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Many extensions of the Standard Model include a newUð1Þ gauge group that is broken spontaneously at
a scale much above TeV. If a Uð1Þ-breaking phase transition occurs at nucleation temperature of
Oð100Þ–Oð1000Þ TeV, it can generate stochastic gravitational waves in Oð10Þ–Oð100Þ Hz range if
βn=Hn ¼ 1000, which can be detected by ground-based detectors. Meanwhile, supersymmetry (SUSY)
may play a crucial role in the dynamics of such high-scale Uð1Þ gauge symmetry breaking, because SUSY
breaking scale is expected to be at TeV to solve the hierarchy problem. In this paper, we study the phase
transition of Uð1Þ gauge symmetry breaking in a SUSY model in the SUSY limit. We consider a particular
example, the minimal SUSY Uð1ÞB−L model. We derive the finite temperature effective potential of the
model in the SUSY limit, study a Uð1ÞB−L-breaking phase transition, and estimate gravitational waves
generated from it.
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I. INTRODUCTION

Many extensions of the Standard Model (SM) include a
new Uð1Þ gauge group that is broken spontaneously,
important examples being the minimal Uð1ÞB−L model
[1–3], the left-right symmetric model [4,5] and Pati-Salam
model [6]. Usually, there is no theoretical reason to expect
that the breaking scale of such Uð1Þ gauge group is at TeV
scale. If the breaking scale is beyond the reach of new
gauge boson searches at colliders, observation of stochastic
gravitational waves generated from a Uð1Þ-breaking phase
transition is the key to testing such models [7]. This is
because the nucleation temperature of the phase transition
is encoded by the peak position of gravitational wave
spectrum, and ground-based detectors such as Advanced
LIGO [8], Advanced Virgo [9], KAGRA [10], planned
Einstein Telescope [11,12] and planned Cosmic Explorer
[13] cover the region of 10–100 Hz, which corresponds to
nucleation temperature of Oð100Þ–Oð1000Þ TeV if the
speed of phase transition over the Hubble rate is 1000.
Recent work on gravitational waves from the breaking of a
new visible Uð1Þ gauge group that occurs separately from
electroweak symmetry breaking includes [14–18].
If the breaking of a Uð1Þ gauge group occurs at a scale

much above TeV, supersymmetry (SUSY) may play a
crucial role in its dynamics, since we expect SUSY
breaking scale to be at TeV to stabilize the electroweak

scale with respect to Planck scale. In this paper, therefore,
we study the phase transition of a Uð1Þ gauge symmetry
breaking in a SUSY model and gravitational waves
generated from it. We work in the SUSY limit, namely,
we assume that the nucleation temperature is above the
SUSY breaking scale so that soft SUSY breaking terms are
negligible in the study of phase transition. For concrete-
ness, we focus on the minimal SUSY Uð1ÞB−L model,1

which is by itself highly motivated because it can explain
the origin of the seesaw scale, and if B − L is broken by
even charges, R-parity is derived and accounts for the
stability of dark matter. To simplify our analysis on
Uð1ÞB−L-breaking phase transition, we assume R-symmetry
of the model. R-symmetry is well motivated by itself
because one can forbid μHuHd term by R-symmetry thereby
solving the μ-problem.
Although we concentrate on the minimal SUSY

Uð1ÞB−L model, our study is applicable to a wide class
of Uð1Þ-gauge-extended SUSY models that contain super-
fields withUð1Þ chargeþa and −a and a gauge singlet S to
achieve the Uð1Þ breaking. Remarkably, thisUð1Þ need not
be visible, i.e., the SM fields need not be charged under it,
for the study of gravitational waves.
We comment in passing that SUSY models are more

predictive than non-SUSY models about high-scale Uð1Þ-
breaking phase transitions. This is because in non-SUSY
models where scalar field ϕ breaks an extra Uð1Þ, no
symmetry forbids the Higgs portal term (H denotes the SM
Higgs field),
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1In a different context, gravitational waves in a SUSYUð1ÞB−L
model has been discussed in Ref. [19].
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λϕHϕ
†ϕH†H: ð1Þ

Suppose ϕ develops a large vacuum expectation value
(VEV) much above the electroweak scale. To achieve the
correct electroweak symmetry breaking, one has two
options; one fine-tunes the portal coupling λϕH so that
the emergent mass term λϕHjhϕij2H†H is negligible com-
pared to genuine Higgs mass termm2

HH
†H; or one assumes

that the genuine Higgs mass term nearly cancels the
emergent mass term. In the latter case, the study of the
Uð1Þ-breaking phase transition involves the SMHiggs field
and depends on unknown genuine Higgs mass term m2

H, in
addition to the Uð1Þ-breaking scale. This dependence on
the genuine Higgs mass term, or equivalently the Higgs
portal coupling, has been studied in Ref. [20]. In SUSY
models, the Higgs portal coupling is forbidden at the
renormalizable level and hence is justifiably neglected.
This paper is organized as follows. In Sec. II, we explain

the minimal SUSY Uð1ÞB−L model, and derive the finite
temperature effectivepotential forUð1ÞB−L-breakingVEVs.
In Sec. III, we numerically compute the Oð3Þ-symmetric
Euclidean action for a high-temperature Uð1ÞB−L-breaking
phase transition, calculate quantities that determine gravi-
tational wave spectrum, and estimate stochastic gravita-
tional waves generated from a Uð1ÞB−L-breaking phase
transition. Section IV summarizes the paper.

II. FINITE TEMPERATURE EFFECTIVE
POTENTIAL IN THE MINIMAL Uð1ÞB−L MODEL

A. Minimal SUSY Uð1ÞB−L model

The minimal SUSY Uð1ÞB−L model is defined as
follows: The gauge group is SUð3ÞC × SUð2ÞL ×Uð1ÞY ×
Uð1ÞB−L. The field content is that of the minimal SUSY
Standard Model (MSSM) plus three isospin-singlet neu-
trinos Nc

i (i ¼ 1, 2, 3) and Φ; Φ̄; S with the following
charge assignments.

Nc
i ∶ ð1; 1; 0; 1Þ; Φ∶ ð1; 1; 0;−2Þ;
Φ̄∶ ð1; 1; 0; 2Þ; S∶ ð1; 1; 0; 0Þ ð2Þ

As usual, for the MSSM fields, the lepton doublets Li have
B − L ¼ −1, the lepton singlets Ec

i have þ1, the quark
doublets Qi have

1
3
, the quark singlets Uc

i ; D
c
i have − 1

3
, and

the Higgs fields Hu, Hd have 0. The most general super-
potential reads

W ¼ WMSSM þ ðYDÞijHuLiNc
j þ YMiΦNc

i N
c
i ð3Þ

þλS

�
Φ̄Φ −

v2

2

�
þm

2
S2 þ κ

3
S3: ð4Þ

Here, mass term μΦΦ̄Φ is absorbed by a redefinition of S
and m, κ. YD is the neutrino Dirac Yukawa coupling, and

YM is the coupling that generates Majorana mass for the
right-handed neutrinos after Uð1ÞB−L breaking. By a phase
redefinition, we take λ; v2; YMi to be real positive without
loss of generality.
From now on, we assume jmj2 ≪ v2 and jκj ≪ 1. This

limit is obtained when the model has R-symmetry, under
which superfield S has R ¼ þ2 and Φ; Φ̄ have R ¼ 0, and
the matter superfields have R ¼ þ1 and the Higgs super-
fields Hu, Hd have R ¼ 0. Assuming R-symmetry is
advantageous for explaining the smallness of μ in
μHuHd. In the rest of the paper, we neglect jmj2; κ and
work with the R-symmetric superpotential,

W¼WMSSMjwithout μ-termþðYDÞijHuLiNc
j þðYMÞijΦNc

i N
c
j

ð5Þ

þ λS

�
Φ̄Φ −

v2

2

�
: ð6Þ

As the mechanism for SUSY breaking (at zero temperature)
is beyond the scope of this paper, we do not discuss soft
SUSY breaking gaugino mass. The tree-level scalar poten-
tial involving Φ; Φ̄; S reads2

