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The ratio of the partial widths of some dimension-5 proton decay modes can be predicted
without detailed knowledge of supersymmetric (SUSY) particle masses, and this allows us to
experimentally test various SUSY grand unified theory (GUT) models without discovering SUSY
particles. In this paper, we study the ratio of the partial widths of the p → K0μ+ and p → K+ν̄μ
decays in the minimal renormalizable SUSY SO(10) GUT, under only a plausible assumption
that the 1st- and 2nd-generation left-handed squarks are mass-degenerate. In the model, we
expect that the Wilson coefficients of dimension-5 operators responsible for these modes are
on the same order and that the ratio of p → K0μ+ and p → K+ν̄μ partial widths is O(0.1).
Hence, we may be able to detect both p → K0μ+ and p → K+ν̄μ decays at Hyper-Kamiokande,
thereby gaining a hint for the minimal renormalizable SUSY SO(10)GUT. Moreover, since this
partial width ratio is quite suppressed in the minimal SU (5) GUT, it allows us to distinguish the
minimal renormalizable SUSY SO(10) GUT from the minimal SU (5) GUT. In the main body
of the paper, we perform a fitting of the quark and lepton masses and flavor mixings with the
Yukawa couplings of the minimal renormalizable SO(10)GUT, and derive a concrete prediction
for the partial width ratio based on the fitting results. We find that the partial width ratio generally
varies in the range 0.05–0.6, confirming the above expectation.
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1. Introduction

The SO(10)grand unified theory (GUT) [1,2] is a well-motivated scenario beyond the Standard Model
(SM), since it unifies the SM gauge groups into an anomaly-free group, it unifies the SM matter
fields and right-handed neutrino of each generation into one 16 representation and it includes the
seesaw mechanism [3–6] for the tiny neutrino mass. The minimal renormalizable SO(10) GUT [7],
where the electroweak-symmetry-breaking-Higgs field stems from 10 + 126 fields and the SM
Yukawa couplings come solely from renormalizable terms Ỹ10 16 10 16+Ỹ126 16 126 16, is even more
appealing because the mass and flavor mixings of quarks and leptons are derived from a restricted set
of parameters. Specifically, the up-type quark, down-type quark, charged lepton and neutrino Dirac
Yukawa matrices are derived as Yu = Y10 + r2Y126, Yd = r1(Y10 + Y126), Ye = r1(Y10 − 3Y126),
YD = Y10 − 3r2Y126, with Y10 ∝ Ỹ10, Y126 ∝ Ỹ126 and r1, r2 being numbers. Also, the Majorana
mass for right-handed neutrinos and the type-2 seesaw contribution to the tiny neutrino mass are
proportional to Y126.
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The direct experimental signature of the minimal renormalizable SO(10) GUT is, like other GUT
models, proton decay. In supersymmetric (SUSY) GUT, proton decay through dimension-5 opera-
tors induced by colored Higgsino exchange [8,9] can be within the reach of the Hyper-Kamiokande
experiment [10] and is crucial to phenomenology.1 Regrettably, SUSY particles have not been dis-
covered at the Large Hadron Collider and hence no concrete prediction is available for the partial
widths of dimension-5 proton decays, since they are inversely proportional to the soft SUSY break-
ing scale squared. In this situation, the ratio of the partial widths of different decay modes, which is
independent of the soft SUSY breaking scale, allows us to test various SUSY GUT models including
the minimal renormalizable SUSY SO(10) GUT.2

In this paper, we focus on the ratio of the partial widths of the p → K0μ+ and the p → K+ν̄μ
decays in the minimal renormalizable SUSY SO(10)GUT. We make only one natural assumption on
the SUSY particle mass spectrum, which is that the 1st- and 2nd-generation left-handed squarks are
mass-degenerate. In the model with the above assumption, the ratio �(p → K0μ+)/�(p → K+ν̄μ)
is predicted to be O(0.1). Hence, we may be able to discover both p → K0μ+ and p → K+ν̄μ
decays at Hyper-Kamiokande [10], thereby gaining a hint for the model. Moreover, this ratio is
predicted to be suppressed by a factor of 0.002 in the minimal SU (5)GUT compared to the minimal
renormalizable SUSY SO(10) GUT, and thus observation of both p → K0μ+ and p → K+ν̄μ
decays allows us to distinguish the latter from the former.3

In the main body of the paper, we numerically confirm that �(p → K0μ+)/�(p → K+ν̄μ) is
O(0.1) in the minimal renormalizable SUSY SO(10)GUT. To this end, we determine the fundamental
Yukawa couplings Y10, Y126 through a fitting of the quark and lepton Yukawa couplings and neutrino
data, as has been performed in Refs. [12]-[30], and calculate the partial width ratio based on the
fitting results.

Previously, enhancement of partial width ratio �(p → K0μ+)/�(p → K+ν̄μ) in SO(10) GUT
models compared to the minimal SU (5)GUT is claimed in Refs. [31,32], but only based on a qualita-
tive argument. Our paper is the first study where this ratio is predicted concretely and quantitatively in
the minimal renormalizable SUSY SO(10) GUT, with the fundamental Yukawa couplings Y10, Y126

determined through a numerical fitting.
The basic reason that �(p → K0μ+)/�(p → K+ν̄μ) is O(0.1) in the minimal renormal-

izable SUSY SO(10) GUT is understood as follows. In the model, the ratio of the Wilson
coefficients of dimension-5 operators responsible for the p → K0μ+ decay and those for the
p → K+ν̄μ decay is proportional to (Y10)uL j/(Y10)dL j or (Y126)uL j/(Y126)dL j. Here (Y10)uL j denotes
the (1, j)-component of Y10 in the flavor basis where, when we write the Yukawa coupling as
ψi(Y10)ijψj, the left-handed up-type quark component of ψi has the diagonalized up-type quark
Yukawa coupling. (Y10)dL j, (Y126)uL j, (Y126)dL j are defined in the same way. Y10, Y126 are linear
combinations of the down-type and up-type quark Yukawa matrices Yd , Yu, due to the relations
Yu = Y10+r2Y126, Yd = r1(Y10+Y126). Moreover, these linear combinations are generic, because sit-
uations where Y10 ∝ Yu, Y126 ∝ Yd or Y10 ∝ Yd , Y126 ∝ Yu would not reproduce the correct charged

1 If 45 + 16 + 16 fields are responsible for breaking SO(10) gauge group, then proton decay through
dimension-6 operators induced by GUT gauge boson exchange can also be within the reach of Hyper-
Kamiokande [11].

2 If the ratio involves a decay mode that receives contributions from both left-handed dimension-5 operators
QQQL and right-handed ones EUUD, we need information about the ratio of Wino mass and the μ-term to
predict the ratio.

3 The origin of the suppression factor 0.002 is explained in Sect. 3.1.
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lepton Yukawa matrix Ye. Therefore, considering the large hierarchy yu/yt � yd/yb, we expect that
the components (Y10)uL j, (Y10)dL j, (Y126)uL j, (Y126)dL j are all on the order of the down quarkYukawa
coupling yd times the mixing angle between the right-handed down quark and a state with flavor index
j, and are not proportional to the up-quark Yukawa coupling yu. Hence, both (Y10)uL j/(Y10)dL j and
(Y126)uL j/(Y126)dL j are O(1) and so is the ratio of theWilson coefficients of dimension-5 operators for
the p → K0μ+ and the p → K+ν̄μ decays. The Wino-dressing diagrams give almost the same con-
tribution for the two modes, if the 1st- and 2nd-generation left-handed squarks are mass-degenerate.
As a result, the partial width ratio �(p → K0μ+)/�(p → K+ν̄μ) is determined by the ratio of
baryon chiral Lagrangian parameters, which lies in the range (1 − D + F)2/(1 + D + F)2 = 0.085
to (1 − D + F)2/(1 − D/3 + F)2 = 0.30, and thus the partial width ratio is O(0.1).

