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Docosahexaenoic acid: one molecule diverse functions
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aDepartment of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Japan; bDepartment of Biochemistry and
Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh; cDepartment of Geriatrics and Gerontology, Division of Brain Sciences,
Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan

ABSTRACT
Docosahexaenoic acid (DHA, C22:6, x-3) is a highly polyunsaturated omega-3 fatty acid. It is con-
centrated in neuronal brain membranes, for which reason it is also referred to as a ‘‘brain food’’.
DHA is essential for brain development and function. It plays an important role in improving anti-
oxidant and cognitive activities of the brain. DHA deficiency occurs during aging and dementia,
impairs memory and learning, and promotes age-related neurodegenerative diseases, including
Alzheimer’s disease (AD). For about two decades, we have reported that oral administration of
DHA increases spatial memory acquisition, stimulates neurogenesis, and protects against and
reverses memory impairment in amyloid b peptide-infused AD rat models by decreasing amyloi-
dogenesis and protects against age-related cognitive decline in the elderly. These results demon-
strate a robust link between DHA and cognitive health. Rodents that were fed a diet low in x-3
polyunsaturated fatty acids, particularly those that were DHA-deficient, frequently suffered from
anxiety, depression and memory impairment. Although the exact mechanisms of action of DHA in
brain functions are still elusive, a host of mechanisms have been proposed. For example, DHA,
which inherently has a characteristic three-dimensional structure, increases membrane fluidity,
strengthens antioxidant activity and enhances the expression of several proteins that act as sub-
strates for improving memory functions. It reduces the brain amyloid burden and inhibits in vitro
fibrillation and amyloid-induced neurotoxicity in cell-culture model. In this review, we discuss how
DHA acts as a molecule with diverse functions.
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Introduction

Docosahexaenoic acid (DHA, C22:6, x-3) is an ancient
nutrient for the modern human brain [1]. Isotope dating
studies, relating diet to the evolution of the large
human brain, led to a hypothesis that the evolution of
the modern human brain with expanded cortex coin-
cided with the inclusion of seafood in the diet [2,3] of
our ancestor dwellers. This view supports the propos-
ition that the civilization of modern human race began
at the land–sea interface or more precisely at the moun-
tain–sea interface (a dramatic landscape shaped by
interaction with mountains and sea). Seafood brought
DHA into the ancient dietary culture. However, not all
human cultures are known to consume high levels of
seafood. For example, people living in landlocked geo-
graphical regions without access to seafood, as well as
vegetarians or vegans who strictly avoid all animal prod-
ucts, may not receive adequate levels of DHA from their
diets. Such individuals may have developed other
mechanisms to increase their DHA levels. Indeed,

alpha-linolenic acid (a-LNA) from plants can be used as
a precursor for x-3 DHA production, and it might be an
appropriate dietary source to increase DHA levels [4].
The conversion of a-LNA to DHA is catalyzed by D6D
(delta 6 desaturase); however, whether D6D expression/
activity is upregulated in individuals without access to
dietary DHA remains unclear. We previously reported
that plasma DHA levels in individuals from Mongolia, a
landlocked country, were half of those in Japanese indi-
viduals [5]; moreover, in Nepal, another landlocked
country, women only had trace amounts of DHA in their
mature breast milk [6]. Similarly, the breast milk of
women living far from coastal areas in Brazil reportedly
contains low DHA levels [7]. Thus, the conversion of a-
LNA to DHA seems inefficient in such populations. In
other words, if D6D was upregulated in individuals con-
suming a-LNA, we would expect that DHA levels would
have been relatively high and/or comparable to those
found in people living in coastal areas. It is known that
the expression and/or activity of D6D is downregulated
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by numerous factors, including high dietary x6/x3
ratios, fatty acid unsaturation [8–16], low intake of
essential micronutrients (such as Mg, Zn, vitamin C, B2,
and B6) [17], age [18] and gender [19]. Therefore, such
factors may subsequently affect an individuals’ ability to
convert a-LNA to DHA. Importantly, conversion rates of
isotope-labeled a-LNA to DHA in human adults have
been found to be very low (only 0–0.04%) [20]. In add-
ition, supplementation of pregnant women with a-LNA
was shown to have no effect on DHA levels [21].
Furthermore, vegetarians who were given a-LNA supple-
ments showed no change in their DHA levels [22,23].
Thus, incorporating direct sources of DHA may be an
important consideration, particularly for those with
increased needs (e.g. pregnant and lactating women)
and those who are at a greater risk of poor conversion
(e.g. elderly people, people with neurological disorders
and premature infants). Finally, regardless of age and
gender, to ensure physical, mental and neurological
health, vegetarians/vegans and those who do not con-
sume adequate amounts of seafood are advised to
include direct sources of DHA in their diet [12].
Phytoplankton, single-celled creatures living in the
upper levels of the ocean and using solar energy to bio-
synthesize DHA molecules, are the primary producers of
DHA. Zooplankton, feeding on phytoplankton, also accu-
mulates [24–26]. Fish and marine animals have limited
ability to convert shorter fatty acid chains to DHA [27].
Consequently, fish and marine animals rely on DHA
uptake by the plankton (Figure 1). Therefore, DHA is
found concentrated in fish and marine animals feeding
on plankton. DHA is nutritionally active and is a critical
molecule for maintaining health and nutrition and pre-
venting diseases. The objective of this review is to