V ¼ jλSΦ̄þ YMiNc
i N

c
i j2 þ λ2jSΦj2 þ λ2

����Φ̄Φ −
v2

2

����
2

ð7Þ

þ 1

2
g2B−L

�
−2jΦj2 þ 2jΦj2 −

X
i

�
jNc

i j2 − jLij2

þ jEc
i j2 þ

1

3
jQij2 −

1

3
jUc

i j2 −
1

3
jDc

i j2
��

2

ð8Þ

B. Finite temperature effective potential

To compute the one-loop effective potential at zero and
finite temperature, we need the field-dependent mass
eigenvalues for bosonic and fermionic components.
When SUSY is preserved, bosonic and fermionic compo-
nents have the same set of mass eigenvalues. However,
since SUSY is already broken at finite temperature, we
must also consider SUSY-breaking configurations of
VEVs, e.g., the case with hΦihΦ̄i ≠ v2

2
giving F-term

SUSY breaking, and the case with hΦi ≠ hΦ̄i giving
D-term SUSY breaking. So, we study the mass eigenvalues
of bosonic and fermionic components separately.
We use Landau gauge for Uð1ÞB−L gauge theory.
Before deriving the field-dependent mass eigenvalues,

we assume that the VEVs at any temperature satisfy

hΦihΦ̄i¼ ðreal positiveÞ; hSi¼ 0; hNc
i i¼ 0: ð9Þ

2By abuse of notation, we denote the scalar component by the
same character as the superfield.
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Then, we take advantage of the Uð1ÞB−L symmetry to set
both hΦi; hΦ̄i to be real positive, and rewrite these VEVs as

hΦi≡ 1ffiffiffi
2

p h; hΦ̄i≡ 1ffiffiffi
2

p h̄ ðh > 0; h̄ > 0Þ: ð10Þ

The rest of the section is devoted to the study on the
potential for h, h̄.

The ðh; h̄Þ-dependent mass eigenvalues for bosonic
components are given as follows: We decompose the
scalar components of Φ; Φ̄ as Φ ¼ 1ffiffi

2
p ðhþ ϕþ iaÞ, Φ̄ ¼

1ffiffi
2

p ðh̄þ ϕ̄þ iāÞwhere ϕ; ϕ̄ representCP-even components

and a, ā CP-odd components. The ðh; h̄Þ-dependent mass
matrix for ϕ; ϕ̄ is

1

2

�
ϕ ϕ̄

�
M2

ϕϕ̄

�
ϕ

ϕ̄

�
with M2

ϕϕ̄
¼

�
2g2B−Lð3h2 − h̄2Þ þ 1

2
λ2h̄2 ð−4g2B−L þ λ2Þhh̄ − 1

2
λ2v2

−2g2B−Lðh2 − 3h̄2Þ þ 1
2
λ2h2

�
; ð11Þ

and that for a, ā is

1

2

�
a ā

�
M2

aā

�
a

ā

�
with M2

aā ¼
�
2g2B−Lðh2 − h̄2Þ þ 1

2
λ2h̄2 1

2
λ2v2

−2g2B−Lðh2 − h̄2Þ þ 1
2
λ2h2

�
; ð12Þ

from which mass eigenvalues are obtained by diagonaliza-
tion. The ðh; h̄Þ-dependent masses for S, Nc

i and the MSSM
fields are

M2
SjSj2þM2

Nc
i
jNc

i j2þM2
LjLij2þM2

EjEc
i j2

þM2
QjQij2þM2

UjUc
i j2þM2

DjDc
i j2 ð13Þ

with

M2
S ¼

1

2
λ2ðh2 þ h̄2Þ; ð14Þ

M2
Nc

i
¼ g2B−Lð−h2 þ h̄2Þ þ 1

2
Y2
Mih

2 ð15Þ

M2
L ¼ −g2B−Lð−h2 þ h̄2Þ; M2

E ¼ g2B−Lð−h2 þ h̄2Þ;

M2
Q ¼ −

1

3
g2B−Lð−h2 þ h̄2Þ;

M2
U ¼ M2

D ¼ 1

3
g2B−Lð−h2 þ h̄2Þ: ð16Þ

Note that the mass of the MSSM fields solely comes from
D-term SUSY breaking. The ðh; h̄Þ-dependent mass term
for the Uð1ÞB−L gauge boson Xμ is

1

2
M2

XXμXμ with M2
X ¼ 4g2B−Lðh2 þ h̄2Þ: ð17Þ

The ðh; h̄Þ-dependent mass eigenvalues of fermionic
components are given as follows. Let ψΦ;ψ Φ̄;ψS;ψNc

i

denote the fermionic part of Φ; Φ̄; S; Nc
i , respectively,

and let X̃ denote Uð1ÞB−L gaugino. The ðh; h̄Þ-dependent
Majoranamassmatrix for fermionic components is given by

1

2
ðψΦ ψ Φ̄ ψS ψNc

i
X̃ ÞMF

0
BBBBB@

ψΦ

ψ Φ̄

ψS

ψNc
i

X̃

1
CCCCCA

with

MF ¼

0
BBBBBB@

0 0 1ffiffi
2

p λh̄ 0 2gB−Lh

0 1ffiffi
2

p λh 0 −2gB−Lh̄

0 0 0

1ffiffi
2

p YMih 0

0 0

1
CCCCCCA
: ð18Þ

The mass eigenvalues are obtained by diagonalizing
M†

FMF, and are given by 4g2B−Lðh2þh̄2Þ, 4g2B−Lðh2þh̄2Þ,
1
2
Y2
Mih

2, 1
2
λ2ðh2 þ h̄2Þ, 1

2
λ2ðh2 þ h̄2Þ.

It is easy to verify that when h ¼ h̄ ¼ v so that SUSY is
preserved, nonzero mass eigenvalues of bosonic compo-
nents obtained from Eqs. (11)–(17) coincide with those of
fermionic components (with the correct counting of degrees
of freedom).
Finally, the finite temperature effective potential [21] for

h, h̄ is obtained as

Veffðh; h̄; μ; TÞ ¼
1

4
λ2ðhh̄ − v2Þ2 þ 1

2
g2B−Lðh2 − h̄Þ2 ð19Þ

þ 1

64π2
X
j

M4
Bj

�
log

M2
Bj

μ2
−
3

2

�

−
1

64π2
X
j

M4
Fj

�
log

M2
Fj

μ2
−
3

2

�
ð20Þ

þ T4

2π2
X
j

JB

�
M2

Bj

T2

�
−

T4

2π2
X
j

JF

�
M2

Fj

T2

�
:

ð21Þ
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Here, Eq. (19) represents the tree-level potential.
Equation (20) is the one-loop effective potential at zero-
temperature, with μ being the renormalization scale in DR
scheme. Equation (21) is the temperature-dependent part of
the potential, with JBðx2Þ¼

R∞
0 dyy2 logð1−exp½y2þx2�Þ

and JFðx2Þ ¼
R∞
0 dyy2 logð1þ exp½y2 þ x2�Þ. M2

Bj denote
the ðh; h̄Þ-dependent mass eigenvalues for bosonic compo-
nents, obtained by diagonalizing Eqs. (11), (12) and from
Eqs. (13)–(17), with no duplication for real scalars,
2 duplications for complex scalars and 3 duplications for
Xμ gauge boson. M2

Fj denote the ðh; h̄Þ-dependent mass
eigenvalues for fermionic components, which are
4g2B−Lðh2 þ h̄2Þ, 4g2B−Lðh2 þ h̄2Þ, 1

2
Y2
Mih

2, 1
2
λ2ðh2 þ h̄2Þ,

1
2
λ2ðh2 þ h̄2Þ, with 2 duplications for each.
At temperature near or above the critical temperature,

daisy diagrams cause breakdown of perturbation theory.
This problem is remedied by replacing the tree-level masses
of bosonic components M2

Bj in Eqs. (11)–(17) with loop
corrected ones. We follow Ref. [22] and only include
T2-proportional part of the one-loop correction,3 and make
the following replacements for the mass of the scalar
components of Φ; Φ̄; S; Nc

i and MSSM fields4:

