(0) = \mathbf{x}_{F}(0) = \mathbf{0}$$
(35)

4・3 GAによる最適サーボの重み決定方法

式(32)のQと Q_e を次式のように与えた. [DOI: 10.1299/transjsme.19-00333]

© 2020 The Japan Society of Mechanical Engineers

$$\boldsymbol{Q}_{y} = \operatorname{diag}(q_{1}, 0, 0, 0, 0, 0), \quad \boldsymbol{Q}_{ey} = \operatorname{diag}(q_{2}, q_{3}), \quad \boldsymbol{Q}_{x} = \operatorname{diag}(q_{4}, 0, 0, 0, 0, 0), \quad \boldsymbol{Q}_{ex} = \operatorname{diag}(q_{5}, q_{6})$$
(36)

*q*₁~*q*₆の値を GA(原, 2001)を用いて決定する.ここでは、バイナリコード型 GA を用いた.1 変数を 11 bit で表したので、遺伝子長は 66 bit となる.図9に遺伝子型を示す.バイナリコードは次式により、実際の値に変換される.

$$q_i = \frac{1}{256} \times (n_i + 1) \times 10^{(e_i - 1)}, i = 1 \sim 6$$
(37)

ここで, *n*, *e*は, それぞれ各変数の上位 8 bit と下位 3 bit で表した 2 進数の値である. 遺伝的操作として, ルーレット選択, エリート保存則, 一点交叉ならびにビット反転による突然変異を用いた. GA のパラメータは, 個体数:30, 交叉率:60%, 突然変異率:10%, 最終世代数:300 とした. GA の適合度 *J*_pは, 液位変動量を抑え, かつ, FS のフィードバックゲインがハイゲインにならないようにと考えて次式とした. FS のフィードバックゲインがハイゲインにならないようにと考えて次式とした. FS のフィードバックゲインがハイゲインになると入力が振動的になって高次モードを励起しやすくなり, ロバスト安定性が劣化する.

$$J_{p} = \frac{1}{I_{p12} + p}, \quad I_{p12} = \left(\alpha \frac{I_{p1}}{\overline{I}_{p1}} + (1 - \alpha) \frac{I_{p2}}{\overline{I}_{p2}}\right), \quad I_{p1} = \frac{\int_{0}^{t_{f}} \left(|h_{x}| + |h_{y}|\right) dt}{h_{s} t_{f}}, \quad I_{p2} = \max\left(\|\mathbf{K}_{Fsvx}\|, \|\mathbf{K}_{Fsvy}\|\right)$$
(38)

ここで、 I_{p1} は制振性能評価指数、 I_{p2} はX、Y軸方向で大きい方のFSの拡大系のフィードバックゲインノルム、 t_{f} はシミュレーション終了時間、 h_{s} は静止液位、pはペナルティ項、 \overline{I}_{p1} 、 \overline{I}_{p2} はそれぞれ Q_{Fsv} が単位行列である ときの $I_{p1} \ge I_{p2}$ の値であり、 α は重みである.ここでは、 $t_{f}=20[s]$ とし、 I_{p1} 、 I_{p2} を同程度に評価するため、 $\alpha=0.5$ とした. I_{p12} において、 I_{p1} 、 I_{p2} のオーダーが大きく異なるため、それぞれ \overline{I}_{p1} 、 \overline{I}_{p2} で割ってオーダーを合わせた. 液位変動量 h_{x} 、 h_{y} の振幅とフィードバックゲインノルムが小さいほど適合度 J_{p} は大きくなる.すなわち、適合度 が大きい解ほど良好な結果を与えるものとなる.また、以下の制約条件を一つでも満たさなかった場合にp=10とし、すべて満たした場合にはp=0とした.