This paper is organized as follows. In Sect. 2, we describe the minimal renormalizable SUSY
SO(10) GUT and present formulas for the partial widths of the p → K+ν̄μ and p → K0μ+
decays. In Sect. 3, we roughly estimate the partial width ratio �(p → K0μ+)/�(p → K+ν̄μ) in
the minimal renormalizable SUSY SO(10) GUT without numerically determining the fundamental
Yukawa couplings Y10, Y126, and compare it to the partial width ratio in the minimal SU (5) GUT. In
Sect. 4, we numerically determine Y10, Y126 through a fitting of the quark and charged leptonYukawa
couplings and neutrino mass matrix, and calculate �(p → K0μ+)/�(p → K+ν̄μ) based on the
fitting results. Section 5 summarizes the paper.

2. Minimal renormalizable SUSY SO(10) GUT

We consider a SUSY SO(10)GUT model that contains chiral superfields H ,� and� in 10, 126, 126
representation, and three matter fields �i in 16 representation (i = 1, 2, 3 denotes flavor index) [7].
The model also contains chiral superfields responsible for breaking SU (5) subgroup of SO(10), but
we do not specify them in this paper. The most general renormalizableYukawa couplings are given by

WYukawa = (Ỹ10)ij �iH�j + (Ỹ126)ij �i��j, (1)

where (Ỹ10)ij and (Ỹ126)ij are 3 × 3 complex symmetric matrices. The Higgs fields of the minimal
SUSY Standard Model (MSSM), Hu, Hd , are linear combinations of (1, 2, ±1/2) components of
H , � and other fields. Accordingly, the MSSM Yukawa coupling for up-type quarks, Yu, that for
down-type quarks, Yd , and that for charged leptons, Ye, and the DiracYukawa coupling for neutrinos,
YD, are derived from WYukawa as

WYukawa ⊃ (Yu)ij QiHuU c
i + (Yd)ij QiHdDc

i + (Ye)ij LiHdEc
i + (YD)ij LiHuN c

i , (2)

where Yu, Yd , Ye, YD are given by

Yu = Y10 + r2 Y126, (3)

Yd = r1 (Y10 + Y126) , (4)

Ye = r1 (Y10 − 3Y126) , (5)

YD = Y10 − 3r2 Y126, (6)
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at a SO(10) breaking scale. Here Y10 ∝ Ỹ10, Y126 ∝ Ỹ126, and r1, r2 are numbers. By a phase
redefinition, we take r1 to be real positive. In principle, r1, r2 are determined from the mass matrix
for (1, 2, ±1/2) components [33]–[38], but in this paper we treat them as independent parameters.

Majorana mass for the right-handed neutrinos is proportional to (Y126)ij vR N c
i N c

j where vR denotes
�’s vacuum expectation value. Integrating out N c

i yields an effective operator LiHuLjHu, which we
call the Type-1 seesaw contribution.Additionally, if the (1, 3, 1) component of�mixes with that of 54
representation field, after integrating out these components, we get an effective operator LiHuLjHu,
which we call the Type-2 seesaw contribution.

H , �̄ and other fields contain pairs of (3, 1, −1/3), (3, 1, 1/3) components, which we call “colored
Higgs fields” and denote by H A

C , H
B
C (A, B are labels), respectively. Exchange of H A

C , H
B
C gives rise

to dimension-5 operators inducing proton decay. Those couplings of H A
C , H

B
C which contribute to

such operators are

WYukawa ⊃
∑

A

[
1

2
(Y A

L )ij QiH
A
C Qj + (Y

A
L)ij QiH

A
CLj + (Y A

R )ij Ec
i H A

C U c
j + (Y

A
R)ij U c

i H
A
CDc

j

]
, (7)

where Y A
L , Y

A
L , Y A

R , Y
A
R are linear combinations of Y10, Y126. After integrating out H A

C , H
B
C , we get

dimension-5 operators contributing to proton decay,

− W5 = 1

2
Cijkl

5L (QkQl)(QiLj)+ Cijkl
5R Ec

kU c
l U c

i Dc
j (8)

(in the first term, isospin indices are summed in each bracket), where

Cijkl
5L (μ ∼ MHC ) =

∑
A,B

(M−1
HC
)AB

{
(Y A

L )kl(Y
B
L)ij − 1

2
(Y A

L )li(Y
B
L)kj − 1

2
(Y A

L )ik(Y
B
L)lj

}∣∣∣∣∣∣
μ∼MHC

, (9)

Cijkl
5R (μ ∼ MHC ) =

∑
A,B

(M−1
HC
)AB

{
(Y A

R )kl(Y
B
R)ij − (Y A

R )ki(Y
B
R)lj

}∣∣∣∣∣∣
μ∼MHC

, (10)

MHC denotes the mass matrix of H A
C , H

B
C fields and MHC represents a typical value of the eigenvalues

of MHC .
We concentrate on the contribution of the (QkQl)(QiLj) operators to the p → K+ν̄μ and p →

K0μ+ decays, and calculate the ratio of their partial widths,

�(p → K0μ+)
�(p → K+ν̄μ)

, (11)

in the minimal renormalizable SUSY SO(10)GUT. It should be noted that the (QkQl)(QiLj) and the
Ec

kU c
l U c

i Dc
j operators contribute to the p → K+ν̄τ decay, which is experimentally indistinguishable

from the p → K+ν̄μ decay. Hence, our prediction on �(p → K0μ+)/�(p → K+ν̄μ) should be
regarded as the maximum of the following measurable quantity:

�(p → K0μ+)∑
i=e,μ,τ �(p → K+ν̄i)

. (12)

The maximum is attained if the (QkQl)(QiLj) operators’ contribution and the Ec
kU c

l U c
i Dc

j operators’
contribution to the p → K+ν̄τ decay cancel each other. This cancellation is always possible by
adjusting the ratio of the Wino mass and the μ-term.
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As stated in the Introduction, for the SUSY particle mass spectrum, we assume that the 1st- and
2nd-generation left-handed squarks are mass-degenerate. To be quantitative, we assume that the 1st-
and 2nd-generation left-handed squark masses in the up-quark-Yukawa-diagonal basis satisfy

|m2
c̃L

− m2
ũL

| < 10−3 m2
c̃L

. (13)

This is a natural assumption at the quantum level, since the 1st- and 2nd-generation quark Yukawa
couplings are tiny. To see this, note that the difference in the renormalization group corrections is
given in the leading-log approximation by

�m2
c̃L

−�m2
ũL

� − 3

16π2 log
(
	2

m2

) {
y2

c − y2
u + (YdY †

d )cLcL − (YdY †
d )uLuL

}
m2, (14)

where m2 represents the typical scale of soft SUSY breaking masses, and	 denotes the scale at which
initial values of the squark masses are given. We have |y2

c − y2
u + (YdY †

d )cLcL − (YdY †
d )uLuL | < 10−3

for tan β = 50 and at any renormalization scale. Hence, we get |�m2
c̃L

−�m2
ũL

| < 1.3 × 10−3 m2

even when 	 is the Planck scale and m is 1 TeV. The tiny mass splitting assumed in Eq. (13) does
not affect the results presented in the rest of the paper.

