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Abstract In the research of optimization problems, optimality conditions play
an important role. By using some derivatives, various types of necessary and/or
sufficient optimality conditions have been introduced by many researchers. Es-
pecially, in convex programming, necessary and sufficient optimality conditions
in terms of the subdifferential have been studied extensively. Recently, necessary
and sufficient optimality conditions for quasiconvex programming have been in-
vestigated by the authors. However, there are not so many results concerned with
Karush-Kuhn-Tucker type optimality conditions for non-differentiable quasiconvex
programming.

In this paper, we study a Karush-Kuhn-Tucker type optimality condition for
quasiconvex programming in terms of Greenberg-Pierskalla subdifferential. We
show some closedness properties for Greenberg-Pierskalla subdifferential. Under
the Slater constraint qualification, we show a necessary and sufficient optimal-
ity condition for essentially quasiconvex programming in terms of Greenberg-
Pierskalla subdifferential. Additionally, we introduce a necessary and sufficient
constraint qualification of the optimality condition. As a corollary, we show a nec-
essary and sufficient optimality condition for convex programming in terms of the
subdifferential.

Keywords Optimality condition · quasiconvex programming · subdifferential ·
constraint qualification

This work was partially supported by JSPS KAKENHI Grant Number 19K03620.

S. Suzuki
Department of Mathematical Sciences, Shimane University,
Shimane, Japan
Tel.: +81-852-32-6114
E-mail: suzuki@riko.shimane-u.ac.jp



2 Satoshi Suzuki

1 Introduction

In this paper, we consider the following optimization problem (P ):

(P )

{
minimize f(x),
subject to gi(x) ≤ 0,∀i ∈ I,

where I is an index set, f and gi are extended real-valued functions on Rn, and
A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0} is a constraint set. In the research of the above
problem, optimality conditions play an important role. By using some derivatives,
various types of necessary and/or sufficient optimality conditions have been in-
troduced by many researchers, see [1–14]. Especially, in convex programming, the
following necessary and sufficient optimality condition in terms of the subdiffer-
ential has been studied extensively: under some constraint qualifications, x0 ∈ A

is a global minimizer of f over A if and only if there exists λ ∈ R(I)
+ such that

0 ∈ ∂f(x0) +
∑

i∈I(x0)

λi∂gi(x0),

where R(I)
+ = {λ ∈ RI : ∀i ∈ I, λi ≥ 0, {i ∈ I : λi ̸= 0} is finite}, and I(x0) =

{i ∈ I : gi(x0) = 0}. The above optimality condition is called Karush-Kuhn-Tucker
(KKT, in short) type optimality condition. The best known constraint qualification
is the Slater constraint qualification, and the basic constraint qualification is a
necessary and sufficient constraint qualification for the above optimality condition,
see [4,8].

In quasiconvex programming, various types of subdifferentials and optimal-
ity conditions have been investigated. Especially, in [2], Danillidis, Hadjisavvas,
and Mart́ınez-Legaz introduced quasiconvex subdifferential and show some prop-
erties of quasiconvex subdifferential. Additionally, in [5], Linh and Penot investi-
gated necessary and/or sufficient optimality conditions in terms of lower subdif-
ferential and Plastria subdifferential. Recently, necessary and sufficient optimality
conditions for quasiconvex programming have been investigated by the authors,
see [10,13,14]. In [13], the authors show the following necessary and sufficient opti-
mality condition for essentially quasiconvex programming in terms of Greenberg-
Pierskalla subdifferential: x0 ∈ A is a global minimizer of f over A if and only
if

0 ∈ ∂GP f(x0) +NA(x0),

where ∂GP f(x0) is the Greenberg-Pierskalla subdifferential of f at x0, and NA(x0)
is the normal cone of A at x0. In [14], the authors show similar optimality con-
ditions for non-essentially quasiconvex programming in terms of Mart́ınez-Legaz
subdifferential. Additionally, in [10], the author studies optimality conditions for
quasiconvex programming in terms of generators of quasiconvex functions. How-
ever, the following KKT type optimality condition has not been investigated yet:

x0 ∈ A is a global minimizer of f over A if and only if there exists λ ∈ R(I)
+ such

that

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0).
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Since there are not so many results concerned with KKT type optimality conditions
for non-differentiable quasiconvex programming, it is expected to investigate the
above condition and its constraint qualifications.