describe the factors by which DHA influences numerous
biological and physiological activities in the body,
including the brain. Finally, the areas considered on in
this review are as follows:

� Physiochemical properties of DHA: attributes to
membrane fluidity and membrane-related functions;

� Antioxidant activities of DHA, while it is itself a
highly polyunsaturated fatty acid;

� Effects of DHA on systems/tissues other than the
brain: May have beneficial effects on brain
functions;

� DHA improves memory, affects important molecular
substrates, and contributes to memory formation;

� Effects of DHA on neurogenesis, which participates
in learning and memory;

� Alzheimer’s disease (AD) pathology and effects of
DHA on it;

� Effect of DHA on lipid rafts, which act as organizing
centers for the assembly and trafficking of signaling
molecules;

� In vitro amyloid fibrillation and the effect of DHA on
it: Illustrates how DHA may inhibit in vivo amyloid
fibrillation;

� DHA can act as a signaling molecule: How DHA-
derived docosanoids work physiologically;

� Epidemiological studies: DHA and eventual cognitive
decline; and

� Conclusion.

Physiochemical properties of DHA

DHA, a highly polyunsaturated fatty acid of the x-3 ser-
ies with 22 carbon atoms and six cis double bonds
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Figure 1. (A) Flow of docosahexaenoic acid from phytoplankton to humans. Humans obtain DHA from marine/riverine fish that live
on phytoplankton and zooplankton. (B) Brain endothelial cells and astroglial cells have only limited capacity to biosynthesize DHA.
Dietary x-3 alpha-linolenic acid (a-NLA, C18:3, x-3) that comes from green, leafy vegetables and plant seed oil can be used as a
precursor; however, the pathway, is very slow and limited. Neurons lack delta desaturase that is required for the de novo synthesis
of DHA. Thus, preformed DHA is the ultimate source of brain DHA.
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(Figure 2(A)), has some unique physicochemical charac-
teristics, including multiple configurations. The presence
of six cis double bonds results in a folding on the fatty
acyl axis and allows DHA to form a curved (kinked or
bent) structure [28] (Figure 2(B–D)). Kinked DHA mole-
cules cannot fit well with straight-chain saturated fatty
acids or planar and rigid cholesterol molecules when
they are aligned in a membrane bilayer leaflet. The
omega end bends up to the aqueous interface [29] and
confers on DHA a spring-like vibrational motion. These
conformational properties of DHA result in a greater
degree of disorder during lipid packing or fluidity of the
membrane. The molecular volume of DHA is 355.112 Å3

and the molecule has 14 rotatable bonds as determined
by the Molecular Dynamic Software (Molinspiration).
DHA-containing phospholipids have a higher volume
per unit area than other (un)saturated fatty acid-contain-
ing phospholipids (Figure 2(E)). The presence of numer-
ous double bonds results in a lowering of the melting
point of DHA such that it is highly fluid and in liquid
form at low temperature. Inclusion of DHA in the mem-
brane decreases the phase transition temperature of the
bilayer, a property conducive to increased membrane
fluidity and flexibility. We have previously reported the
effects of in vitro treatment of DHA on rat thoracic endo-
thelial cells [30] and age-associated decrease in mem-
brane fluidity of endothelial cells [31]. We observed that
dietary administration of DHA in rats increased fluidity
of platelet membranes [32], neuron-synaptosomal mem-
branes [33] and liver canalicular plasma membranes
(Hashimoto et al., 2001)Q5 . Consistent with our results,
inclusion of DHA in artificial bilayer membranes