The contribution of the Cijkl
5L (QkQl)(QiLj) term to the p → K+ν̄μ and the p → K0μ+ decays is

given by [39]

�(p → K+ν̄μ) = C
∣∣∣∣βH (μhad)

1

fπ

{(
1 + D

3
+ F

)
Csμ du

LL (μhad)+ 2D

3
Cdμ su

LL (μhad)

}∣∣∣∣2

, (15)

�(p → K0μ+) = C
∣∣∣∣βH (μhad)

1

fπ
(1 − D + F)C

uμ us
LL (μhad)

∣∣∣∣2

, (16)

where C = (mN/64π)
[
1 − (m2

K/m
2
N )

]2
, βH denotes a hadronic matrix element, D, F are parameters

of the baryon chiral Lagrangian, and CLL, CLL are Wilson coefficients of the effective Lagrangian
−L6 ⊃ Cijkl

LL (ψuk
L
ψdl

L
)(ψdi

L
ψ
ν

j
L
)+C

ijkl
LL (ψdk

L
ψul

L
)(ψui

L
ψ

ej
L
) (ψ denotes a SM Weyl fermion and spinor

index is summed in each bracket). We have neglected the mass splittings among nucleons and
hyperons. The Wilson coefficients CLL, CLL satisfy

Csμ du
LL (μhad) = ALL(μhad,μSUSY)

MW̃

m2
q̃

F g2
2

(
Csμ ud

5L − Cuμ sd
5L

)
|μ=μSUSY , (17)

Cdμ su
LL (μhad) = ALL(μhad,μSUSY)

MW̃

m2
q̃

F g2
2

(
Cdμ us

5L − Cuμ ds
5L

)
|μ=μSUSY , (18)

C
uμ us
LL (μhad) = ALL(μhad,μSUSY)

MW̃

m2
q̃

F g2
2

(−Cuμ us
5L + Csμ uu

5L

) |μ=μSUSY , (19)

where F is a common loop function factor F = (1/x − y)[(x/1 − x) log x−(y/1 − y) log y]/16π2+
(1/x − 1)[(x/1 − x) log x + 1]/16π2 with x = |MW̃ |2/m2

q̃ and y = m2
�̃
/m2

q̃, and mq̃ denotes the
1st- and 2nd-generation left-handed squark masses (which are assumed to be degenerate) and m

�̃

denotes the mass of the left-handed smuon and muon sneutrino.4 ALL(μhad,μSUSY) accounts for
renormalization group (RG) corrections in the evolution from soft SUSY breaking scale μSUSY to

4 When writing Cuμ us
5L , we mean that Qi is in the flavor basis where the up-type quark Yukawa coupling Yu is

diagonal and that the up-type quark component of Qi is exactly u quark (then the down-type quark component
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a hadronic scale where the value of βH is reported.5 C5L are related to the colored Higgs Yukawa
couplings as

Csμ ud
5L (μSUSY)− Cuμ sd

5L (μSUSY) =

AL(μSUSY,μHC )
∑
A,B

(M−1
HC
)AB

3

2

{
(Y A

L )ud(Y
B
L)sμ − (Y A

L )ds(Y
B
L)uμ

}
|μ=μHC

, (20)

Cdμ us
5L (μSUSY)− Cuμ ds

5L (μSUSY) =

AL(μSUSY,μHC )
∑
A,B

(M−1
HC
)AB

3

2

{
(Y A

L )us(Y
B
L)dμ − (Y A

L )ds(Y
B
L)uμ

}
|μ=μHC

, (21)

Cuμ us
5L (μSUSY)− Csμ uu

5L (μSUSY) =

AL(μSUSY,μHC )
∑
A,B

(M−1
HC
)AB

3

2

{
(Y A

L )us(Y
B
L)uμ − (Y A

L )uu(Y
B
L)sμ

}
|μ=μHC

, (22)

where AL(μSUSY,μHC ) accounts for RG corrections in the evolution from colored Higgs mass scale
μHC ∼ MHC to soft SUSY breaking scale μSUSY.6

We relate the flavor-dependent part of Eqs. (20)–(22) to Y10, Y126. Since Y A
L , Y

A
L are proportional

to either Y10 or Y126, we can write without loss of generality

∑
A,B

(M−1
HC
)AB

{
(Y A

L )ud(Y
B
L)sμ − (Y A

L )ds(Y
B
L)uμ

}

= 1

MHC

[
a

{
(Y10)uLdL(Y10)sLμL − (Y10)dLsL(Y10)uLμL

} + b
{
(Y10)uLdL(Y126)sLμL − (Y10)dLsL(Y126)uLμL

}
+c

{
(Y126)uLdL(Y10)sLμL − (Y126)dLsL(Y10)uLμL

} + d
{
(Y126)uLdL(Y126)sLμL − (Y126)dLsL(Y126)uLμL

}]
,

(23)∑
A,B

(M−1
HC
)AB

{
(Y A

L )us(Y
B
L)dμ − (Y A

L )ds(Y
B
L)uμ

}

= 1

MHC

[
a

{
(Y10)uLsL(Y10)dLμL − (Y10)dLsL(Y10)uLμL

} + b
{
(Y10)uLsL(Y126)dLμL − (Y10)dLsL(Y126)uLμL

}
+c

{
(Y126)uLsL(Y10)dLμL − (Y126)dLsL(Y10)uLμL

} + d
{
(Y126)uLsL(Y126)dLμL − (Y126)dLsL(Y126)uLμL

}]
,

(24)

of Qi is a mixture of d, s, b). Likewise, Qk is in the flavor basis where the down-type quark Yukawa coupling
Yd is diagonal and its down-type quark component is exactly s quark, and Ql is in the flavor basis where the
up-type quarkYukawa coupling is diagonal and its up-type quark component is exactly u quark. The same rule
applies to other Wilson coefficients.

5 RG corrections involving SMYukawa couplings are negligible for Csμ du
LL , Cdμ su

LL , Cuμ us
LL , and hence their RG

corrections are approximately flavor-universal.
6 Again, RG corrections involving MSSM Yukawa couplings are negligible for Cdμ us

5L , Cuμ ds
5L , Cuμ su

5L , Csμ uu
5L

and hence their RG corrections are approximately flavor-universal.
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∑
A,B

(M−1
HC
)AB

{
(Y A

L )us(Y
B
L)uμ − (Y A

L )uu(Y
B
L)sμ

}

= 1

MHC

[
a

{
(Y10)uLsL(Y10)uLμL − (Y10)uLuL(Y10)sLμL

} + b
{
(Y10)uLsL(Y126)uLμL − (Y10)uLuL(Y126)sLμL

}
+c

{
(Y126)uLsL(Y10)uLμL − (Y126)uLuL(Y10)sLμL

} + d
{
(Y126)uLsL(Y126)uLμL − (Y126)uLuL(Y126)sLμL

}]
,

(25)

where MHC is a typical value of the eigenvalues of MHC , and a, b, c, d are numbers common for
Eqs. (23)–(25). Here (Y10)uLsL denotes the (1, 2)-component of Y10 of the term (Y10)ij �iH�j in
the flavor basis where the left-handed up-type quark component of �i has the diagonalized up-type
quarkYukawa coupling, and the left-handed down-type quark component of�j has the diagonalized
down-type quark Yukawa coupling. (Y10)dLμL , (Y126)uLsL and others are defined analogously.