In this paper, we study a Karush-Kuhn-Tucker type optimality condition for
quasiconvex programming in terms of Greenberg-Pierskalla subdifferential. We
show some closedness properties for Greenberg-Pierskalla subdifferential. Under
the Slater constraint qualification, we show a necessary and sufficient optimal-
ity condition for essentially quasiconvex programming in terms of Greenberg-
Pierskalla subdifferential. Additionally, we introduce a necessary and sufficient
constraint qualification of the optimality condition. As a corollary, we show a nec-
essary and sufficient optimality condition for convex programming in terms of the
subdifferential.

The remainder of the present paper is organized as follows. In Section 2, we
introduce some preliminaries and previous results. In Section 3, we show some
important lemmas. In Section 4, we study a KKT type optimality condition for
quasiconvex programming in terms of Greenberg-Pierskalla subdifferential under
two types of constraint qualifications. In Section 5, we compare our results with
previous ones. Especially, we show a necessary and sufficient optimality condition
for convex programming in terms of the subdifferential as a corollary of our results.

2 Preliminaries

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-dimensional
Euclidean space Rn. Given a nonempty set S, we denote the interior, the convex
hull, and the conical hull, generated by S, by intS, coS, and coneS, respectively.
A cone K is said to be pointed if K ∩ (−K) = {0}. The normal cone of S at x ∈ S
is denoted by NS(x) := {v ∈ Rn : ∀y ∈ S, ⟨v, y − x⟩ ≤ 0}. Let f be a function
from Rn to R, where R := [−∞,∞]. f is said to be convex if for each x, y ∈ Rn,
and α ∈ (0, 1), f((1 − α)x + αy) ≤ (1 − α)f(x) + αf(y). The subdifferential of f
at x is defined as ∂f(x) := {v ∈ Rn : ∀y ∈ Rn, f(y) ≥ f(x) + ⟨v, y − x⟩}. Define
the level sets of f with respect to a binary relation ⋄ on R as

lev(f, ⋄, β) := {x ∈ Rn : f(x) ⋄ β}

for any β ∈ R. f is said to be quasiconvex if lev(f,≤, β) is a convex set for all β ∈ R.
Additionally, f is said to be essentially quasiconvex if it is quasiconvex and each
local minimizer x ∈ Rn of f over Rn is a global minimizer of f over Rn. Clearly,
all convex functions are essentially quasiconvex. There are many characterizations
of essentially quasiconvexity. For example, a real-valued continuous quasiconvex
function is essentially quasiconvex if and only if it is semistrictly quasiconvex [1],
a pseudoconvex differentiable function is essentially quasiconvex [3,15,16], and a
real-valued quasiconvex function is essentially quasiconvex if and only if it is neatly
quasiconvex [17].

In quasiconvex analysis, various types of subdifferentials have been introduced,
see [5,7,11,12,18–26]. In [18], Greenberg and Pierskalla introduce the Greenberg-
Pierskalla subdifferential of f at x0 ∈ Rn as follows:

∂GP f(x0) := {v ∈ Rn : ⟨v, x⟩ ≥ ⟨v, x0⟩ implies f(x) ≥ f(x0)}.
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We need the following relation between the subdifferential and the Greenberg-
Pierskalla subdifferential in [25].

Theorem 1 [25] Let f be a real-valued convex function on Rn. If x ∈ Rn is not
a global minimizer of f over Rn, then

R++∂f(x) = ∂GP f(x),

where R++ := {t ∈ R : t > 0}.

We introduce the following necessary and sufficient optimality condition for
essentially quasiconvex programming.

Theorem 2 [13] Let f be an extended real-valued upper semicontinuous (usc)
essentially quasiconvex function on Rn, A a convex subset of Rn, and x0 ∈ A.

Then, the following statements are equivalent:

(i) f(x0) = min
x∈A

f(x),

(ii) 0 ∈ ∂GP f(x0) +NA(x0).

In Corollary 9.1.3 in [8], the following result for the closedness of the sum of
cones is given.