- (S1) 各アクチュエータ変位±0.1 m 以内
- (S2) 各アクチュエータ速度±0.2 m/s 以内
- (S3) 各アクチュエータ加速度±9.8 m/s² 以内

(S1)~(S3)は実験装置のハードウェア上の制約である.これらの制約条件により,実験装置で実行可能な解を 求めることができる.走行経路は,図7の路面とし,走行速度 0.24 m/s,加速度 0.8 m/s²の台形速度波形で直線 走行させる.走行の際,左前輪のみが凸部に乗り上がるものとする.初期集団をランダムに与え,GAの探索を5 回行った.5回の探索結果中で,最も J_p が大きかった解を準最適解 Q^*_{FSV} とした.その重みを表1に示す.

4・4 搬送台の目標位置・姿勢

DS による動作と FS の制御入力 u から搬送台の目標位置と目標姿勢を算出する.図 10 に示すように、FS の制御入力 u_{ϕ_r} による搬送台位置 $P(x_p^{FS}, y_p^{FS}, z_p^{FS})$ は次式によって算出される(浜口他, 2015).

$$x_p^{FS} = -L_0 \cos \overline{\phi} \tan \phi_y^{FS}, \quad y_p^{FS} = L_0 \cos \overline{\phi} \tan \phi_x^{FS}, \quad z_p^{FS} = L_0 \left(1 - \cos \overline{\phi} \right)$$
(39)

$$\overline{\phi} = \sqrt{\left(\phi_x^{FS}\right)^2 + \left(\phi_y^{FS}\right)^2}, \quad \phi_x^{FS} = \iint u_{\phi_x} dt^2, \quad \phi_y^{FS} = \iint u_{\phi_y} dt^2 \tag{40}$$

Yajima and Hamaguchi, Transactions of the JSME (in Japanese), Vol.86, No.883 (2020)

$$\underbrace{\underbrace{10011011001}_{n_1}}_{n_1}\underbrace{\underbrace{10110010}_{n_2}}_{n_2}\underbrace{10110010}_{e_2}\underbrace{110}_{e_2}\cdots\underbrace{\underbrace{00101110101}_{n_6}}_{e_6}$$

Fig. 9 Genotype for the weighting matrix of the frequency-dependent optimal servo. The weighting matrix is determined using a genetic algorithm.

Fig. 10 Position of endplate calculated by the control input of the frequency-dependent optimal servo (FS).

 L_0 は搬送台の回転半径であり、ここでは、アクティブ吸振器の可動範囲を考慮して $L_0=0.159$ [m]とした.FS の加速度入力 u_x 、 u_y による搬送台の位置と DS による搬送台の目標位置 (x^{DS} , y^{DS} , z^{DS})は、図3の絶対座標系 Σ_0 で定義されるため、吸振器の座標系 Σ_1 での目標変位 r_{p1} は次式となり、これが搬送台の目標変位となる.

$$\boldsymbol{r}_{p1} = \begin{bmatrix} \boldsymbol{x}_{p}^{FS} \\ \boldsymbol{y}_{p}^{FS} \\ \boldsymbol{z}_{p}^{FS} \end{bmatrix} + \boldsymbol{R}_{1}^{T} \begin{bmatrix} \boldsymbol{x}_{u}^{FS} + \boldsymbol{x}^{DS} \\ \boldsymbol{y}_{u}^{FS} + \boldsymbol{y}^{DS} \\ \boldsymbol{z}^{DS} \end{bmatrix}$$
(41)

ここで

$$x_{u}^{FS} = \iint u_{x} dt^{2}, \quad y_{u}^{FS} = \iint u_{y} dt^{2}$$
(42)

である.また,搬送台の目標姿勢 ϕ_{rr} , ϕ_{rr} は次式で与えられる.ここで, ϕ_{x}^{DS} , ϕ_{y}^{DS} はそれぞれ DS による搬送台の 姿勢である.

$$\phi_{xr} = \phi_x^{FS} + \phi_x^{DS}, \quad \phi_{vr} = \phi_v^{FS} + \phi_v^{DS}$$
(43)