In principle, numbers a, b, c, d are determined from the colored Higgs mass matrix [33]–[38].
However, as we do not specify fields responsible for breaking the SU (5) subgroup of SO(10), we
treat a, b, c, d as independent O(1) parameters.

We observe that each term in Eq. (25) is given by (Y10)uL j/(Y10)dL j or (Y126)uL j/(Y126)dL j

times some term in Eqs. (23),(24), as advertised in the Introduction. For example, the term
(Y10)uLsL(Y10)uLμL in Eq. (25) equals (Y10)uLsL/(Y10)dLsL times the term (Y10)dLsL(Y10)uLμL in
Eq. (23), and also equals (Y10)uLμL/(Y10)dLμL times the term (Y10)uLsL(Y10)dLμL in Eq. (24).

3. Estimates on �(p → K 0μ+)/�(p → K+ν̄μ)

We estimate �(p → K0μ+)/�(p → K+ν̄μ) in the minimal SU (5) GUT and in the minimal renor-
malizable SUSY SO(10) GUT without numerically determining Y10, Y126. In the minimal SU (5)
GUT, we assume, as usual, that the splitting between the down-type quark Yukawa coupling Yd and
the charged lepton Yukawa coupling Ye is realized by non-renormalizable terms.

3.1. Estimate in the minimal SU (5) GUT

In the minimal SU (5) GUT, we have only one pair of colored Higgs fields, and YL and Y L are
proportional to the Yukawa couplings for 5 and 5 Higgs fields, respectively. Hence, Eqs. (23)–(25)
are altered to

∑
A,B

(M−1
HC
)AB

{
(Y A

L )ud(Y
B
L)sμ − (Y A

L )ds(Y
B
L)uμ

}
= 1

MHC

{
(Y5)uLdL(Y5)sLμL − (Y5)dLsL(Y5)uLμL

}
,

(26)∑
A,B

(M−1
HC
)AB

{
(Y A

L )ud(Y
B
L)sμ − (Y A

L )ds(Y
B
L)uμ

}
= 1

MHC

{
(Y5)uLsL(Y5)dLμL − (Y5)dLsL(Y5)uLμL

}
,

(27)∑
A,B

(M−1
HC
)AB

{
(Y A

L )us(Y
B
L)uμ − (Y A

L )uu(Y
B
L)sμ

}
= 1

MHC

{
(Y5)uLsL(Y5)uLμL − (Y5)uLuL(Y5)sLμL

}
,

(28)

where Y5 and Y5 denote theYukawa couplings for 5 and 5 Higgs fields, respectively, and MHC denotes
the mass for the colored Higgs fields.
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The key fact is that since Y5 is identical to the up-type quark Yukawa coupling matrix, the compo-
nents of Y5 with flavor index uL are given by the up-quark Yukawa coupling times a mixing angle.
Hence, they are estimated to be

(Y5)uLuL , (Y5)uLdL ∼ yu(μ = μHC ) (29)

(Y5)uLsL ∼ yu(μ = μHC ) · λ, (30)

where μHC ∼ MHC , and λ denotes the Cabibbo angle λ � |Vus| � |Vcd | � 0.22. On the other hand,
(Y5)dLsL is estimated to be the second generation Yukawa coupling times a mixing angle as

(Y5)dLsL ∼ yc(μHC ) · λ (31)

Although the unification of down-type quark Yukawa coupling and charged lepton Yukawa coupling
is unsuccessful at the renormalizable level (but the unification can always be achieved with non-
renormalizable terms), we can estimate components of Y5 as

(Y5)sLμL ∼ ys(μHC ) or yμ(μHC ), (32)

(Y5)uLμL ∼ (Y5)dLμL ∼ ys(μHC ) · λ or yμ(μHC ) · λ. (33)

From formulas (15)–(22) and estimates (26)–(33), we estimate the partial widths as

�(p → K+ν̄μ) = C
∣∣∣∣(1 + D

3
+ F)c1 λ

2 yc yμ + 2D

3
c2 λ

2 yc yμ

∣∣∣∣2

(34)

�(p → K0μ+) = C ∣∣(1 − D + F)c3 yu yμ
∣∣2 (35)

or

�(p → K+ν̄μ) = C
∣∣∣∣(1 + D

3
+ F)c1 λ

2 yc ys + 2D

3
c2 λ

2 yc ys

∣∣∣∣2

(36)

�(p → K0μ+) = C |(1 − D + F)c3 yu ys|2 (37)

where C is a common constant, c1, c2, c3 are O(1) numbers, and yu, yc, yμ, ys are the up, charm, muon
and strange quark Yukawa couplings at scale μ = μHC .7 We have discarded subleading terms. The
partial width ratio is then estimated as(

1 − D + F

1 + D + F

)2 (
yu

λ2yc

)2

� �(p → K0μ+)
�(p → K+ν̄μ)

�
(

1 − D + F

1 − D/3 + F

)2 (
yu

λ2yc

)2

, (38)

where the variation is due to unknown relative phase between c1 and c2. Numerically, the above
estimate becomes(

1 − D + F

1 + D + F

)2

· 0.002 � �(p → K0μ+)
�(p → K+ν̄μ)

�
(

1 − D + F

1 − D/3 + F

)2

· 0.002. (39)

We find that the p → K0μ+ partial width is quite suppressed compared to the p → K+ν̄μ partial
width because of the factor 0.002 coming from the ratio of yu and λ2yc; namely, the large hierarchy
between the up and charm quark Yukawa couplings suppresses the partial width ratio. Also, baryon
chiral Lagrangian parameters give (1 − D + F)2/(1 + D + F)2 = 0.085 and (1 − D + F)2/(1 −
D/3 + F)2 = 0.3, and they provide further suppression.

7 We neglect the small difference between hyperon masses and the nucleon mass.
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3.2. Estimate in the minimal renormalizable SUSY SO(10) GUT
In the minimal renormalizable SUSY SO(10) GUT, we can rewrite the right-hand side of Eqs. (23)–
(25) using the relation Yu = Y10 + r2 Y126, as

∑
A,B

(M−1
HC
)AB

{
(Y A

L )ud(Y
B
L)sμ − (Y A

L )ds(Y
B
L)uμ

}

= 1

MHC

[
a

{
(Yu)uLdL(Yu)sLμL − (Yu)dLsL(Yu)uLμL

} + b′ {(Yu)uLdL(Y126)sLμL − (Yu)dLsL(Y126)uLμL

}
+c′ {(Y126)uLdL(Yu)sLμL − (Y126)dLsL(Yu)uLμL

} + d ′ {(Y126)uLdL(Y126)sLμL − (Y126)dLsL(Y126)uLμL

}]
,

(40)∑
A,B

(M−1
HC
)AB

{
(Y A

L )us(Y
B
L)dμ − (Y A

L )ds(Y
B
L)uμ

}

= 1

MHC

[
a

{
(Yu)uLsL(Yu)dLμL − (Yu)dLsL(Yu)uLμL

} + b′ {(Yu)uLsL(Y126)dLμL − (Yu)dLsL(Y126)uLμL

}
+c′ {(Y126)uLsL(Yu)dLμL − (Y126)dLsL(Yu)uLμL

} + d ′ {(Y126)uLsL(Y126)dLμL − (Y126)dLsL(Y126)uLμL

}]
,

(41)∑
A,B

(M−1
HC
)AB

{
(Y A

L )us(Y
B
L)uμ − (Y A

L )uu(Y
B
L)sμ

}

= 1

MHC

[
a

{
(Yu)uLsL(Yu)uLμL − (Yu)uLuL(Yu)sLμL

} + b′ {(Yu)uLsL(Y126)uLμL − (Yu)uLuL(Y126)sLμL

}
+c′ {(Y126)uLsL(Yu)uLμL − (Y126)uLuL(Yu)sLμL

} + d ′ {(Y126)uLsL(Y126)uLμL − (Y126)uLuL(Y126)sLμL

}]
,

(42)

where

b′ = b − r2 a, c′ = c − r2 a, d ′ = d − r2(b + c)+ r2
2 a. (43)