Theorem 3 [8] Let K1, K2 be non-empty closed convex cones in Rn. Assume
that if zi ∈ Ki for i = 1, 2 and z1 + z2 = 0, then zi belongs the linearity space of
Ki, the largest subspace contained in the recession cone of Ki, for i = 1, 2. Then,
K1 +K2 is closed.

In Corollary 1.2.3 in [27], the following result is given.

Theorem 4 [27] Let K be a non-empty closed convex pointed cone in Rn. Then,
there exists v ∈ Rn such that ⟨v, x⟩ > 0 for each x ∈ K \ {0}.

3 Important lemmas

In this section, we show some important lemmas for our main results. Especially,
we study the closedness of Greenberg-Pierskalla subdifferential precisely.

Lemma 1 Let g be an extended real-valued usc essentially quasiconvex function
on Rn, x ∈ Rn, and v ∈ Rn \ {0}. Assume that there exists x̄ ∈ Rn such that
g(x̄) < g(x). Then, v ∈ ∂GP g(x) if and only if v ∈ Nlev(g,≤,g(x))(x).

Proof Let v ∈ ∂GP g(x) and y ∈ lev(g,≤, g(x)). We show that ⟨v, y − x⟩ ≤ 0. By
the definition of Greenberg-Pierskalla subdifferential, if g(y) < g(x), then ⟨v, y⟩ <
⟨v, x⟩. We assume that g(y) = g(x). Since lev(g,<, g(x)) is nonempty, y is not a
global minimizer of g over Rn. By the essentially quasiconvexity of g, y is not a
local minimizer of f over Rn. Hence, for each k ∈ N, there exists yk ∈ Rn such
that g(yk) < g(y) and ∥y − yk∥ < 1

k . Then, we can check that ⟨v, yk⟩ < ⟨v, x⟩ and
yk converges to y. This shows that ⟨v, y⟩ ≤ ⟨v, x⟩, that is, ⟨v, y − x⟩ ≤ 0.

Conversely, let v ∈ Nlev(g,≤,g(x))(x) and y ∈ lev(v,≥, ⟨v, x⟩). We show that
g(y) ≥ g(x). If ⟨v, y⟩ > ⟨v, x⟩, then g(y) > g(x). We assume that ⟨v, y⟩ = ⟨v, x⟩
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and g(y) < g(x). Since g is usc, there exists r > 0 such that for each z ∈ Rn

satisfying ∥y−z∥ < r, g(z) < g(x). This shows that g(y+ r
2∥v∥v) < g(x). However,

this contradicts to v ∈ Nlev(g,≤,g(x))(x) since⟨
v, y +

r

2∥v∥v
⟩

> ⟨v, y⟩ = ⟨v, x⟩ .

Hence, g(y) ≥ g(x). This completes the proof. ⊓⊔

Lemma 2 Let g be an extended real-valued usc quasiconvex function on Rn, and
x ∈ Rn. Then, ∂GP g(x) is nonempty.

Proof Let x ∈ Rn. If lev(g,<, g(x)) is empty, then we can check easily that
∂GP g(x) = Rn. We assume that lev(g,<, g(x)) is nonempty. By the assumption,
lev(g,<, g(x)) is nonempty open convex. By the separation theorem, there exist
v ∈ Rn and α ∈ R such that for each y ∈ lev(g,<, g(x)),

⟨v, x⟩ ≤ α < ⟨v, y⟩ .

This shows that if g(y) < g(x) then ⟨v, x⟩ < ⟨v, y⟩, that is, inf{g(y) : ⟨v, x⟩ ≥
⟨v, y⟩} ≥ g(x). Hence, v ∈ ∂GP g(x). This completes the proof. ⊓⊔

Lemma 3 Let g be an extended real-valued function on Rn, and x ∈ Rn. Then,
∂GP g(x) ∪ {0} is a convex cone.

Proof Let v, w ∈ ∂GP g(x) ∪ {0}, and λ ≥ 0. If v ∈ ∂GP g(x) and λ > 0,

inf{g(y) : ⟨λv, y⟩ ≥ ⟨λv, x⟩} = inf{g(y) : ⟨v, y⟩ ≥ ⟨v, x⟩} ≥ g(x).