M2
ϕϕ̄

→M2
ϕϕ̄

þ 3

2

T2

24

�
8g2B−Lþ 2Y2

Miþ 4λ2 0

0 8g2B−Lþ 4λ2

�

þ 3

2
T2g2B−L

�
1 0

0 1

�
ð22Þ

M2
aā →M2

aā þ
3

2

T2

24

�
8g2B−L þ 2Y2

Miþ 4λ2 0

0 8g2B−L þ 4λ2

�

þ 3

2
T2g2B−L

�
1 0

0 1

�
ð23Þ

M2
S → M2

S þ
3

2

1

6
T2λ2 ð24Þ

M2
Nc

i
→ M2

Nc
i
þ 3

2

T2

12
ðg2B−L þ 2Y2

MiÞ þ
3

2

1

4
T2g2B−L ð25Þ

M2
L → M2

L þ 3

2

T2

12

�
g2B−L þ 1

4
g2Y þ 3

4
g2
�

þ 3

2

1

4
T2

�
g2B−L þ 1

4
g2Y þ 3

4
g2
�

ð26Þ

M2
E →M2

Eþ
3

2

T2

12
ðg2B−Lþg2YÞþ

3

2

1

4
T2ðg2B−Lþg2YÞ ð27Þ

M2
Q1;2

→ M2
Q1;2

þ 3

2

T2

12

�
1

9
g2B−L þ 1

36
g2Y þ 3

4
g2 þ 4

3
g2s

�

þ 3

2

1

4
T2

�
1

9
g2B−L þ 1

36
g2Y þ 3

4
g2 þ 4

3
g2s

�
ð28Þ

M2
Q3

→M2
Q3

þ 3

2

T2

12

�
1

9
g2B−L þ

1

36
g2Y þ

3

4
g2 þ 4

3
g2s þ 2y2t

�

þ 3

2

1

4
T2

�
1

9
g2B−L þ

1

36
g2Y þ

3

4
g2 þ 4

3
g2s

�
ð29Þ

M2
D → M2

D þ 3

2

T2

12

�
1

9
g2B−L þ 1

9
g2Y þ 4

3
g2s

�

þ 3

2

1

4
T2

�
1

9
g2B−L þ 1

9
g2Y þ 4

3
g2s

�
ð30Þ

M2
U1;2

→ M2
U1;2

þ 3

2

T2

12

�
1

9
g2B−L þ 4

9
g2Y þ 4

3
g2s

�

þ 3

2

1

4
T2

�
1

9
g2B−L þ 4

9
g2Y þ 4

3
g2s

�
ð31Þ

M2
U3

→ M2
U3

þ 3

2

T2

12

�
1

9
g2B−L þ 4

9
g2Y þ 4

3
g2s þ 2y2t

�

þ 3

2

1

4
T2

�
1

9
g2B−L þ 4

9
g2Y þ 4

3
g2s

�
ð32Þ

Here, the factor 3
2
on the second and third terms on the right-

hand side reflects the fact that in SUSY theories, a bosonic
loop correction is always accompanied by a fermionic loop
correction with the same coupling constant, and that T2-
part of the fermionic one-loop correction to a boson mass is
half the bosonic one-loop correction, and hence their sum is
3
2
times the bosonic one. The bosonic part (i.e., part without

factor 3
2
) of the second term comes from one-loop correc-

tions via D-term and F-term quartic couplings, and that of
the third term comes from one-loop corrections via gauge
couplings. For the longitudinal component of the Uð1ÞB−L
gauge boson, we replace its mass, ðM2

XÞL, as

ðM2
XÞL → ðM2

XÞL þ 3

2
· 8g2B−LT

2; ð33Þ

while the mass of the transverse component is unchanged.
In the rest of the paper, we use the finite temperature

effective potential Eqs. (19)–(21) with replacements

3This recipe does not provide a good approximation at low
temperature, since the decoupling of particles in the loop is not
included [23,24]. The correct recipe is to solve a self-consistency
equation derived from the finite temperature effective potential.
Reference [23] has confirmed the appropriateness of the partial
dressing procedure [25]. Unfortunately, this procedure has not yet
been extended to a multifield case, which is our case.

4M2
Q1;2

;M2
U1;2

represent the corrected masses for 1st and 2nd
generation quark doublets and up-type singlets, andM2

Q1;2
;M2

U1;2

represent those for 3rd generation. Their difference is a large
thermal mass via the top quark Yukawa coupling yt.
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Eqs. (22)–(32), to study the Uð1ÞB−L-breaking phase
transition in the minimal SUSY Uð1ÞB−L model.

C. Behavior of the finite temperature
effective potential

We numerically evaluate the finite temperature effective
potential Veffðh; h̄; μ; TÞ Eqs. (19)–(21) [with replacements
Eqs. (22)–(32)] for several benchmark parameter sets and
study its behavior. The benchmarks we take are

ðλ; gB−L; YM3Þ ¼ ð0.01; 0.4; 1Þ; ð0.1; 0.4; 1Þ;
ð0.01; 0.15; 1Þ; ð0.01; 0.4; 0.1Þ ð34Þ

and we fix YM1 ¼ YM2 ¼ 0 (only one right-handed neu-
trino has a large Majorana Yukawa coupling). We take
μ ¼ v, which does not generate a large logarithm because

v is the only mass scale in the model. Then, the potential
scales with v4, and depends on h, h̄ and temperature T only
through dimensionless quantities h=v; h̄=v; T=v.
In Figs. 1–4, we present Veffðh; h̄; μ; TÞ − Veffð0; 0; μ; TÞ

on ðh; h̄Þ plane at the critical temperature T ¼ Tc, at a high
temperature slightly above Tc, and at the nucleation
temperature Tn (which we will evaluate in the next section).
Figures 1–4 show that the finite-temperature effective

potential is nearly symmetric with respect to h and h̄ at
temperature around or below the critical temperature Tc.
This indicates that even though only Φ, not Φ̄, couples to
the right-handed neutrino through Majorana Yukawa cou-
pling YM3, this asymmetry does not affect the potential.
Since the potential is nearly symmetric with respect

to h and h̄, we can approximate the classical tunneling
path from the metastable vacuum ðh; h̄Þ ¼ ð0; 0Þ to an
absolute vacuum ðh; h̄Þ ≠ ð0; 0Þ by the line h ¼ h̄, because

FIG. 1. Veffðh; h̄; μ; TÞ − Veffð0; 0; μ; TÞ on the plane of ðh; h̄Þ at the critical temperature T ¼ Tc ¼ 0.098v, at the nucleation
temperature (which we will evaluate in Sec. III) T ¼ Tn ¼ 0.026v, and at a higher temperature T ¼ 0.11v, for the parameter set
ðλ; gB−L; YM3Þ ¼ ð0.01; 0.4; 1Þ. The renormalization scale is set at μ ¼ v. The contours correspond, from outside to inside, to
Veffðh; h̄; μ; TÞ − Veffð0; 0; μ; TÞ ¼ 3 × 10−3v4; 10−3v4; 3 × 10−4v4; 10−4v4; 3 × 10−5v4. We caution that in the left panel, the barrier
height is smaller than 3 × 10−5v4 and hence is not visible.