We still have b′, c′, d ′ = O(1), since we have |r2| = O(1) to fit the charged lepton Yukawa cou-
pling. The right-hand sides of Eqs. (40)–(42) contain terms analogous to Eqs. (26)–(28) [note that
Yu in Eqs. (40)–(42) corresponds to Y5 in Eqs. (26)–(28)], plus non-analogous terms in the form
(Y126)ij(Y126)kl . Each component is estimated as follows. (Yu)sLμL is estimated to be the charm quark
Yukawa coupling and (Yu)dLsL is estimated to be the charm quarkYukawa coupling times the Cabibbo
angle,

(Yu)sLμL ∼ yc(μHC ), (44)

(Yu)dLsL ∼ yc(μHC ) · λ. (45)

The components of Yu with flavor index uL are always given by the up Yukawa coupling yu times a
mixing angle, and hence we get

(Yu)uLuL , (Yu)uLdL ∼ yu(μHC ), (46)

(Yu)uLsL , (Yu)uLμL ∼ yu(μHC ) · λ. (47)
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In contrast, the components of Y126 do not follow the rule and are estimated as

(Y126)uLuL , (Y126)uLdL ∼ 1

r1
yd(μHC ), (48)

(Y126)uLsL , (Y126)dLsL , (Y126)uLμL ∼ 1

r1
ys(μHC ) · λ, (49)

(Y126)sLμL ∼ 1

r1
ys(μHC ). (50)

We have estimated (Y126)sLμL to be ys(μHC )/r1, because we empirically have yμ/ys|μ=1016 GeV � 4
and this factor 4 is mostly explained by the factor 3 in Eq. (5). We have estimated (Y126)uLuL to be
yd(μHC )/r1, not yu(μHC ), based on the following argument: Recall that components of Y10 and Y126

reproduce the up and down Yukawa couplings as

(Y10)uRuL + r2(Y126)uRuL = yu(μHC ), (51)

r1
(
(Y10)dRdL + (Y126)dRdL

) = yd(μHC ). (52)

Since the unification of the top and bottom Yukawa couplings requires tan β/r1 � mt/mb � 50, we
get

(Y10)uRuL + r2(Y126)uRuL

(Y10)dRdL + (Y126)dRdL

= r1
yu

yd
= r1

tan β

mu

md
� mb

mt

mu

md
� 0.01. (53)

(Y10)uRuL/(Y10)dRdL and (Y126)uRuL/(Y126)dRdL are estimated to be 1 − λ2 � 1. Then, the only way
to realize Eq. (53) is to take

(Y10)dRdL � −r2(Y126)dRdL � 1

r1

r2

r2 − 1
yd(μHC ) (54)

and impose a fine-tuning between (Y10)uRuL and r2(Y126)uRuL to realize the small value 0.01 in
Eq. (53). Here we cannot assume r2 � 0 because we need |r2| = O(1) to reproduce the charged
lepton Yukawa coupling, as will be confirmed numerically in Fig. 1. From Eq. (54), we find

(Y10)uRuL � −r2(Y126)uRuL � 1

r1

r2

r2 − 1
yd(μHC ). (55)

Using |r2| = O(1), we estimate (Y10)uLuL , (Y126)uLuL as

(Y10)uLuL , (Y126)uLuL ∼ 1

r1
yd(μHC ). (56)

From formulas (15)–(22) and estimates (44)–(50), we estimate the partial widths as

�(p → K+ν̄μ) = C
∣∣∣∣(1 + D

3
+ F)(aβ1 yuyc + b′β2 ycysλ

2/r1 + c′β3 ycysλ
2/r1 + d ′β4 y2

sλ
2/r2

1)

+2D

3
(aγ1 yuycλ

2 + b′γ2 ycysλ
2/r1 + c′γ3 ycysλ

2/r1 + d ′γ4 y2
sλ

2/r2
1)

∣∣∣∣2

, (57)

�(p → K0μ+) = C ∣∣(1 − D + F)(aδ1 yuyc + b′δ2 yuys/r1 + c′δ3 ycysλ
2/r1 + d ′δ4 y2

sλ
2/r2

1)
∣∣2

,
(58)
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Fig. 1. Distribution of r2 [defined in Eq. (3)] in the fitting results satisfying the constraints of Table 2.

where C is a common constant, yu, ys, yc are the up, strange and charm quark Yukawa couplings at
scale μ = μHC , and β1,β2,β3,β4, γ1, γ2, γ3, γ4, δ1, δ2, δ3, δ4 are O(1) numbers. We have used the
empirical relation msλ

2 � md and let ysλ
2 represent both ysλ

2 and yd .
In Eqs. (57) and (58), ysλ

2/r2
1 and ycysλ

2/r1 are much larger than the other terms containing yu.
Hence, in generic cases where d ′ = O(1) and/or c′ = O(1), the partial width ratio is estimated as

(
1 − D + F

1 + D + F

)2

� �(p → K0μ+)
�(p → K+ν̄μ)

�
(

1 − D + F

1 − D/3 + F

)2

(59)

[in minimal renormalizable SO(10) GUT with d ′ = O(1) and/or c′ = O(1)],

where the variation is due to unknown relative phases among β2,β3,β4, γ2, γ3, γ4. We find that
the suppression factor of 0.002 in Eq. (39) is absent in Eq. (59). This means that in the minimal
renormalizable SUSY SO(10) GUT with d ′ = O(1) and/or c′ = O(1), �(p → K0μ+)/�(p →
K+ν̄μ) is highly enhanced compared to the minimal SU (5) GUT.

In the non-generic case where c′ and d ′ are both fine-tuned to 0, the partial width ratio is quite
suppressed as

(
1 − D + F

1 + D + F

)2 (
yu

λ2yc

)2

� �(p → K0μ+)
�(p → K+ν̄μ)

�
(

1 − D + F

1 − D/3 + F

)2 (
yu

λ2yc

)2

(60)

[in minimal renormalizable SO(10) GUT with c′ = d ′ = 0],

which is the same as in the minimal SU (5) GUT. This is reasonable because when c′ = d ′ = 0
the contribution of (3, 1, −1/3) fields to dimension-5 proton decay is dictated by the up-type quark
Yukawa matrix, just as in the minimal SU (5) GUT.