Hence, λv ∈ ∂GP g(x). If v = 0 or λ = 0, then λv = 0 ∈ ∂GP g(x)∪{0}. This shows
that ∂GP g(x)∪{0} is a cone. Next, we show that ∂GP g(x)∪{0} is convex. If v = 0
or w = 0, then it is clear that v+w ∈ ∂GP g(x)∪{0}. If v ̸= 0 and w ̸= 0, then for
each y ∈ Rn satisfying ⟨v + w, y⟩ ≥ ⟨v + w, x⟩, ⟨v, y⟩ ≥ ⟨v, x⟩ or ⟨w, y⟩ ≥ ⟨w, x⟩.
Hence,

inf{g(y) : ⟨v + w, y⟩ ≥ ⟨v + w, x⟩}
≥ min{inf{g(y) : ⟨v, y⟩ ≥ ⟨v, x⟩}, inf{g(y) : ⟨w, y⟩ ≥ ⟨w, x⟩}}
≥ g(x).

This shows that ∂GP g(x) ∪ {0} is convex. This completes the proof. ⊓⊔

Next, we study the closedness of Greenberg-Pierskalla subdifferential of an usc
function.

Lemma 4 Let g be an extended real-valued usc function on Rn, and x ∈ Rn.
Then, ∂GP g(x) ∪ {0} is closed.

Proof Let {vk} ⊂ ∂GP g(x) ∪ {0} be a sequence such that {vk} converges to v0 ∈
Rn. We assume that v0 /∈ (∂GP g(x)∪{0}). This implies that v0 ̸= 0 and inf{g(y) :
⟨v0, y⟩ ≥ ⟨v0, x⟩} < g(x). Then, there exists ȳ ∈ Rn such that g(ȳ) < g(x) and
⟨v0, ȳ⟩ ≥ ⟨v0, x⟩. By the upper semicontinuity of g, there exists r > 0 such that
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g(ȳ+rv0) < g(x). Additionally, there exists k̄ ∈ N such that ⟨vk̄, ȳ + rv0⟩ > ⟨vk̄, x⟩
since {vk} converges to v0 and ⟨v0, ȳ + rv0⟩ > ⟨v0, ȳ⟩ ≥ ⟨v0, x⟩. This shows that

inf{g(y) : ⟨vk̄, y⟩ ≥ ⟨vk̄, x⟩} ≤ g(ȳ + rv0) < g(x).

This contradicts to vk̄ ∈ ∂GP g(x). Hence, v0 ∈ ∂GP g(x)∪ {0}, that is, ∂GP g(x)∪
{0} is closed. ⊓⊔

Lemma 5 Let S be a subset of Rn, x ∈ S, and assume that S has nonempty
interior. Then NS(x) is a pointed cone.

Proof Let v ∈ NS(x) \ {0} and x̄ ∈ intS. Since v ̸= 0 and x̄ ∈ intS, we can check
that ⟨v, x̄⟩ < ⟨v, x⟩. This shows that −v /∈ NS(x). ⊓⊔

The following lemma plays an important role in our main results.

Lemma 6 Let I be an index set, gi an extended real-valued usc essentially quasi-
convex function on Rn for each i ∈ I, x ∈ A = {y ∈ Rn : ∀i ∈ I, gi(y) ≤ 0}, and
I(x) = {i ∈ I : gi(x) = 0}. Assume that I is finite and there exists x̄ ∈ Rn such
that gi(x̄) < 0 for each i ∈ I. Then, co

∪
i∈I(x)(∂

GP g(x) ∪ {0}) is closed.

Proof By the assumption, we can check that A has nonempty interior. Let i ∈ I(x),
then by Lemma 3 and Lemma 4, ∂GP gi(x) ∪ {0} is a closed convex cone. By
Lemma 1,

NA(x) ⊃ Nlev(gi,≤,0)(x) = ∂GP gi(x) ∪ {0}.
Additionally, by Lemma 5, NA(x) is pointed.