FIG. 2. The same as Fig. 1, except that the parameter set is ðλ; gB−L; YM3Þ ¼ ð0.1; 0.4; 1Þ, namely, λ is ten times larger. The
temperatures are taken at the critical temperature T ¼ Tc ¼ 0.232v, the nucleation temperature T ¼ Tn ¼ 0.222v, and a higher
temperature T ¼ 0.3v. The contours correspond, from outside to inside, to Veffðh; h̄; μ; TÞ − Veffð0; 0; μ; TÞ ¼ 3 × 10−3v4; 10−3v4;
3 × 10−4v4; 10−4v4; 3 × 10−5v4.
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∂hVeff − ∂ h̄Veff ≃ 0 and hence the equation of motion
(with −Veff ) for h − h̄ only admits a trivial solution
h − h̄ ≃ ðconstantÞ. Under the above approximation, the
phase transition is controlled by one-dimensional potential
Veffðh; h; μ; TÞ, which allows a qualitative discussion. The
one-dimensional potential reads

Veffðh; h; μ; TÞ ¼
1

4
λ2ðh2 − v2Þ2 ð35Þ

þ 1

64π2
X
j

M4
Bj

�
log

M2
Bj

μ2
−
3

2

�

−
1

64π2
X
j

M4
Fj

�
log

M2
Fj

μ2
−
3

2

�
ð36Þ

þ T4

2π2
X
j

JB

�
M2

Bj

T2

�
−

T4

2π2
X
j

JF

�
M2

Fj

T2

�

ð37Þ

where M2
Bj are now obtained by diagonalizing

M2
ϕϕ̄

¼
� ð4g2B−L þ 1

2
λ2Þh2 ð−4g2B−L þ λ2Þh2 − 1

2
λ2v2

ð4g2B−L þ 1
2
λ2Þh2

�

þ T2

16

�
32g2B−L þ 2Y2

Mi þ 4λ2 0

0 32g2B−L þ 4λ2

�

ð38Þ

M2
aā ¼

1

2
λ2
�
h2 v2

h2

�

þ T2

16

�
32g2B−L þ 2Y2

Mi þ 4λ2 0

0 32g2B−L þ 4λ2

�

ð39Þ

and also from M2
S ¼ λ2h2 þ 1

4
T2λ2, M2

Nc
i
¼ 1

2
Y2
Mih

2 þ
T2

8
ðg2B−L þ 2Y2

MiÞ þ 3
8
T2g2B−L (2 duplications for each),

FIG. 3. The same as Fig. 1, except that the parameter set is ðλ; gB−L; YM3Þ ¼ ð0.01; 0.15; 1Þ, namely,Uð1ÞB−L gauge coupling is smaller.
The temperatures are taken at the critical temperature T ¼ Tc ¼ 0.074v, the nucleation temperature T ¼ Tn ¼ 0.038v, and a higher
temperature T ¼ 0.1v. The contours correspond, from outside to inside, to Veffðh; h̄; μ; TÞ − Veffð0; 0; μ; TÞ ¼ 10−3v4; 3 × 10−3v4;
10−3v4; 3 × 10−4v4; 10−4v4.

FIG. 4. The same as Fig. 1, except that the parameter set is ðλ; gB−L; YM3Þ ¼ ð0.01; 0.4; 0.1Þ, namely, Majorana Yukawa coupling YM3

is 1=10 smaller. The temperatures are taken at the critical temperature T ¼ Tc ¼ 0.105v, the nucleation temperature T ¼ Tn ¼ 0.057v,
and a higher temperature T ¼ 0.11v. Veffðh; h̄; μ; TÞ − Veffð0; 0; μ; TÞ ¼ 10−3v4; 3 × 10−3v4; 10−3v4; 3 × 10−4v4; 10−4v4.
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ðM2
XÞL ¼ 8g2B−Lh

2 þ 12g2B−LT
2, and ðM2

XÞT ¼ 8g2B−Lh
2

(2 duplications), while the MSSM particles become irrel-
evant. One might guess that increasing gB−L and decreasing
λ enhances the order of phase transition and hence the
amount of latent heat, because the quartic coupling for h is
mostly λ, and the field-dependent mass for bosons ϕ; ϕ̄; Xμ

(which provides h3 term in high-T expansion) depends on
g2B−Lh

2 times a big factor 4 or 8. However, increasing gB−L
also enhances the thermal mass for these bosons (except
for the transverse component of Xμ), which diminishes
their impact on the finite temperature effective potential.
Therefore, we expect that the amount of latent heat (which
is related to αθðTnÞ in the next section) is maximized for
λ → 0 and for some moderate value of gB−L. On the other
hand, YMi is expected to have a weaker impact on the latent
heat because it only appears in the field-dependent mass for
Nc

i and is not accompanied by a big factor. All these
expectations will be confirmed by the numerical study in
the next section.

III. Uð1ÞB−L-BREAKING PHASE TRANSITION

A. Oð3Þ-symmetric Euclidean action

We calculate the Oð3Þ-symmetric Euclidean action
[26,27] for a high-temperature Uð1ÞB−L-breaking phase
transition from the metastable vacuum ðh; h̄Þ ¼ ð0; 0Þ to an
absolute vacuum where ðh; h̄Þ ≠ ð0; 0Þ. Although we have
seen in Sec. II.3 that the potential is nearly symmetric with
respect to h and h̄, we still consider a multifield phase
transition regarding h and h̄ as being independent. To
compute the Oð3Þ-symmetric Euclidean action for a multi-
field phase transition, we use COSMOTRANSITIONS [28].
From the action computed, we derive the nucleation
temperature, Tn, the ratio of the trace anomaly divided
by 4 over the radiation energy density of the symmetric
phase at the nucleation temperature, αθðTnÞ, and the speed
of the phase transition at the nucleation temperature, βn.
They are defined as follows:
Let SEðTÞ denote the Euclidean action. The tunneling

rate per volume at temperature T is ΓðTÞ ¼ AðTÞe−SEðTÞ=T ,
where AðTÞ is a factor with milder T-dependence
than e−SEðTÞ=T . The nucleation temperature Tn satisfies
H4

n ¼ AðTnÞe−SEðTnÞ=Tn , where Hn denotes the Hubble rate
at T ¼ Tn in the symmetric phase. We estimate AðTnÞ as
AðTnÞ ∼ T4

n, and further approximate Tn by the Uð1ÞB−L-
breaking VEV v. We estimateHn asH2

n ∼ g� π2

30
v4 1

3M2�
where

M� is the reduced Planck mass and g� ¼ 255 is the effective
relativistic degrees of freedom of the SUSYUð1ÞB−L model
including Φ; Φ̄; S fields. (We note that since we will find
λ=

ffiffiffi
2

p
≪ Tn=v in all our benchmarks, it is consistent to

neglect the impact of soft SUSY breaking due to the F-term
VEVof S in the symmetric phase, on the calculation of the
radiation energy density in that phase.) Thus, Tn satisfies
the relation

SEðTnÞ
Tn

∼ − log
ðg� π2

30
Þ2v4

9M4�
: ð40Þ

For example, when v ¼ 100 TeV, the right-hand side of
Eq. (40) equals 117, and when v ¼ 1000 TeV, it equals
107. In the following analysis, we fix the right-hand side of
Eq. (40) at 117. We comment that we have computed the
temperature at which the number of bubbles per Hubble

horizon NðTÞ ¼ R
T
Tc
dT 0 −1

T 0
ΓðT 0Þ
HðT 0Þ4 equals one, for the case

with the largest supercooling among our benchmarks, by
using Eqs. (43), (44), and we have found that this temper-
ature agrees with Tn estimated by Eq. (40) with negligible
discrepancy. αθðTnÞ is given by

αθðTnÞ ¼
1

g� π2

30
T4

�
−
T
4

∂ΔV
∂T þ ΔV

�����
T¼Tn

;

ΔV ¼ Vjsymmetric phase − Vjbroken phase: ð41Þ

βn satisfies

βn¼−
d
dt

�
SEðTÞ
T

�����
T¼Tn

¼−HnT
d
dT

�
SEðTÞ
T

�����
T¼Tn

: ð42Þ

As with Sec. II.3, we take the renormalization scale at
μ ¼ v, which does not generate a large logarithm because
v is the only mass scale in the model. We fix the right-hand
side of Eq. (40) at 117, thereby neglecting its logarithmic
dependence on v=M�. With the above choices, a quantity
with mass dimension n scales with vn. In particular,
Tn scales with v, and so we present Tn=v in the plots.
In Fig. 5, we plot gB−L-dependence of the nucleation

temperature Tn, for λ ¼ 0.01, 0.05 and YM3 ¼ 1, 0.1,
with YM1 ¼ YM2 ¼ 0.
We find that Tn=v has little dependence on YM3, and is

much affected by λ.
In Fig. 6, we plot gB−L-dependence of the trace anomaly

divided by 4 over the radiation energy density αθðTnÞ, for
λ ¼ 0.01, 0.05 and YM3 ¼ 1, 0.1, with YM1 ¼ YM2 ¼ 0.
αθðTnÞ is significantly enhanced for λ ¼ 0.01 compared

to the case with λ ¼ 0.05. Interestingly, αθðTnÞ is maxi-
mized at gB−L ≃ 0.4 when λ ¼ 0.01, and at gB−L ≃ 0.5
when λ ¼ 0.05. The dependence on YM3 is quite mild
compared to those on gB−L and λ.
In Fig. 7, we plot gB−L-dependence of the speed of phase

transition in units of the Hubble rate at the nucleation
temperature βn=Hn in logarithm, for λ ¼ 0.01, 0.05 and
YM3 ¼ 1, 0.1, with YM1 ¼ YM2 ¼ 0.
βn=Hn is exponentially enhanced for small values of

gB−L. In contrast, the dependence on YM3 is negligible,
except for gB−L ¼ 0.15.
Finally, we study how the above quantities vary with λ.