搬送台が目標位置・姿勢になるようにアクチュエータの位置制御を行う際,搬送台の目標位置・姿勢からアク チュエータの目標位置を算出するために,吸振器の逆運動学(浜口他,2015)を利用する.また,搬送台の位置・ 姿勢を計測するのに加速度センサやジャイロセンサを使用した場合,ノイズやドリフト誤差のため,位置・姿勢 を正しく求めることが困難である.そこで,アクチュエータ変動量から搬送台の位置・姿勢を求めるのに吸振器 の順運動学(浜口他,2015)を利用する.アクチュエータ変動量はロータリエンコーダで計測されるため,ノイ ズを含まず,高精度で位置を計測することができる.アクチュエータの制御も前報(浜口他,2015)と同じもの を用いる.

5. 制振制御実験

前述で示した制振制御系の有効性を,実験により確認する.

5・1 外乱抑制制御 (DS) のみの場合

DS のみを用いた実験結果を図 11 に示す. なお, DS による抑制効果を見るには, 凸部乗り上げまでに搬送台車の加速により液面が大きく振動していると評価しづらいので, 無制御と共に搬送台車の走行加速度にノッチフィ

q_1	9.766×10 ²				
q_2	9.375×10 ⁻¹				
q_3	9.375×10 ⁻³				
q_4	7.031×10 ³				
q_5	3.594				
q_6	7.813×10 ⁻⁴				

Table 1 Quasi-optimum weighting matrix \boldsymbol{Q}^*_{FSV} of the frequency-dependent optimal servo.

Fig. 11 Experimental results of damping control using the DS alone. The damping effect achieved by using DS is verified through comparison with the result without control. The amplitudes of h_x and h_y using DS are almost halved compared to those without control.

ルタ(矢野他, 2001)を適用してスロッシングの制振を行った.図11より,凸部区間のt=6~9[s]で搬送台を動 かすことによって外乱抑制効果が見られ,無制御に対して $h_x \ge h_y$ ともに振幅値を抑制できていることがわかる. DSによって常に初期位置・姿勢に搬送台が保たれていれば,凸部による外乱を完全に抑制できるはずであるが, 完全に抑振できなかった理由として二つ考えられる.一つ目は,搬送台車に取り付けたジャイロセンサにローパ スフィルタを用いているため,それによって入力に遅れが生じたと考えられる.二つ目は,DSでは凸部による台 車の姿勢変化による外乱を対象とし,段差乗り上げ時に段差から受ける力や,段差から降りる時に地面から受け る力による加速度を考慮していないためであると考えられる.これらの加速度をDSにおいて考慮するためには, 加速度センサによってこれらの加速度を測定することになるが,加速度センサにはローパスフィルタを用いても なお大きなノイズが混入しているため,この値を用いてDSを行った際に吸振器が激しく振動して制振すること ができなかった.そのため,ここでは加速度センサ値を利用しなかった.なお,図11(c),(d)において, ϕ_x , ϕ_x , y, z が減少または増加し続けているのは、ジャイロセンサのドリフト誤差が原因と考えられる.しかし、短い搬送時間の場合は、その影響は小さく問題ないと思われる.

5・2 DS と FS を併用した場合

5・1 節の DS のみの場合,外乱を完全に除去できなかったために残留振動が残った.これを抑えるために,FS を付加する. DS と FS を併用したときの実験結果を図 12 に示す.なお,今回は搬送台車の走行加速度にノッチ フィルタを用いていない.図 12 より,FS を付加することで残留振動を制振できていることが確認できる.

制振性能を定量的に評価するために、式(38)中の制振性能評価指数 I_{p1} を用いて比較する.ここで、実験においても $t_f=20[s]$ とした. I_{p1} の値が小さいほど制振性能が高いということができる.表2 に各制御方式における I_{p1} の値を示す.実験はすべて5回行った.なお、今回示していない FS のみについての制振性能も表2 に示している.なお、FS のみの重み Q^*_{Fsv} は前述の方法で決定した.表2より、DS と FS を併用することにより、制振性能を無制御と比較すると約 79%まで向上させており、FS のみよりさらに約 18%向上させていることが確認できる.