Let i1, i2 ∈ I(x). Then, ∂GP gi1(x)∪{0} and ∂GP gi2(x)∪{0} are closed convex
cones. Let v1 ∈ ∂GP gi1(x) ∪ {0} and v2 ∈ ∂GP gi2(x) ∪ {0} satisfying v1 + v2 = 0.
Then, by the above inclusion, v1, v2 ∈ NA(x). Since NA(x) is pointed, v1 = v2 = 0.
This shows that v1 and v2 belong the linearity spaces of ∂GP gi1(x) ∪ {0} and
∂GP gi2(x)∪{0}, respectively. Hence, by Theorem 3, ∂GP gi1(x)∪{0}+∂GP gi2(x)∪
{0} is closed. Since I is finite,

co
∪

i∈I(x)

(∂GP g(x) ∪ {0}) =
∑

i∈I(x)

(∂GP g(x) ∪ {0})

is closed. This completes the proof. ⊓⊔

4 Main results

In this section, we show our main results. At first, we show a necessary and suf-
ficient optimality condition for quasiconvex programming in terms of Greenberg-
Pierskalla subdifferential under the Slater constraint qualification.

Theorem 5 Let I be an index set, gi an extended real-valued usc essentially qua-
siconvex function on Rn for each i ∈ I, x0 ∈ A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0},
I(x0) = {i ∈ I : gi(x0) = 0}, and f an extended real-valued usc essentially quasi-
convex function on Rn. Assume that I is finite and there exists x̄ ∈ Rn such that
gi(x̄) < 0 for each i ∈ I. Then, x0 is a global minimizer of f over A if and only if
there exists λ ∈ RI

+ such that

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0).
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Proof By Lemma 1,

NA(x0) ⊃ co
∪

i∈I(x0)

Nlev(gi,≤,0)(x0) = co
∪

i∈I(x0)

(∂GP gi(x0) ∪ {0}).

Next, we show

NA(x0) ⊂ co
∪

i∈I(x0)

(∂GP gi(x0) ∪ {0}).

By Lemma 6, co
∪

i∈I(x0)
(∂GP gi(x0) ∪ {0}) is a closed convex cone. Addition-

ally, by Lemma 5, NA(x0) is pointed, that is, co
∪

i∈I(x0)
∂GP gi(x0) ∪ {0} is also

pointed. Let v ∈ NA(x0), and assume that v /∈ co
∪

i∈I(x0)
(∂GP gi(x0) ∪ {0}).

By the separation theorem, there exists x̂ ∈ Rn \ {0} such that for each w ∈∪
i∈I(x0)

∂GP gi(x0), ⟨v, x̂⟩ > 0 ≥ ⟨w, x̂⟩ since co
∪

i∈I(x0)
(∂GP gi(x0) ∪ {0}) is a

closed convex cone. Additionally, by Theorem 4, there exists x̃ ∈ Rn \ {0} such
that for each w ∈

∪
i∈I(x0)

∂GP gi(x0)\{0}, 0 > ⟨w, x̃⟩. For sufficiently small r > 0,

we put x∗ = x̂+ rx̃, then, for each w ∈
∪

i∈I(x0)
∂GP gi(x0) \ {0},⟨

v, x∗⟩ > 0 >
⟨
w, x∗⟩ .

We show that for each i ∈ I(x0), there exists ri > 0 such that for each r ∈ (0, ri],
gi(x0 + rx∗) ≤ 0. Actually, if lev(gi, <, 0) ∩ (x0 + R+{x∗}) is empty, then, by the
separation theorem for lev(gi, <, 0) and x0 + R+{x∗}, there exist w̄ ∈ Rn and
β ∈ R such that for each y ∈ lev(gi, <, 0) and t ≥ 0,

⟨w̄, y⟩ < β ≤
⟨
w̄, x0 + tx∗⟩ .