augmented the fluidity of the membrane. Many mem-
brane-associated functions, including drug permeability
[29,34], carrier-mediated transport [35,36], activities of
membrane-bound enzymes [37,38] and neurotransmis-
sion [39] are modulated by increased plasma membrane
fluidity. All of these membrane activities require micro-
aggregation and conformational changes of receptors/
enzymes in the membrane surface, which are eased by
the increased fluidity of the lipid bilayer. Because lipid
bilayers serve as the common ‘‘solvent’’ for membrane
proteins, altered fluidity of the membrane plausibly
alters protein functions. The modifications of the bilayer
physical properties were more pronounced with DHA
than with other polyunsaturated fatty acids [30,40].
Absorption of fatty acids in the intestine is enhanced by
increased concentrations of polyunsaturated fatty acid
[41,42]. These results suggest that DHA is an important
structural fatty acid in bilayer membranes, such as syn-
aptic plasma membranes, retinal outer segment mem-
branes, and bile canalicular plasma membranes [43] and
sperm tails of humans [44], monkeys [45] and mice [46].
The importance of these cells or cellular structures for
the survival of animal species, including humans, is well
known. DHA-induced alteration of membrane fluidity
may affect the neuronal function, leading to changes in
the brain function. Yehuda et al. [47] reported that poly-
unsaturated fatty acids may affect brain functions by
modifying: (i) membrane fluidity, (ii) activity of mem-
brane-bound enzymes, (iii) number and affinity of recep-
tors, (iv) function of ion channels, (v) production and
activity of neurotransmitters, and (vi) signal transduc-
tion, which control the activity of neurotransmitters and
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Figure 2. DHA has 22 carbon atoms and six double bonds. (A) (stick structure): straight-chain DHA that contains an unsaturated
bond, originating at the third carbon from the methyl end. (B) 2D bent stick structure of DHA. (C) 3D conformer of DHA. (D) Van
der Waals surface area with a cone-shaped DHA that gives the bilayer membrane a negative curvature. (E) Inter-molecular distance
in the membrane leaflet is increased because of the extended conformation of DHA, which ultimately affects membrane fluidity-
dependent receptor/enzyme activities.
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neuronal growth factors. Studies have shown that DHA
supplementation modifies both the structure and func-
tion of membranes. In particular, DHA-containing phos-
pholipids help maintain proper membrane fluidity in
neuronal cells, which is important for signal transduction
and membrane permeability [48]. Moreover, an
increased incorporation of DHA into synaptic mem-
branes reportedly improves signal transduction involving
phospholipase A2 and/or C [49], enhances glutamatergic
[50] and dopaminergic [51] synaptic activities, and
enhances [3H]-noradrenaline release in SH-SY5Y cultured
cells [52]. These studies suggest that DHA-induced
changes in membrane fluidity affect various membrane
functions, such as binding of hormone and growth factor
receptors, activity of membrane-bound enzymes, trans-
port of ions, and release and uptake of neurotransmitters
of nerve cells; together, these changes ultimately influ-
ence the underlying brain function. Neuronal membrane
fluidity is also crucial for receptors on the synaptic mem-
branes to be able to recognize neurotransmitter-contain-
ing vesicles and transmit the messages that they
contain. If the nerve cell membrane becomes too rigid,
receptors on the membrane become less competent of
recognizing neurotransmitters and transmitting signals
to the nerve cell. Thus, membrane composition and flu-
idity status influence the ability of nerve cells to commu-
nicate with each other, which is essential for proper
brain function. In concordance, we previously reported
that neurobehavioral effects, particularly avoidance-
related memory function, are associated with neuronal
plasma membrane fluidity [32,33].

Antioxidant activities of DHA

Although it is a highly polyunsaturated fatty acid, aston-
ishingly, DHA can act as an antioxidant in the brain
(Figure 3). An increase in the number of double bonds
renders cells more susceptible to damage by oxidation
[53]. This notion may hold for auto-oxidation or in vitro
oxidation. The brain accounts for less than 2% of the
total body weight, whereas it accounts for approxi-
mately 20% of the total oxygen demand of the body.
The antioxidative defense of the brain is poorer than
that of the other organs of the body, including heart,
liver and kidneys. The brain uses an uninterrupted sup-
ply of oxygen for continuous neurotransmission activity.
The cells of the brain begin to die if it does not receive
oxygen for only 3 min. Approximately 30–50% of total
human cerebral dry weight is lipid,containing about
70% phospholipids, and 30–40% of the phospholipids
are related to DHA. Under these vulnerable conditions,
why is the brain enriched with a relatively large amount
of DHA? Nature never selects detrimental elements