We concentrate on an interesting case where gB−L ¼ 0.4
and YM3 ¼ 1, which has given the largest αθðTnÞ in
the above plots when λ ¼ 0.01. The dependence of
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Tn; αθðTnÞ; βn=Hn on λ for gB−L ¼ 0.4 and YM3 ¼ 1 is
found in Fig. 8.
It is observed that Tn increases linearly with λ, and

βn=Hn has almost no dependence on λ, while αθðTnÞ
decreases much rapidly with λ.

B. Percolation

When αθðTÞ > 1, vacuum energy stored in the meta-
stable vacuum causes inflation of metastable-vacuum
region, which hinders the percolation of absolute-vacuum
bubbles [29] (first considered for zero-temperature,

FIG. 5. The nucleation temperature Tn evaluated from Eq. (40) by fixing the right-hand side at about 117, for various values of
Uð1ÞB−L gauge coupling gB−L and for λ ¼ 0.01, 0.05 and YM3 ¼ 1, 0.1. (We fix YM1 ¼ YM2 ¼ 0).

FIG. 6. The trace anomaly divided by 4 over the radiation energy density αθðTnÞ Eq. (41), for various values of Uð1ÞB−L gauge
coupling gB−L and for λ ¼ 0.01, 0.05 and YM3 ¼ 1, 0.1. (We fix YM1 ¼ YM2 ¼ 0).

FIG. 7. The speed of phase transition in units of the Hubble rate at the nucleation temperature βn=Hn Eq. (42), for various values of
Uð1ÞB−L gauge coupling gB−L and for λ ¼ 0.01, 0.05 and YM3 ¼ 1, 0.1. (We fix YM1 ¼ YM2 ¼ 0).
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quantum phase transitions in [30]). In this subsection, we
focus on the benchmark of ðλ; gB−L; YM3Þ ¼ ð0.01; 0.4; 1Þ,
which has given αθðTnÞ ¼ 1.5, the largest αθðTnÞ among
the benchmarks of Sec. III A, and show that the percolation
is completed despite large vacuum energy of the metastable
vacuum. We can then infer that the percolation is also
completed in benchmarks with smaller αθðTnÞ.
We define the energy such that the vacuum energy of the

absolute (broken) vacuum is zero, to be in agreement with
the observed almost-zero cosmological constant. Let T
denote the temperature of the radiation in the metastable
(symmetric) vacuum. The energy density of the metastable
vacuum is5

ρmetaðTÞ ¼ g�
π2

30
T4 þ ρ0; ρ0 ¼

1

4
λ2v4; ð43Þ

where g� ¼ 255 is the effective relativistic degrees of
freedom of the minimal SUSY Uð1ÞB−L model, and ρ0 ¼
1
4
λ2v4 comes the F-term VEV of S field.
We have found numerically that the temperature-

dependence of the Oð3Þ-symmetric Euclidean action in
the benchmark of ðλ; gB−L; YM3Þ ¼ ð0.01; 0.4; 1Þ is well
approximated by

SEðTÞ
T

¼ 2.43 × 106
�
T
v
− 0.0182

�
2

− 32.4 for T=v > 0.0219: ð44Þ

Here T=v ¼ 0.0219 is the temperature at which the
potential barrier disappears (then SE ≃ 0). Note that
SEðTÞ=T is monotonic in this range.
Now we study the probability of finding a point in the

metastable vacuum, PðtÞ. It is given by [31,32]6

PðtÞ ¼ e−IðtÞ;

IðtÞ ¼ 4π

3

Z
t

tc

dt0Γðt0Þaðt0Þ3
�Z

t

t0
dt̃

vw
aðt̃Þ

�
3

; ð45Þ

where IðtÞ is the fraction of absolute-vacuum bubbles when
their overlaps are neglected. tc is the time corresponding to
the critical temperature, ΓðtÞ denotes the tunneling rate per
volume, and vw denotes the speed of the bubble wall. For
later use, we also give the time derivative of IðtÞ,

FIG. 8. The dependence of Tn; αθðTnÞ; βn=Hn on λ for gB−L ¼ 0.4 and YM3 ¼ 1.

5Again, we neglect the impact of soft SUSY breaking due to
the F-term VEV of S, since λ=

ffiffiffi
2

p
≪ Tn=v.

6Unless vw ¼ 1, the bubble expansion breaks the homogeneity
of metastable-vacuum region and this region is not described by
Friedmann-Robertson-Walker (FRW) metric. Nevertheless, we
assume that FRW metric gives a good approximation even for
vw < 1.
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dIðtÞ
dt

¼ 4π
vw
aðtÞ

Z
t

tc

dt0 Γðt0Þaðt0Þ3
�Z

t

t0
dt̃

vw
aðt̃Þ

�
2

: ð46Þ

Since there is no entropy production in the metastable
vacuum, we can rewrite IðtÞ and its time derivative in terms
of T as

IðTÞ¼ 4π

3

Z
T

Tc

dT 0 −1
HðT 0Þ

1

T 04ΓðT 0Þ
�Z

T

T 0
dT̃

−vw
HðT̃Þ

�
3

; ð47Þ

dIðtÞ
dt

����
T
¼ 4πTvw

Z
T

Tc

dT 0 −1
HðT 0Þ

1

T 04 ΓðT 0Þ
�Z

T

T 0
dT̃

−vw
HðT̃Þ

�
2

ð48Þ

where HðTÞ is the Hubble rate of the metastable vacuum
given from Eq. (43). A criterion for the completion of the
percolation is that [29,33] there is a temperature Tp at
which IðTpÞ ¼ 0.34 and the physical volume of metasta-
ble-vacuum region decreases with time, i.e.,

0 >
1

aðtÞ3PðtÞ
d
dt
faðtÞ3PðtÞg

����
Tp

¼ HðTpÞ
�
3 −

1

HðTpÞ
dIðtÞ
dt

����
Tp

�
: ð49Þ

To see if the above criterion is fulfilled in the benchmark of
ðλ; gB−L; YM3Þ ¼ ð0.01; 0.4; 1Þ, we compute IðTÞ and
1

HðTÞ
dI
dt jT from Eqs. (43), (44) with the formula ΓðTÞ ¼

T4fSEðTÞ=2πTg3=2 e−SEðTÞ=T , and plot IðTÞ in units of
v3wðM4�=v4Þ and 1

IðTÞ
1

HðTÞ
dI
dt jT in Fig. 9.

From the left panel of Fig. 9, we see that if 10 TeV≲
v≲ 1000 TeV (which is phenomenologically relevant
because it safely satisfies the collider constraint on the
Uð1ÞB−L gauge boson and it may lead to a gravitational
wave spectrum whose peak is covered by Cosmic Explorer
and Einstein Telescope) and thus 1057 ≳M4�=v4 ≳ 1049, the
relation IðTpÞ ¼ 0.34 is fulfilled somewhere in the range

0.025 < Tp=v < 0.026, for vw > Oð0.1Þ. Furthermore, the
right panel manifests that the relation 1

HðTÞ
dI
dt jT > 200 · IðTÞ

holds for 0.022<T=v<0.0264, and hence 3− 1
HðTpÞ

dI
dtjTp

<0

holds. Therefore, in the interesting parameter range where
10 TeV≲ v≲ 1000 TeV, the criterion for the completion
of the percolation is fulfilled, namely, the phase transition
ends by the coalescence of absolute-vacuum bubbles and
the standard cosmology is recovered after that.
We crosscheck the above result using approximate

expressions. For a given temperature T, let ΔT denote a

temperature difference for which SEðTþΔTÞ
TþΔT ¼ SEðTÞ

T þOð1Þ.
Because ΓðTÞ is a monotonic function with rapid
T-dependence through the factor e−SEðTÞ=T, the integrals
of Eqs. (43), (44) are dominated by the region around T and
thus we can make the following approximations:

IðTÞ ≃ 4π

3
v3w

ΔT4

HðTÞ4
�
SEðTÞ
2πT

�
3=2

e−SEðTÞ=T; ð50Þ

1

HðTÞ
dIðtÞ
dt

����
T
≃ 4πv3w

ΔT3T
HðTÞ4

�
SEðTÞ
2πT

�
3=2

e−SEðTÞ=T: ð51Þ

We find numerically that taking

ΔT ¼ 1.4
d
dT ðSEðTÞT Þ

ð52Þ

gives a good order-of-magnitude estimate in the range
0.0230 < T=v < 0.0264. By inserting Eqs. (43), (44), (52)
into Eq. (50), we see that the relation IðTpÞ ¼ 0.34 is
satisfied somewhere in the range 0.025 < Tp=v < 0.026
for 10 TeV≲ v≲ 1000 TeV and vw > Oð0.1Þ. By taking
the ratio of Eqs. (50), (51) and inserting Eqs. (43), (44),
(52), we get

FIG. 9. Fraction of absolute-vacuum bubbles when their overlaps are neglected, IðTÞ, and the ratio of its time derivative over the
Hubble rate over itself, 1

IðTÞ
1

HðTÞ
dI
dt jT , in the benchmark of ðλ; gB−L; YM3Þ ¼ ð0.01; 0.4; 1Þ.
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1

IðTÞ
1

HðTÞ
dI
dt

����
T
¼ 3

T
ΔT

¼ 1.0 × 107 ·
T
v

�
T
v
− 0.0182

�
;

ð53Þ

which is much greater than 3=0.34 in the range 0.0230 <
T=v < 0.0264, and hence the relation 3 − 1

HðTpÞ
dI
dt jTp

< 0 is

easily satisfied.

C. Gravitational waves

We estimate gravitational waves generated from a
Uð1ÞB−L-breaking phase transition in the early Universe.
In this subsection, we exclusively study the case with
λ ¼ 0.05, which gives αθðTnÞ < 0.1 (see the right panel of
Fig. 6). This selection is because the study on gravitational
wave production in a strong phase transition αθðTnÞ > 0.1
is currently under development (see, e.g., Refs. [34,35]),
while that in a weaker phase transition is relatively well
established.
The sources of gravitational waves from a finite-

temperature phase transition are (i) the energy momentum
tensor of scalar field in colliding bubbles, (ii) that of sound
waves of a surrounding plasma, and (iii) that of magneto-
hydrodynamic turbulence of a surrounding plasma. On the
basis of the claim of Ref. [36] that the bubble wall in
plasma always reaches a constant velocity when the next-
to-leading order friction is taken into account, and a claim
of Ref. [37] that the fraction of energy stored in the bubble
wall over the vacuum energy released quickly decreases
after the wall reaches the constant velocity, we justifiably
neglect source (i). Hence, we only consider sources (ii)
and (iii).
For source (ii), it is claimed in Ref. [38] that the energy

spectrum of gravitational waves generated by sound waves
in a hot plasma in a phase transition with αθðTnÞ ≲ 0.1 can
be expressed as (we rewrite the formula for gravitational
wave energy over the critical density we observe today)

dΩsoundðkÞh2
d log k

¼ 3HnLf;n
1

2π2
ðkLfÞ3ð1þ p̄=ϵ̄Þ2Ū4

f P̃gwðkLfÞ

× 1.2 × 10−5
�
255

g�

�
1=3

; ð54Þ

where Lf;n is a typical length scale of fluid motion at the
nucleation temperature, Lf is the redshifted value of Lf;n

today, and P̃gw is a function only of the product kLf . Ūf is
the enthalpy-weighted root mean square four-velocity of
fluid at the nucleation temperature, and 1þ p̄=ϵ̄ is the ratio
of enthalpy over energy. In this paper, we adopt Eq. (54).
We further identify Lf;n with the mean bubble separation
ð8πÞ1=3vw=βn [39] (vw denotes the bubble wall speed), and
for P̃gw, we use a fitting of the simulation results in
Ref. [40], which has improved on earlier works [38,41].
For ð1þ p̄=ϵ̄ÞŪ2

f , we use a fitting formula for the ratio of

bulk kinetic energy over vacuum energy κðαθ; vwÞ derived
in Ref. [42], and evaluate it as

ð1þ p̄=ϵ̄ÞŪ2
f ¼

αθðTnÞ
1þ αθðTnÞ

κðαθðTnÞ; vwÞ: ð55Þ

The calculation of the bubble wall speed vw is beyond the
scope of the current paper, and we simply assume various
values of vw that appear in the simulations of Ref. [40] and
evaluate gravitational wave spectrum in each case.
For source (iii), we estimate its contribution by the

following formula in Ref. [43], which is based on
Refs. [44,45]:

dΩturbðkÞh2
d log k

¼ 3.35 × 10−4
Hn

βn

�
κturbαθðTnÞ
1þ αθðTnÞ

�3
2

�
100

g�

�1
3

× vw
ðk=kturbÞ3

ð1þ k=kturbÞ113 f1þ 4ðk=HnÞða0=anÞg
ð56Þ

kturb¼2π×2.7×10−5 Hz×
1

vw

βn
Hn

Tn

100GeV

�
g�
100

�1
6 ð57Þ

where a0=an is the redshift factor. We estimate κturb
aggressively as κturb ¼ 0.1 · κðαθ; vwÞ following Ref. [43].
The total gravitational wave spectrum is given by

dΩgwðkÞh2
d log k

¼ dΩsoundðkÞh2
d log k

þ dΩturbðkÞh2
d log k

: ð58Þ

We comment that the relation on which the simulation
of Ref. [40] relies, HnLf;n > Ūf , is not satisfied in our
benchmark. This means that sound waves turn into turbu-
lence in less than a Hubble time, which suppresses the
sound waves’ contribution to gravitational waves compared
to Eq. (54), and may enhance the turbulence’s contribution
compared to Eq. (56) [37]. Nevertheless, we use Eqs. (54),
(56) in the current analysis.
Our estimate on the total gravitational wave spectrum is

presented in Fig. 10, for λ ¼ 0.05, v ¼ 100 TeV, YM3 ¼ 1
and YM1 ¼ YM2 ¼ 0, and for various values of gB−L. The
spectrum is given in terms of frequency f ¼ k=ð2πÞ. The
design sensitivity of Advanced LIGO and the sensitivities
of Einstein Telescope and Cosmic Explorer for frequency
bin of δf ¼ 0.25 Hz and T ¼ 2 years of data collection,
are estimated from Refs. [12,13,46] through the relation
dΩgwðfÞ=d log f ¼ ð1= ffiffiffiffiffiffiffiffiffiffiffiffi

2δfT
p Þ2π2f3ShðfÞ=ð3H2

0Þ, where
ShðfÞ denotes strain power spectral density andH0 denotes
the Hubble rate today. These sensitivity curves are overlaid
on the plots.
The spectrum around the peak, which is relevant to

gravitational wave detection, slides with v, with the peak
position proportional to v and the strength unaltered. This is
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because Tn is proportional to v and αθðTnÞ; βn=Hn are
independent of v when we fix μ ¼ v and fix the right-hand
side of Eq. (40). Although the contribution of turbulence
Eq. (56) depends on v=M�, it is negligible around the peak.
Therefore, the spectrum around the peak depends on v only
through the combination f=v.
Lowering YM3 reduces the strength of the spectrum, but

does not significantly change its shape and position. This is
because αθðTnÞ decreases for YM3 ¼ 0.1, while Tn and
βn=Hn have little or no dependence on YM3 when
gB−L ≥ 0.2, as seen in the right panels of Figs. 5,6.
We find that in our benchmark with λ ¼ 0.05, stochastic

gravitational waves are out of reach of the Advanced LIGO
design sensitivity for all values of gB−L. However, for
values of the Uð1ÞB−L gauge coupling constant near the
weak gauge coupling constant, such as gB−L ¼ 0.5, sto-
chastic gravitational waves can be detected at future
Einstein Telescope and Cosmic Explorer. Noting that the
spectrum around the peak slides with theUð1ÞB−L-breaking
VEV v, we see that Einstein Telescope and Cosmic