This shows that w̄ ∈ ∂GP gi(x0) and ⟨w̄, x∗⟩ ≥ 0. This is a contradiction. Hence
there exists ri > 0 such that gi(x0+rix

∗) < 0. By the quasiconvexity of gi, for each
r ∈ (0, ri], gi(x0 + rx∗) ≤ 0 = gi(x0). Additionally, by the upper semicontinuity
of gi, for each i /∈ I(x0), there exists ri > 0 such that for each r ∈ (0, ri], gi(x0 +
rx∗) < 0. Since I is finite, r̄ = min{ri : i ∈ I} > 0 and x0 + r̄x∗ ∈ A. However,
by the above separation inequality, ⟨v, x0 + r̄x∗⟩ > ⟨v, x0⟩. This contradicts to
v ∈ NA(x0). Hence, v ∈ co

∪
i∈I(x0)

(∂GP gi(x0) ∪ {0}).
By Theorem 2, x0 is a global minimizer of f over A if and only if

0 ∈ ∂GP f(x0) +NA(x0) = ∂GP f(x0) + co
∪

i∈I(x0)

(∂GP gi(x0) ∪ {0}).

Hence, if x0 is a global minimizer of f over A, then there exist v ∈ ∂GP f(x0),
wi ∈ ∂GP gi(x0)∪{0} and αi ≥ 0 for each i ∈ I(x0) such that v+

∑
i∈I(x0)

αiwi = 0

and
∑

i∈I(x0)
αi = 1. Put λ ∈ RI

+ as follows: for each i ∈ I,

λi =


0, i /∈ I(x0),
0, i ∈ I(x0) and wi = 0,
αi, i ∈ I(x0) and wi ̸= 0.

Then,

0 = v +
∑

i∈I(x0)

λiwi ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0).
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Assume that there exists λ ∈ RI
+ such that 0 ∈ ∂GP f(x0)+

∑
i∈I(x0)

λi∂
GP gi(x0).

If
∑

i∈I(x0)
λi = 0, then,

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0) = ∂GP f(x0) + {0} ⊂ ∂GP f(x0) +NA(x0).

Hence, by Theorem 2, x0 is a global minimizer of f over A. If
∑

i∈I(x0)
λi > 0,

then

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0)

= ∂GP f(x0) +

 ∑
i∈I(x0)

λi

 ∑
i∈I(x0)

λi∑
i∈I(x0)

λi

∂GP gi(x0)

⊂ ∂GP f(x0) + co
∪

i∈I(x0)

(∂GP gi(x0) ∪ {0})

since co
∪

i∈I(x0)
(∂GP gi(x0) ∪ {0}) is a cone. This completes the proof. ⊓⊔

Next, we show necessary and sufficient constraint qualifications for the KKT
type optimality condition in terms of Greenberg-Pierskalla subdifferential.

Theorem 6 Let I be an index set, gi an extended real-valued usc essentially qua-
siconvex function on Rn for each i ∈ I, x0 ∈ A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0},
I(x0) = {i ∈ I : gi(x0) = 0}. Assume that there exists x̂ ∈ A \ {x0}.

Then, the following statements are equivalent:

(i)

NA(x0) = co
∪

i∈I(x0)

(∂GP gi(x0) ∪ {0}),

(ii) for each extended real-valued usc essentially quasiconvex function f on Rn, x0

is a global minimizer of f over A if and only if there exists λ ∈ R(I)
+ such that

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0).

Proof Assume that (i) holds and let f be an extended real-valued usc essentially
quasiconvex function on Rn. By Theorem 2, x0 is a global minimizer of f over A
if and only if

0 ∈ ∂GP f(x0) +NA(x0).

Since NA(x0) = co
∪

i∈I(x0)
(∂GP gi(x0) ∪ {0}), the above condition holds if and

only if there exists λ ∈ R(I)
+ such that

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0),

This shows that (ii) holds.
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Assume that the statement (ii) holds. At first, we show that lev(gi, <, 0) is
nonempty for each i ∈ I. Actually, if there exists i0 ∈ I such that lev(gi0 , <
, 0) is empty, then, gi0(x0) = 0, that is, i0 ∈ I(x0) since x0 ∈ A. Let f(x) =
⟨x0 − x̂, x⟩ for each x ∈ Rn. Then, f(x0) > f(x̂), ∂GP f(x0) = {l(x0 − x̂) : l > 0},
∂GP gi0(x0) = Rn and

0 ∈ Rn = ∂GP f(x0) + ∂GP gi0(x0).