In the next section, we numerically confirm the estimates Eqs. (59) and (60) through a fitting of
the quark and lepton masses and flavor mixings in terms of Y10, Y126.
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4. Numerical analysis
4.1. Overview

Our first task is to fit the MSSM Yukawa matrices with Y10, Y126, r1, r2 through Eqs. (3)–(5), and
fit the neutrino mass matrix with Y10, Y126, r2. When calculating the Type-1 seesaw contribution
to the Weinberg operator LiHuLjHu, we have to integrate out each right-handed neutrino N c

i at its
respective mass scale. This requires information on the eigenvalues of Y126, but that is obtained
only after the fitting is complete. Hence, it is technically difficult to integrate out each right-handed
neutrino separately. In this paper, therefore, we make an approximation that the three right-handed
neutrinos are integrated out at one scale. Accordingly, the neutrino mass matrix Mν is related to Y126

and YD in Eq. (6) as

(Mν)ij ∝ Rik

{
rL(Y126)kl + (YD)km(Y

−1
126)mn(YD)ln

}
Rjl ,

where rL is a complex number that parametrizes the ratio of the Type-1 and Type-2 seesaw con-
tributions, and Rij denotes the flavor-dependent RG correction to the coefficient of the Weinberg
operator LiHuLjHu when it evolves from a SO(10) breaking scale to electroweak scale. Since the
flavor-dependent RG correction Rij is at most 3% (see Table 1) while the errors of the neutrino
data we employ are much larger (see Table 2), we expect that the approximation of integrating out
right-handed neutrinos at one scale does not affect the results.

We repeat the above fitting analysis many times and obtain as many fitting results. We compute
�(p → K+ν̄μ) and�(p → K0μ+) from each fitting result of Y10, Y126, r1, r2, rL using Eqs. (15)–(22)
and Eqs. (40)–(42), with coefficients a, b′, c′, d ′ treated as independent O(1) parameters. The fitting
results are plotted with respect to the ratio �(p → K0μ+)/�(p → K+ν̄μ). From the plot, we read
out the range of the ratio �(p → K0μ+)/�(p → K+ν̄μ) predicted by the minimal renormalizable
SO(10) GUT.

We assume a benchmark SUSY particle mass spectrum to evaluate the MSSM Yukawa couplings
at a SO(10) breaking scale as well as Rij, and to compute the individual partial widths�(p → K+ν̄μ)
and �(p → K0μ+). However, we emphasize that the purpose of this paper is to predict the ratio
�(p → K0μ+)/�(p → K+ν̄μ), which is not very dependent on the SUSY particle mass spectrum
due to the cancellations of the RG corrections and the factors coming from Wino-dressing.

4.2. Procedures

First, we numerically calculate the MSSM Yukawa matrices Yu, Yd , Ye at scale μ = 2 × 1016 GeV
in a DR scheme, and the flavor-dependent RG correction to the coefficient of the Weinberg operator
Rij. Specifically, we calculate Rij for the evolution from μ = 2 × 1016 GeV to μ = MZ . We assume
a high-scale split SUSY particle mass spectrum below for concreteness;

mq̃ = m�̃ = mH 0 = mH± = mA = 2000 TeV, Mg̃ = MW̃ = μH = 100 TeV, tan β = 50.

(61)

For the calculation of the quark Yukawa couplings, we adopt the following input values for quark
masses and Cabibbo–Kobayashi–Maskawa (CKM) matrix parameters: The isospin-averaged quark
mass and strange quark mass in MS scheme are obtained from lattice calculations in Refs. [40–45]
as 1/2(mu + md)(2 GeV) = 3.373(80) MeV and ms(2 GeV) = 92.0(2.1) MeV. The up and down
quark mass ratio is obtained from an estimate in Ref. [46] as mu/md = 0.46(3). The MS charm
and bottom quark masses are obtained from quantum chromodynamics (QCD) sum rule calculations
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Table 1. The singular values of MSSM Yukawa couplings Yu, Yd , Ye, and the mixing angles and charge
conjugation parity (CP) phase of CKM matrix, at μ = 2 × 1016 GeV in the DR scheme. Also shown is
the flavor-dependent RG correction Rij for the Weinberg operator [defined in Eq. (61)] in the evolution from
μ = 2 × 1016 GeV to μ = MZ , in the flavor basis where Ye is diagonal (Rij is also diagonal in this basis).
For each singular value of the quark Yukawa matrices, we present the 1σ error that has propagated from
experimental error of the corresponding input quark mass, and for the CKM parameters we present 1σ errors
that have propagated from experimental errors of the input Wolfenstein parameters.

Value at μ = 2 × 1016 GeV in DR scheme

yu 2.74(14)×10−6

yc 0.001407(14)
yt 0.4620(84)
yd 0.0002998(94)
ys 0.00597(14)
yb 0.3376(19)
ye 0.00012486
yμ 0.026364
yτ 0.50319
cos θ ckm

13 sin θ ckm
12 0.22475(25)

cos θ ckm
13 sin θ ckm

23 0.0421(11)
sin θ ckm

13 0.00372(22)
δkm (rad) 1.147(33)
Ree 1.00
Rμμ 1.00
Rττ 0.974

in Ref. [47] as mc(3 GeV) = 0.986 − 9(α(5)s (MZ) − 0.1189)/0.002 ± 0.010 GeV and mb(mb) =
4.163 + 7(α(5)s (MZ)− 0.1189)/0.002 ± 0.014 GeV. The top quark pole mass is obtained from tt̄+jet
events measured by ATLAS [48] as Mt = 171.1 ± 1.2 GeV. The CKM mixing angles and CP phase
are calculated from the Wolfenstein parameters in the latest CKM fitter result [49].8 For the QCD and
quantum electrodynamics gauge couplings, we use α(5)s (MZ) = 0.1181 and α(5)(MZ) = 1/127.95.
For the lepton and W, Z, Higgs pole masses, we use the values from the Particle Data Group [50].

The results are given in terms of the singular values of Yu, Yd , Ye and the CKM mixing angles and
CP phase at μ = 2 × 1016 GeV, as well as Rij in the flavor basis where Ye is diagonal (Rij is also
diagonal in this basis), tabulated in Table 1. For each singular value of Yu, Yd , we present the 1σ
error that has propagated from experimental error of the corresponding input quark mass. For the
CKM mixing angles and CP phase, we present 1σ errors that have propagated from experimental
errors of the input Wolfenstein parameters.

To facilitate the fitting analysis, we rearrange Eqs. (3)–(5) as follows. We fix the flavor basis such
that the left-handed up-type quark components in both �i and �j have the diagonalized up-type
quark Yukawa matrix with real positive components. Yd , which is still symmetric, is then written as

Yd =
⎛
⎜⎝1 0 0

0 ei a2 0
0 0 ei a3

⎞
⎟⎠ V ∗

CKM

⎛
⎜⎝yd e2i b1 0 0

0 ys e2i b2 0
0 0 yb e2i b3

⎞
⎟⎠ V †

CKM

⎛
⎜⎝1 0 0

0 ei a2 0
0 0 ei a3

⎞
⎟⎠ , (62)

8 Updated results and plots are available at http://ckmfitter.in2p3.fr.
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where a2, a3, b1, b2, b3 are unknown phases.9 In the same flavor basis, Ye is written from Eqs. (3)–(5)
as