Explorer cover a wide range of the Uð1ÞB−L-breaking
VEV, which is estimated to be v ≲ 1000 TeV.
We can utilize the position and strength of the peak of the

gravitational wave spectrum, to relate the Uð1ÞB−L gauge
coupling constant gB−L with the Uð1ÞB−L-breaking VEV v.
It proceeds as follows: For a fixed value of gB−L, αθðTnÞ has
violent dependence on λ, while it has much milder
dependence on the Majorana Yukawa coupling YMj (see
Figs. 6,8). Also, βn=Hn depends only weakly on λ (see
Fig. 8). Therefore, we can estimate the superpotential
coupling λ from the strength of the gravitational wave
spectrum at the peak through the λ-dependence of αθðTnÞ
(see Eq. (54) and note that the spectrum around the peak is
dominated by sound waves’ contribution). Once gB−L and λ
are known, we can determine Tn=v (along with βn=Hn),
thereby relating the peak position to the Uð1ÞB−L-breaking
VEV v. The above correspondence between gB−L and v
obtained from the gravitational wave spectrum offers a clue
about the minimal SUSY Uð1ÞB−L model, complementing
future collider searches for the Uð1ÞB−L gauge boson.

FIG. 10. Energy spectrum of stochastic gravitational waves from a Uð1ÞB−L breaking phase transition in the case when λ ¼ 0.05 and
v ¼ 100 TeV. From the upper-left to lower-right, each plot corresponds to different values of the Uð1ÞB−L gauge coupling constant,
gB−L ¼ 0.2, 0.35, 0.5, 0.75. We fix YM3 ¼ 1 and YM1 ¼ YM2 ¼ 0. In each plot, the black-solid, red-solid and blue-solid lines correspond
to different assumptions on the bubble wall velocity with vw ¼ 0.92, 0.72, 0.44, respectively. The green-dotted, purple-dot-dashed, and
brown-dashed lines respectively represent the Advanced LIGO design sensitivity and the sensitivities of Einstein Telescope (ET-D
estimate) and Cosmic Explorer for frequency bin of 0.25 Hz and 2 years of data collection. We note that the spectrum approximately
slides with v, with the peak position proportional to v and the strength and shape unaltered.
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IV. SUMMARY

We have studied the phase transition of a Uð1Þ gauge
symmetry breaking in a SUSY model and the production of
stochastic gravitational waves associated with it. We have
concentrated on a particular model, which is the minimal
SUSY Uð1ÞB−L model with R-symmetric superpotential.
We have worked in the SUSY limit by assuming that the
nucleation temperature is above SUSY breaking scale so
that soft SUSY breaking terms are negligible. We have
derived the finite temperature effective potential for
the Uð1ÞB−L-breaking VEVs h, h̄, and computed the
Oð3Þ-symmetric Euclidean action of a high-temperature
Uð1ÞB−L-breaking multifield phase transition. We have
estimated stochastic gravitational waves generated from
the phase transition in the case with λ ¼ 0.05, where

αθðTnÞ < 0.1 and a well-established study on gravitational
wave production is available. We have found that for values
of theUð1ÞB−L gauge coupling constant around gB−L ≃ 0.5,
and for a wide range of the Uð1ÞB−L-breaking VEV
v≲ 1000 TeV, stochastic gravitational waves can be
detected at future Einstein Telescope and Cosmic
Explorer. We point out that the position and strength of
the peak of the gravitational wave spectrum provides
information on the relation between gB−L and v.

ACKNOWLEDGMENTS

This work is partially supported by Scientific Grants by
the Ministry of Education, Culture, Sports, Science and
Technology of Japan, No. 17K05415, No. 18H04590, and
No. 19H051061 (N. H.), and No. 19K147101 (T. Y.).

[1] A. Davidson, B−l as the fourth color, quark—Lepton
correspondence, and natural masslessness of neutrinos
within a generalized Ws model, Phys. Rev. D 20, 776
(1979).

[2] R. E. Marshak and R. N. Mohapatra, Quark—Lepton sym-
metry and B-L as the U(1) generator of the electroweak
symmetry group, Phys. Lett. 91B, 222 (1980).

[3] R. N. Mohapatra and R. E. Marshak, Local B-L Symmetry
of Electroweak Interactions, Majorana Neutrinos and Neu-
tron Oscillations, Phys. Rev. Lett. 44, 1316 (1980); Erratum,
Phys. Rev. Lett. 44, 1643 (1980).

[4] R. N. Mohapatra and J. C. Pati, A natural left-right sym-
metry, Phys. Rev. D 11, 2558 (1975).

[5] G. Senjanovic and R. N. Mohapatra, Exact left-right sym-
metry and spontaneous violation of parity, Phys. Rev. D 12,
1502 (1975).

[6] J. C. Pati and A. Salam, Lepton number as the fourth color,
Phys. Rev. D 10, 275 (1974); Erratum, Phys. Rev. D 11, 703
(1975).

[7] P. S. B. Dev and A. Mazumdar, Probing the scale of new
physics by advanced Ligo/Virgo, Phys. Rev. D 93, 104001
(2016).

[8] J. Aasi et al. (LIGO Scientific Collaboration), Advanced
LIGO, Classical Quantum Gravity 32, 115012 (2015).

[9] F. Acernese et al. (Virgo Collaboration), Advanced
Virgo: A second-generation interferometric gravitational
wave detector, Classical Quantum Gravity 32, 024001
(2015).

[10] K. Somiya (KAGRACollaboration), Detector configuration
of KAGRA–the Japanese cryogenic gravitational-wave
detector, Classical Quantum Gravity 29, 124007 (2012).

[11] M. Punturo et al., The Einstein telescope: A third-generation
gravitational wave observatory, Classical Quantum Gravity
27, 194002 (2010).

[12] S. Hild et al., Sensitivity studies for third-generation
gravitational wave observatories, Classical Quantum Grav-
ity 28, 094013 (2011).

[13] B. P. Abbott et al. (LIGO Scientific Collaboration), Explor-
ing the sensitivity of next generation gravitational wave
detectors, Classical Quantum Gravity 34, 044001 (2017).

[14] N. Okada and O. Seto, Probing the seesaw scale with
gravitational waves, Phys. Rev. D 98, 063532 (2018).

[15] V. Brdar, A. J. Helmboldt, and J. Kubo, Gravitational waves
from first-order phase transitions: LIGO as a window to
unexplored Seesaw scales, J. Cosmol. Astropart. Phys. 02
(2019) 021.

[16] D. Croon, T. E. Gonzalo, and G. White, Gravitational waves
from a Pati-Salam phase transition, J. High Energy Phys. 02
(2019) 083.

[17] T. Hasegawa, N. Okada, and O. Seto, Gravitational waves
from the minimal gauged Uð1ÞB−L model, Phys. Rev. D 99,
095039 (2019).

[18] V. Brdar, L. Graf, A. J. Helmboldt, and X. J. Xu, Gravita-
tional waves as a probe of left-right symmetry breaking,
J. Cosmol. Astropart. Phys. 12 (2019) 027.

[19] W. Buchmüller, V. Domcke, K. Kamada, and K. Schmitz,
The gravitational wave spectrum from cosmological B − L
breaking, J. Cosmol. Astropart. Phys. 10 (2013) 003.

[20] P. S. B. Dev, F. Ferrer, Y. Zhang, and Y. Zhang, Gravitational
waves from first-order phase transition in a simple axion-like
particle model, J. Cosmol. Astropart. Phys. 11 (2019) 006.

[21] L. Dolan and R. Jackiw, Symmetry behavior at finite
temperature, Phys. Rev. D 9, 3320 (1974).

[22] M. E. Carrington, The effective potential at finite temper-
ature in the Standard Model, Phys. Rev. D 45, 2933
(1992).

[23] D. Curtin, P. Meade, and H. Ramani, Thermal resummation
and phase transitions, Eur. Phys. J. C 78, 787 (2018).

[24] A. Mazumdar and G. White, Review of cosmic phase
transitions: Their significance and experimental signatures,
Rep. Prog. Phys. 82, 076901 (2019).