This is a contradiction since x0 is not a global minimizer of f over A. Hence,
lev(gi, <, 0) is nonempty for each i ∈ I. By Lemma 1,

NA(x0) ⊃ co
∪

i∈I(x0)

Nlev(gi,≤,0)(x0) = co
∪

i∈I(x0)

(∂GP gi(x0) ∪ {0}).

Let v ∈ NA(x0), then x0 is a global minimizer of −v over A. Let f(x) = ⟨−v, x⟩
for each x ∈ Rn. By the statement (ii), there exists λ ∈ R(I)

+ such that

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0).

Since ∂GP f(x0) = {−lv : l > 0}, there exists l > 0 such that −lv ∈ ∂GP f(x0).
Hence,

v ∈
∑

i∈I(x0)

λi

l
∂GP gi(x0) ⊂

∑
i∈I(x0)

(∂GP gi(x0)∪{0}) = co
∪

i∈I(x0)

(∂GP gi(x0)∪{0})

since ∂GP gi(x0) ∪ {0} is a convex cone for each i ∈ I(x0). This completes the
proof. ⊓⊔

5 Discussion

In this section, we discuss about our results. We compare our results with previous
ones. Additionally, we show two examples. At first, we show a necessary and suffi-
cient optimality condition for convex programming in terms of the subdifferential
as a corollary of our result.

Corollary 1 Let I be an index set, gi a real-valued convex function on Rn for
each i ∈ I, x0 ∈ A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0}, I(x0) = {i ∈ I : gi(x0) = 0},
and f a real-valued convex function on Rn. Assume that I is finite and there exists
x̄ ∈ Rn such that gi(x̄) < 0 for each i ∈ I. Then, x0 is a global minimizer of f
over A if and only if there exists λ ∈ RI

+ such that

0 ∈ ∂f(x0) +
∑

i∈I(x0)

λi∂gi(x0). (1)

Proof It is well known that a real-valued convex function on Rn is continuous
essentially quasiconvex. Hence, by Theorem 5, x0 is a global minimizer of f over
A if and only if there exists λ ∈ RI

+ such that

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0).
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Since gi(x̄) < 0 for each i ∈ I, x0 is not a global minimizer of gi over Rn for each
i ∈ I(x0). Hence, by Theorem 1, for each i ∈ I(x0),

R++∂gi(x0) = ∂GP gi(x0).

This shows that x0 is a global minimizer of f over A if and only if there exists
λ ∈ RI

+ such that

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂gi(x0).

Assume that x0 is a global minimizer of f over A. If x0 is not a global minimizer of
f over Rn, then R++∂f(x0) = ∂GP f(x0). Hence, we can show that Equation (1)
holds. On the other hand, if x0 is a global minimizer of f over Rn, then 0 ∈ ∂f(x0).
In this case, put λ = 0, then Equation (1) holds. Conversely, we can check easily
that if Equation (1) holds then x0 is a global minimizer of f over A. This completes
the proof. ⊓⊔

Remark 1 Lemma 1 is equivalent to the following set containment characteriza-
tion: the following statements are equivalent;

(i) {x ∈ Rn : g(x) ≤ g(x0)} ⊂ {x ∈ Rn : ⟨v, x⟩ ≤ ⟨v, x0⟩},
(ii) v ∈ ∂GP g(x0).

By using such a set containment characterization, necessary and sufficient con-
straint qualifications for duality results have been investigated, see [28–36].

Remark 2 In Theorem 6, we assume that there exists x̂ ∈ A\{x0}. If the assump-
tion does not hold, then x0 is always a global minimizer of f over A. Hence, we
need the assumption in this theorem.

Remark 3 In Theorem 6, we show the following necessary and sufficient constraint
qualification:

(i) NA(x0) = co
∪

i∈I(x0)
(∂GP gi(x0) ∪ {0}).

If lev(gi, <, 0) is nonempty for each i ∈ I, then the above constraint qualification
(i) is equivalent to the following conditions:

(ii) NA(x0) ⊂ co
∪

i∈I(x0)
(∂GP gi(x0) ∪ {0}),

(iii) co
∪

i∈I(x0)
(∂GP gi(x0) ∪ {0}) is closed.

In Lemma 6, we show that the Slater constraint qualification implies the above
condition (iii).