Table 2 Damping performance index I_{p1} in experiment. Using both DS and FS, the damping performance improves by approximately 79% compared to without control, and 18% compared to using FS alone.

Run number	1	2	3	4	5	Average	Rate [%]
Without control	0.10081	0.10160	0.09025	0.09578	0.10100	0.09789	100.0
FS alone	0.04086	0.03864	0.38445	0.03731	0.03597	0.03825	39.1
DS + FS	0.02090	0.02041	0.02118	0.01987	0.02074	0.02062	21.1

Fig. 12 Experimental results of damping control using both DS and FS. Although residual vibrations exist in the case of DS alone, as shown in Fig. 11, almost no residual vibrations are generated by using both DS and FS.

6. 結 言

本研究では、6 自由度パラレルリンク型アクティブ吸振器付き搬送台車を用い、凹凸路面での制振を目的とした制御系を構築した。凹凸路面による外乱を外乱抑制制御によって軽減し、スロッシングの制振には周波数依存型最適サーボを用いた. GA を用い、周波数依存型最適サーボの重み行列を合理的に決定した。外乱抑制制御と周波数依存型最適サーボを併用することにより、制振制御実験において、無制御時より約 79%の、周波数依存型 最適サーボのみより約 18%の制振性能の向上を確認できた.

搬送する液体の量が変化して静止液位が変動する場合,水平直線路面を対象としたものでは,ゲインスケジューリングを用いることによって対応できることが示されている(浜口,谷口,2015).今回検討した問題に対して もゲインスケジューリングを適用することが今後の課題である.

文 献

- Bandyopadhyay, B., Gandhi, P. S. and Kurode, S., Sliding mode observer based sliding mode controller for slosh-free motion through PID scheme, IEEE Transactions on Industrial Electronics, Vol. 56, No. 9 (2009), pp. 3432-3442.
- Hamaguchi, M., Damping control of sloshing in liquid container in cart with active vibration reducer: The case of a curved path on a horizontal plane, IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 5 (2019), pp. 361-372.
- 浜口雅史, 福田昌弘, 谷口隆雄, パラレルリンク型アクティブ吸振器搬送台車による液体タンクの制振搬送制御 (高次モードスロッシングを励起させない制振制御),日本機械学会論文集, Vol.81, No. 822 (2015), DOI: 10.1299/transjsme.14-00470.
- 浜口雅史,谷口隆雄,アクティブ吸振器付き移動ロボットによる液面振動の逆モデルを利用した液体タンクの制振制御,日本機械学会論文集 C 編, Vol. 78, No. 790 (2012), pp. 2203-2217.
- 浜口雅史,谷口隆雄,6自由度パラレルリンク型アクティブ吸振器付き搬送台車による液体タンクの制振制御(水 平な直線路走行の場合),計測自動制御学会論文集, Vol. 51, No. 2 (2015), pp. 101-109.
- 原進, GA メタ最適化を用いた非定常最適レギュレータ設計(制御制約を考慮した振動系の位置決め制御器設計) 日本機械学会論文集 C 編, Vol. 67, No. 658 (2001), pp. 1807-1813.
- 兼田雅弘,山本幸一郎,ディジタル制御工学(1989), pp. 99-105,共立出版
- 栗原海, 近藤孝広, 森博輝, 松崎健一郎, 宗和伸行, 固有振動数成分除去法による天井走行クレーンの制振, 日本 機械学会論文集, Vol. 84, No. 860 (2018), DOI: 10.1299/transjsme.17-00477.
- 森田良文, 鵜飼裕之, 神藤久, 松野文俊, 周波数依存型最適サーボ系によるフレキシブル倒立振子の位置決め制御, 日本機械学会論文集 C 編, Vol. 65, No. 633 (1999), pp. 1816-1822.
- 矢野賢一,小黒直樹,寺嶋一彦,時間,周波数仕様を考慮したハイブリット整形法による制振起動制御,計測自動 制御学会論文誌, Vol. 37, No. 5 (2001), pp. 403-410.
- Yano, K. and Terashima, K., Robust liquid container transfer control for complete sloshing suppression, IEEE Transactions on Control Systems Technology, Vol. 9, No. 3 (2001), pp. 483-493.
- 吉田秀久, 永井正夫, ER ダンパによる車両支持系のスカイフックモデル追従制御, 日本機械学会論文集 C 編, Vol. 64, No. 625 (1998), pp. 3420-3426.
- 吉村雄介,山本鎮男,曽根彰,増田新,振り子・てこ型動吸振器を用いた構造物の震動制御,日本建築学会構造系 論文集, Vol. 62, No. 491 (1997), pp. 47-53.