[25] C. G. Boyd, D. E. Brahm, and S. D. H. Hsu, Resummation
methods at finite temperature: The tadpole way, Phys.
Rev. D 48, 4963 (1993).

GRAVITATIONAL WAVES FROM PHASE TRANSITION IN … PHYS. REV. D 101, 075027 (2020)

075027-13

https://doi.org/10.1103/PhysRevD.20.776
https://doi.org/10.1103/PhysRevD.20.776
https://doi.org/10.1016/0370-2693(80)90436-0
https://doi.org/10.1103/PhysRevLett.44.1316
https://doi.org/10.1103/PhysRevD.11.2558
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1103/PhysRevD.12.1502
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1103/PhysRevD.11.703.2
https://doi.org/10.1103/PhysRevD.93.104001
https://doi.org/10.1103/PhysRevD.93.104001
https://doi.org/10.1088/0264-9381/32/11/115012
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/29/12/124007
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/0264-9381/28/9/094013
https://doi.org/10.1088/1361-6382/aa51f4
https://doi.org/10.1103/PhysRevD.98.063532
https://doi.org/10.1088/1475-7516/2019/02/021
https://doi.org/10.1088/1475-7516/2019/02/021
https://doi.org/10.1007/JHEP02(2019)083
https://doi.org/10.1007/JHEP02(2019)083
https://doi.org/10.1103/PhysRevD.99.095039
https://doi.org/10.1103/PhysRevD.99.095039
https://doi.org/10.1088/1475-7516/2019/12/027
https://doi.org/10.1088/1475-7516/2013/10/003
https://doi.org/10.1088/1475-7516/2019/11/006
https://doi.org/10.1103/PhysRevD.9.3320
https://doi.org/10.1103/PhysRevD.45.2933
https://doi.org/10.1103/PhysRevD.45.2933
https://doi.org/10.1140/epjc/s10052-018-6268-0
https://doi.org/10.1088/1361-6633/ab1f55
https://doi.org/10.1103/PhysRevD.48.4963
https://doi.org/10.1103/PhysRevD.48.4963


[26] A. D. Linde, Fate of the false vacuum at finite temperature:
Theory and applications, Phys. Lett. 100B, 37 (1981).

[27] A. D. Linde, Decay of the false vacuum at finite temper-
ature, Nucl. Phys. B216, 421 (1983); Erratum, Nucl. Phys.
B223, 544 (1983).

[28] C. L. Wainwright, CosmoTransitions: Computing cosmo-
logical phase transition temperatures and bubble profiles
with multiple fields, Comput. Phys. Commun. 183, 2006
(2012).

[29] J. Ellis, M. Lewicki, and J. M. No, On the maximal strength
of a first-order electroweak phase transition and its gravi-
tational wave signal, J. Cosmol. Astropart. Phys. 04 (2019)
003.

[30] A. H. Guth and E. J. Weinberg, Could the Universe have
recovered from a slow first order phase transition?, Nucl.
Phys. B212, 321 (1983).

[31] A. H. Guth and S. H. H. Tye, Phase Transitions and Mag-
netic Monopole Production in the Very Early Universe,
Phys. Rev. Lett. 44, 631 (1980); Erratum, Phys. Rev. Lett.
44, 963 (1980).

[32] A. H. Guth and E. J. Weinberg, Cosmological consequences
of a first order phase transition in the SU(5) grand unified
model, Phys. Rev. D 23, 876 (1981).

[33] M. S. Turner, E. J. Weinberg, and L. M. Widrow, Bubble
nucleation in first order inflation and other cosmological
phase transitions, Phys. Rev. D 46, 2384 (1992).

[34] D. Cutting, M. Hindmarsh, and D. J. Weir, Vorticity, kinetic
energy, and suppressed gravitational wave production in
strong first order phase transitions, arXiv:1906.00480.

[35] A. R. Pol, S. Mandal, A. Brandenburg, T. Kahniashvili, and
A. Kosowsky, Numerical simulations of gravitational waves
from early-Universe turbulence, arXiv:1903.08585.

[36] D. Bodeker and G. D. Moore, Electroweak bubble wall
speed limit, J. Cosmol. Astropart. Phys. 05 (2017) 025.

[37] J. Ellis, M. Lewicki, J. M. No, and V. Vaskonen, Gravita-
tional wave energy budget in strongly supercooled phase
transitions, J. Cosmol. Astropart. Phys. 06 (2019) 024.

[38] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J.
Weir, Numerical simulations of acoustically generated
gravitational waves at a first order phase transition, Phys.
Rev. D 92, 123009 (2015).

[39] K. Enqvist, J. Ignatius, K. Kajantie, and K. Rummukainen,
Nucleation and bubble growth in a first order cosmological
electroweak phase transition, Phys. Rev. D 45, 3415 (1992).

[40] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J.Weir,
Shape of the acoustic gravitationalwave power spectrum from
a first order phase transition, Phys. Rev. D 96, 103520 (2017).

[41] M. Hindmarsh, S. J. Huber, K. Rummukainen, and D. J.
Weir, Gravitational Waves from the Sound of a First Order
Phase Transition, Phys. Rev. Lett. 112, 041301 (2014).

[42] J. R. Espinosa, T. Konstandin, J. M. No, and G. Servant,
Energy budget of cosmological first-order phase transitions,
J. Cosmol. Astropart. Phys. 06 (2010) 028.

[43] C. Caprini et al., Science with the space-based interferometer
eLISA. II: Gravitational waves from cosmological phase
transitions, J. Cosmol. Astropart. Phys. 04 (2016) 001.

[44] C. Caprini, R. Durrer, and G. Servant, The stochastic
gravitational wave background from turbulence and mag-
netic fields generated by a first-order phase transition,
J. Cosmol. Astropart. Phys. 12 (2009) 024.

[45] P. Binetruy, A. Bohe, C. Caprini, and J. F. Dufaux, Cos-
mological backgrounds of gravitational waves and eLISA/
NGO: Phase transitions, cosmic strings and other sources,
J. Cosmol. Astropart. Phys. 06 (2012) 027.

[46] B. P. Abbott et al., Sensitivity of the advancedLIGOdetectors
at the beginning of gravitational wave astronomy, Phys.
Rev. D 93, 112004 (2016); Phys. Rev. D 97, 059901(A)
(2018).

NAOYUKI HABA and TOSHIFUMI YAMADA PHYS. REV. D 101, 075027 (2020)

075027-14

https://doi.org/10.1016/0370-2693(81)90281-1
https://doi.org/10.1016/0550-3213(83)90293-6
https://doi.org/10.1016/0550-3213(83)90072-X
https://doi.org/10.1016/0550-3213(83)90072-X
https://doi.org/10.1016/j.cpc.2012.04.004
https://doi.org/10.1016/j.cpc.2012.04.004
https://doi.org/10.1088/1475-7516/2019/04/003
https://doi.org/10.1088/1475-7516/2019/04/003
https://doi.org/10.1016/0550-3213(83)90307-3
https://doi.org/10.1016/0550-3213(83)90307-3
https://doi.org/10.1103/PhysRevLett.44.631
https://doi.org/10.1103/PhysRevLett.44.963.2
https://doi.org/10.1103/PhysRevLett.44.963.2
https://doi.org/10.1103/PhysRevD.23.876
https://doi.org/10.1103/PhysRevD.46.2384
https://arXiv.org/abs/1906.00480
https://arXiv.org/abs/1903.08585
https://doi.org/10.1088/1475-7516/2017/05/025
https://doi.org/10.1088/1475-7516/2019/06/024
https://doi.org/10.1103/PhysRevD.92.123009
https://doi.org/10.1103/PhysRevD.92.123009
https://doi.org/10.1103/PhysRevD.45.3415
https://doi.org/10.1103/PhysRevD.96.103520
https://doi.org/10.1103/PhysRevLett.112.041301
https://doi.org/10.1088/1475-7516/2010/06/028
https://doi.org/10.1088/1475-7516/2016/04/001
https://doi.org/10.1088/1475-7516/2009/12/024
https://doi.org/10.1088/1475-7516/2012/06/027
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.1103/PhysRevD.93.112004