1

r1
Ye = 4

1 − r2

⎛
⎜⎝yu 0 0

0 yc 0
0 0 yt

⎞
⎟⎠ − 3 + r2

1 − r2

1

r1
Yd , (63)

with Yd given in Eq. (62). We can also write

Y126 ∝ 1

r1
Yd −

⎛
⎜⎝yu 0 0

0 yc 0
0 0 yt

⎞
⎟⎠ , (64)

YD =
⎛
⎜⎝yu 0 0

0 yc 0
0 0 yt

⎞
⎟⎠ − 4r2

1 − r2

⎛
⎜⎝ 1

r1
Yd −

⎛
⎜⎝yu 0 0

0 yc 0
0 0 yt

⎞
⎟⎠

⎞
⎟⎠ . (65)

Finally, we perform the singular value decomposition of Ye as

Ye = UeL

⎛
⎜⎝ye 0 0

0 yμ 0
0 0 yτ

⎞
⎟⎠ U †

eR, (66)

and calculate the active neutrino mass matrix (up to overall constant) as

(Mν)��′ ∝ R�� [ U T
eL(rL Y126 + YDY −1

126Y T
D )UeL ]��′ R�′�′ , �, �′ = e,μ, τ , (67)

where �, �′ denote flavor indices for the left-handed charged leptons. From Eq. (67), we derive the
three neutrino mixing angles θpmns

12 , θpmns
13 , θpmns

23 and the ratio of the neutrino masses m1 : m2 : m3.
Now we perform the fitting with Y10, Y126, r1, r2, rL. It proceeds as follows. We fix yu, yc, yt and

the CKM matrix by the values in Table 1, while we vary yd/r1, ys/r1, yb/r1, unknown phases
a2, a3, b1, b2, b3 in Eq. (62) and complex number r2. Here we eliminate r1 by requiring that the
central value of the electron Yukawa coupling ye be reproduced. In this way, we try to reproduce the
correct values of yd , ys, yμ, yτ , θpmns

12 , θpmns
13 , θpmns

23 and neutrino mass difference ratio �m2
21/�m2

32.
Specifically, we require yd , ys to fit within their respective 3σ ranges, while we do not constrain
yb because yb can receive sizable SUSY particle and GUT-scale threshold corrections. Since the
experimental errors of yμ, yτ are tiny, we only require that their reproduced values fit within ±0.1%
ranges of their central values. We require sin2 θ

pmns
12 , sin2 θ

pmns
13 , sin2 θ

pmns
23 ,�m2

21/�m2
32 to fit within

their respective 3σ ranges reported by NuFIT 4.1 [51,52]. However, we do not constrain the Dirac
CP phase δpmns, since its measurement is still at a primitive stage. We only consider the normal
mass hierarchy case, because we cannot obtain a good fitting with the inverted mass hierarchy. We
have confirmed that our fitting analysis always gives small values for m1 that are not in tension with
cosmological observations or searches for neutrinoless double-beta decay, and hence no constraint
is imposed on α2,α3, m1. The constraints are summarized in Table 2.

We collect sets of values of Y10, Y126, r1, r2, rL that satisfy the constraints of Table 2. From these
values, we reconstruct the MSSM Yukawa couplings Yu, Yd , Ye, perform flavor basis changes and

9 Note that Yd in Eq. (2) is the complex conjugate of Yd in SM defined as −L = q̄LYddR iσ2H ∗.
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Table 2. Allowed ranges of quantities in the analysis.

Quanitity Allowed range

yu 2.74×10−6 (fixed)
yc 0.001407 (fixed)
yt 0.4620 (fixed)
yd 0.0002998 ± 0.0000094 · 3
ys 0.00597 ± 0.00014 · 3
yb Unconstrained
ye 0.00012486 (used to fix r1)
yμ 0.026364 ± 0.1%
yτ 0.50319 ± 0.1%
cos θ ckm

13 sin θ ckm
12 0.22475 (fixed)

cos θ ckm
13 sin θ ckm

23 0.0421 (fixed)
sin θ ckm

13 0.00372 (fixed)
δkm (rad) 1.147 (fixed)
sin2 θ

pmns
12 [0.275, 0.350]

sin2 θ
pmns
13 [0.02044, 0.02435]

sin2 θ
pmns
23 [0.433, 0.609]

�m2
21/�m2

32 [0.0267, 0.0339]
δpmns, α2, α3, m1 Unconstrained
a2, a3, b1, b2, b3 Unconstrained
r1 Eliminated in favor of ye

r2 Unconstrained

calculate the following components:

(Yu)uLdL , (Yu)sLμL , (Yu)dLsL , (Yu)uLμL ,

(Y126)uLdL , (Y126)sLμL , (Y126)dLsL , (Y126)uLμL .

From the values above, we calculate �(p → K+ν̄μ) and �(p → K0μ+) through Eqs. (15)–(22) and
Eqs. (40)–(42), by considering various O(1) values for coefficients a, b′, c′, d ′ in Eqs. (40)–(42). Here
we take MHC = 2×1016 GeV and assume the SUSY particle mass spectrum of Eq. (61). We employ
the following data and formulas. For the hadronic matrix element βH , we adopt the value in Ref. [53],
which reads βH = 0.0144 GeV3 at μ = 2 GeV in the MS scheme. The baryon chiral Lagrangian
parameters are given by D = 0.804, F = 0.463, and we include the mass splittings among nucleon
and hyperon masses found in Particle Data Group [50]. When computing RG corrections to the
dimension-5 operators and the dimension-6 operators after Wino-dressing, we choose μSUSY =
2000 TeV and μHC = 2 × 1016 GeV, and use one-loop formulas in Ref. [54].

4.3. Results

We have obtained 158 sets of values of Y10, Y126, r1, r2, rL that satisfy the constraints of Table 2.
Before presenting the main results, we show in Fig. 1 the distribution of r2 in the fitting results, to

confirm the relation |r2| = O(1) used in Sect. 3.
Now we plot the sets of values of Y10, Y126, r1, r2, rL satisfying Table 2, on the plane of p → K+ν̄μ

partial lifetime versus the ratio of the partial widths of p → K0μ+ and p → K+ν̄μ. From the plots,
we read out the range of the partial width ratio predicted by the model.

We first study the contribution of individual terms in Eqs. (40)–(42) by taking (a, b′, c′, d ′) =
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1). The plots are in Fig. 2. We caution that although some
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Fig. 2. p → K+ν̄μ partial lifetime versus the ratio of the partial widths of p → K0μ+ and p → K+ν̄μ.
Each dot corresponds to a set of values of Y10, Y126, r1, r2, rL that satisfy the constraints of Table 2. We take
(a, b′, c′, d ′) = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) in Eqs. (40)–(42). Note that the vertical scale of
the panel of (a, b′, c′, d ′) = (0, 1, 0, 0) is different because the partial width ratio is quite suppressed in this
case. Also, the horizontal scale is different for the four panels, due to the large hierarchy of p → K+ν̄μ partial
lifetime in the four cases. Although some points are apparently excluded by the current 90% CL experimental
bound 1/�(p → K+ν) > 5.9 × 1033 yr [55], these points are revived if (a, b′, c′, d ′) are reduced due to the
mixing of (3, 1, −1/3), (3, 1, 1/3) components of fields other than H ,�, or if SUSY particles are slightly
heavier than the spectrum of Eq. (61).

points are apparently excluded by the current 90% confidence limit (CL) experimental bound
1/�(p → K+ν) > 5.9 × 1033 yr [55], these points are revived if (a, b′, c′, d ′) are reduced due
to the mixing of (3, 1, −1/3), (3, 1, 1/3) components of fields other than H ,�, or if SUSY particles
are slightly heavier than the spectrum of Eq. (61) by factor O(1).