References

- Bandyopadhyay, B., Gandhi, P. S. and Kurode, S., Sliding mode observer based sliding mode controller for slosh-free motion through PID scheme, IEEE Transactions on Industrial Electronics, Vol. 56, No. 9 (2009), pp. 3432-3442.
- Hamaguchi, M., Damping control of sloshing in liquid container in cart with active vibration reducer: The case of a curved path on a horizontal plane, IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 5 (2019), pp. 361-372.

- Hamaguchi, M., Fukuda, M. and Taniguchi, T., Damping control of sloshing in liquid container on cart with active vibration reducer having parallel linkage (Damping control without excitation of higher-mode sloshing), Transactions of the JSME (in Japanese), Vol. 81, No. 822 (2015), DOI: 10.1299/transjsme.14-00470.
- Hamaguchi, M. and Taniguchi, T., Damping control of liquid container with swing-type active vibration reducer on mobile robot by using inverse model of sloshing, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 78, No. 790 (2012), pp. 2203-2217 (in Japanese).
- Hamaguchi, M. and Taniguchi, T., Damping control of sloshing in a liquid container on a cart with an active vibration reducer of 6-dof parallel linkage —The case of a straight path on horizontal plane—, Transactions of the SICE, Vol. 51, No. 2 (2015), pp. 101-109 (in Japanese).
- Hara, S., Nonstationary optimal regulator design using GA meta-optimization (Positioning controller design for vibration systems taking account of control constraints), Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 67, No. 658 (2001), pp. 1807-1813 (in Japanese).
- Kaneda, M. and Yamamoto, K., Digital control engineering (1989), pp. 99-105, Kyoritsu Shuppan (in Japanese).
- Kurihara, K., Kondou, T., Mori, H., Matsuzaki, K. and Sowa, N., Vibration control of an overhead crane by elimination of the natural frequency component, Transactions of the JSME (in Japanese), Vol. 84, No. 860 (2018), DOI: 10.1299/transjsme.17-00477.
- Morita, Y., Ukai, H., Kando, H. and Matsuno, F., Positioning control of flexible inverted pendulum using frequency-dependent optimal servo system, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 65, No. 633 (1999), pp. 1816-1822 (in Japanese).
- Yano, K., Oguro, N. and Terashima, K., Starting control with vibration damping by hybrid shaped approach considering time and frequency specifications, Transactions of the SICE, Vol. 37, No. 5(2001), pp. 403-410 (in Japanese).
- Yano, K. and Terashima, K., Robust liquid container transfer control for complete sloshing suppression, IEEE Transactions on Control Systems Technology, Vol. 9, No. 3 (2001), pp. 483-493.
- Yoshida, H. and Nagai, M., Sky-hook model following control of vehicle suspension using an electro-rheological damper, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 64, No. 625 (1998), pp. 3420-3426 (in Japanese).
- Yoshimura, Y., Yamamoto, S., Sone, A. and Masuda, A., Response control of structures by using tuned mass damper with lever and pendulum mechanism, Journal of structure and construction engineering, Vol. 62, No. 491 (1997), pp. 47-53 (in Japanese).