Remark 4 In [4], the basic constraint qualification is introduced as follows:

NA(x0) = cone co
∪

i∈I(x0)

∂gi(x0).

The basic constraint qualification is known as a necessary and sufficient constraint
qualification for KKT type optimality condition via convex programming. Our
constraint qualification in Theorem 6 is very similar to the basic constraint quali-
fication. Actually, if gi is real-valued convex and lev(gi, <, 0) is nonempty for each
i ∈ I, our constraint qualification is equivalent to the basic constraint qualification.
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However, we can not show that the basic constraint qualification is a necessary and
sufficient constraint qualification for KKT type optimality condition via convex
programming. When we compare ∂gi(x0) and ∂GP gi(x0), we need the assumption,
lev(gi, <, 0) is nonempty. Hence, we can not show this important result in [4] as a
corollary of our result. On the other hand, in Corollary 1, we show KKT type opti-
mality condition via convex programming under the Slater constraint qualification
as a corollary of our result.

Finally, we show the following two examples.

Example 1 Let I = {1, 2}, f , g1 and g2 be the following functions from R to R:

f(x) = |x− 2|5, g1(x) = (x− 1)3, g2(x) = −(x+ 1)3.

Then, we can easily check that f and gi are real-valued continuous essentially
quasiconvex and gi(0) < 0 for each i ∈ I. Additionally, A = {x ∈ R : ∀i ∈
I, gi(x) ≤ 0} = [−1, 1]. By Theorem 5, x0 ∈ A is a global minimizer of f over A if
and only if there exists λ ∈ RI

+ such that

0 ∈ ∂GP f(x0) +
∑

i∈I(x0)

λi∂
GP gi(x0).

We can calculate that for each x ∈ A,

∂GP f(x) = (−∞, 0), ∂GP g1(x) = (0,∞), ∂GP g2(x) = (−∞, 0)

Let x0 = 1 ∈ A. Then I(x0) = {1} and for λ̄ = (1, 0),

0 ∈ (−∞, 0) + (0,∞) = ∂GP f(x0) + ∂GP g1(x0).

By the above optimality condition, x0 = 1 is a global minimizer of f over A.

Example 2 Let I = Z \ {0}, and gi be the following function from R2 to R:

gi(x1, x2) = ix
2|i|+1
2 .

Then, we can check that gi are real-valued continuous essentially quasiconvex
and A = {(x1, x2) ∈ R2 : ∀i ∈ I, gi(x1, x2) ≤ 0} = {(x1, x2) ∈ R2 : x2 = 0}.
Additionally, there does not exist x ∈ R2 such that gi(x) < 0 for each i ∈ I.

On the other hand, we can show that for each x̄ ∈ A,

NA(x̄) = co
∪

i∈I(x̄)

(∂GP gi(x̄) ∪ {0}).

Actually, NA(x̄) = {(x1, x2) ∈ R2 : x1 = 0}, I(x̄) = I, and

∂GP gi(x̄) =

{
{(x1, x2) ∈ R2 : x1 = 0, x2 > 0} if i > 0,
{(x1, x2) ∈ R2 : x1 = 0, x2 < 0} if i < 0.

This shows that the constraint qualification in Theorem 6 is satisfied.
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Hence, by Theorem 6, for each extended real-valued usc essentially quasiconvex
function f on Rn, x̄ ∈ A is a global minimizer of f over A if and only if there

exists λ ∈ R(I)
+ such that

0 ∈ ∂GP f(x̄) +
∑

i∈I(x̄)

λi∂
GP gi(x̄).

We can calculate that

∑
i∈I(x̄)

λi∂
GP gi(x̄) =

∑
i∈I+

λi{(0, x2) : x2 > 0}

+

∑
i∈I−

λi{(0, x2) : x2 < 0}

 ,

where I+ = {i ∈ I : i > 0} and I− = {i ∈ I : i > 0}. Hence, if there exists
(v1, v2) ∈ ∂GP f(x̄) such that v1 = 0, then x̄ is a global minimizer of f over A.
Additionally, if v1 ̸= 0 for each (v1, v2) ∈ ∂GP f(x̄), then x̄ is not a global minimizer
of f over A.
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