We find that the predictions for �(p → K+ν̄μ) in the cases with (a, b′, c′, d ′) = (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) exhibit the following hierarchy:

[Case with (1, 0, 0, 0)] � [Case with (0, 1, 0, 0)] � [Case with (0, 0, 1, 0)] � [Case with (0, 0, 0, 1)].
On the other hand, the predictions for the partial width ratio �(p → K0μ+)/�(p → K+ν̄μ) follow
the following pattern:

[Case with (0, 1, 0, 0)] � [Case with (1, 0, 0, 0)] ∼ [Case with (0, 0, 1, 0)] ∼ [Case with (0, 0, 0, 1)].

From the above hierarchy patterns, we infer �(p → K0μ+)/�(p → K+ν̄μ) for general values of
(a, b′, c′, d ′) as follows.

◦ When d ′ = O(1), the partial width �(p → K+ν̄μ) is dominated by the contribution from the
term with coefficient d ′. Since the partial width ratio �(p → K0μ+)/�(p → K+ν̄μ) with
(a, b′, c′, d ′) = (0, 0, 0, 1) is comparable to or larger than in the other cases, we expect that
�(p → K0μ+) is also dominated by the contribution from the term with d ′. Therefore, we
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Fig. 3. Same as Fig. 2 except that we take (a, b′, c′, d ′) = (0, 1, 1, 0), (0, i, 1, 0), (0, −1, 1, 0), (0, −i, 1, 0) in
Eqs. (40)–(42).

conclude that when d ′ = O(1), irrespectively of the values of a, b′, c′, the prediction on the
partial width ratio is given by the lower right-hand panel of Fig. 2, where the partial width ratio
mostly varies in the range 0.05–0.6. This result is consistent with our estimate (59).

◦ When d ′ = 0, the partial width �(p → K+ν̄μ) receives comparable contributions from the
terms with c′ and b′. On the other hand, since the partial width ratio �(p → K0μ+)/�(p →
K+ν̄μ)with (a, b′, c′, d ′) = (0, 1, 0, 0) is much smaller than that with (a, b′, c′, d ′) = (0, 0, 1, 0),
�(p → K0μ+) receives contribution solely from the term with c′. Hence, when c′ = O(1)
and b′ = O(1), the partial width ratio �(p → K0μ+)/�(p → K+ν̄μ) is suppressed if the
contributions of the terms with c′ and b′ to �(p → K+ν̄μ) interfere constructively, and the
partial width ratio is enhanced if they interfere destructively. To examine these possibilities, we
present plots for cases with (a, b′, c′, d ′) = (0, 1, 1, 0), (0, i, 1, 0), (0, −1, 1, 0), (0, −i, 1, 0) in
Fig. 3.
We observe that when d ′ = 0, c′ = O(1) and b′ = O(1), the prediction on the partial width ratio
varies considerably with the relative phase of b′ and c′ and with different fitting results. Still,
we can assert that the ratio is above 0.01. The absence of strong suppression factor 0.3 · 0.002
is consistent with our estimate (59).

◦ When d ′ = b′ = 0, both �(p → K+ν̄μ) and �(p → K0μ+) are dominated by the contribution
from the term with c′. We thus conclude that when d ′ = b′ = 0, irrespectively of the value of a,
the prediction on the partial width ratio is given by the lower left-hand panel of Fig. 2, where
it varies in the ranges 0.03–0.2 and 0.4–0.8.

◦ When d ′ = c′ = 0, the partial width �(p → K+ν̄μ) is dominated by the contribution from the
term with b′. On the other hand, since the partial width ratio �(p → K0μ+)/�(p → K+ν̄μ) is
much larger with (a, b′, c′, d ′) = (1, 0, 0, 0) than with (a, b′, c′, d ′) = (0, 1, 0, 0),�(p → K0μ+)
might receive a larger contribution from the term with a than from the term with b′. However, we
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have inspected cases with (a, b′, c′, d ′) = (1, 1, 0, 0), (i, 1, 0, 0), (−1, 1, 0, 0) and (−i, 1, 0, 0)
and found that the distribution in these cases is almost identical to that with (a, b′, c′, d ′) =
(0, 1, 0, 0). We thus conclude that when d ′ = c′ = 0, irrespectively of the value of a, the
prediction on the partial width ratio is given by the upper right-hand panel of Fig. 2, where it
is mostly suppressed below 0.0005. This result agrees with our estimate (60).

◦ Only in the very special case with d ′ = c′ = b′ = 0 do we obtain the distribution of the upper
left-hand panel of Fig. 2, where the ratio is above 0.05.

To summarize, if d ′ = O(1), the partial width ratio �(p → K0μ+)/�(p → K+ν̄μ) is mostly in
the range 0.05–0.6. If d ′ = 0, c′ = O(1) and b′ = O(1), the partial width ratio varies in a wide
range, still it is above 0.01. If d ′ = b′ = 0 and c′ = O(1), it is in the ranges 0.03–0.2 and 0.4–0.8. If
d ′ = c′ = b′ = 0, it is above 0.05. Only when d ′ = c′ = 0 and b′ = O(1) is the partial width ratio
mostly highly suppressed below 0.0005.

Because there is no particular reason to believe d ′ = 0, our most important result is the lower
right-hand panel of Fig. 2, which covers the case with d ′ = O(1). Accordingly, our main prediction
is

0.6 � �(p → K0μ+)
�(p → K+ν̄μ)

� 0.05. (68)

Considering the current 90% CL bound 1/�(p → K+ν) > 5.9 × 1033 yr [55], we can at best
observe the p → K0μ+ decay at a rate 1/�(p → K0μ+) = 1 × 1034 yr.

5. Summary

The ratio of the partial widths of some dimension-5 proton decay modes can be predicted without
knowledge of SUSY particle masses, and thus serves as a probe for various SUSY GUT models
even when SUSY particles are not discovered. We have focused on the partial width ratio �(p →
K0μ+)/�(p → K+ν̄μ) in the minimal renormalizable SUSY SO(10)GUT. In the model, the Wilson
coefficients of dimension-5 operators responsible for the p → K0μ+ and the p → K+ν̄μ decays are
on the same order, and �(p → K0μ+)/�(p → K+ν̄μ) is largely determined by the ratio of baryon
chiral Lagrangian parameters and is estimated to be O(0.1). This is in striking contrast to the minimal
SU (5) GUT, where this partial width ratio is further suppressed by a factor of y2

u/(λ
2yc)

2 � 0.002.
To confirm that �(p → K0μ+)/�(p → K+ν̄μ) = O(0.1) in the minimal renormalizable SUSY
SO(10) GUT, we have numerically determined Y10, Y126 through a fitting of the quark and charged
lepton Yukawa couplings and neutrino mass matrix, and calculated the partial width ratio based on
the fitting results. Our most important finding is that the partial width ratio generally varies in the
range 0.6 � �(p → K0μ+)/�(p → K+ν̄μ) � 0.05 in the most generic case where d ′ = O(1) in
Eqs. (40)–(42).
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[15] B. Bajc, G. Senjanović and F. Vissani, Phys. Rev. Lett. 90, 051802 (2003) [arXiv:hep-ph/0210207]
[Search INSPIRE].
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