without evolutionary consequences. So, why the dis-
crepancy between the expected high oxidizability of the
DHA molecule, owing to its high degree of unsaturation,
and experimental results showing no change or even
decreased lipid peroxidation when brain tissue is abun-
dant in DHA? These support the view that the in vivo
results might be quite different from the in vitro results.
Interestingly, we have previously reported that the mere
presence of DHA in brain, liver or endothelial cells does
not predispose the membranes to oxidative stress but
rather ameliorates oxidative stress. We inferred that the
presence of x-6 acids, such as arachidonic acid (AA,
C20:4, x-6), is attributable to the increased tendency of
these cells to undergo oxidative insults. AA, which is
also active in signal transduction pathways in a wide
variety of cells, plays a major role in the increased pro-
duction of lipid peroxide (LPO), an indicator of oxidative
stress [54]. The concentration of AA was positively corre-
lated with levels of LPO; however, the concentration of
DHA was negatively correlated with levels of LPO. We
found that the molar ratio of DHA/AA acted as an indi-
cator of antioxidative defense. The cause–effect relation-
ship between DHA and oxidability is thus far from clear.
Oral administration of DHA was accompanied with an
increase in the antioxidant activities, such as catalase,
glutathione peroxidase (GPx) and glutathione reductase
(GR) enzyme activities [55,56]. We also found that diet-
ary DHA increases mRNA expression of catalase and GPx
in skeletal muscles of rats (unpublished data). There are
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Figure 3. The figure depicts the antioxidant activity of DHA in
brain tissues. Cellular oxidation and/or oxidative bursts/environ-
mental factors lead to oxidation of O2 and generation of super-
oxide anion (O��2 ). Superoxide dismutase (SOD) neutralizes O��2
to another reactive oxygen species, H2O2, which after extrac-
tion of another electron produces a highly reactive hydroxyl
radical (�OH) species. Hydroxyl radical oxidizes cellular compo-
nents, including proteins, lipids, and DNA, leading to neurode-
generation. DHA inhibits the neurodegenerative process by
increasing antioxidant activity, including catalase, glutathione
peroxidase and glutathione reductase.
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also a few reports of the effect of DHA on the genetic
expression of antioxidative enzymes. DHA increases
expression of GPx in the brain hippocampus [57].
Dietary polyunsaturated fatty acids also increase the
mRNA levels of catalase and glutathione peroxidase in
hepatic tissues [58]. Finally, DHA being a member of the
highly unsaturated fatty acid family can act as an anti-
oxidant even in the oxidatively vulnerable organs
including the brain.

Effect of DHA on systems/tissues other than
the brain: may have beneficial effects on brain
function

Hypertension is emerging as an important risk factor for
dementia and Alzheimer’s disease (AD) [59]. Both experi-
mental animals and epidemiological studies suggest a
role of vascular disease in the pathology of AD [60].
Moreover, risk factors for CVD and AD are generally
shared [61], and risk factors for CVD are known to accel-
erate AD [62]. For example, ischemic white matter
increases with an increase in blood pressure and
appears to co-occur with AD. Therefore, addressing CVD
risk factors is an important and reasonable approach for
reducing the risk of AD and dementia. One of the most
important risk factors for CVD is low intake of marine
(x-3) fatty acids, which is typical of Western diets
[63–65]. In addition, dietary DHA may be beneficial, as it

increases cerebral levels of the vasodilator acetylcholine,
and thus, may reduce hypertension. Indeed, DHA has
been shown to improve passive avoidance ability in
stroke-prone spontaneously hypertensive rats [66]. We
have previously reported that oral administration of
DHA decreases blood pressure in the rats. The beneficial
effects were attributed to decreased release of nor-
adrenaline from the peripheral blood vessels [67]
(Figure 4). The decreased release of noradrenaline from
blood vessels was accompanied by an increased release
of purine compounds, including ATP, ADP, AMP and
adenosine. We hypothesized that the increased release
of purines was associated with a DHA-induced increase
in the membrane fluidity of endothelial and smooth
muscle cells [67]. To test this hypothesis, we incubated
endothelial cells, derived from rat thoracic aorta, with
DHA in culture medium to enrich the plasma membrane
with DHA [30]. DHA significantly increased plasma mem-
brane fluidity with concurrent increases in the levels of
DHA and total unsaturation index and decreases in the
levels of cholesterol in the plasma membranes of endo-
thelial cells. DHA also increased the plasma membrane
fluidity of smooth muscle cells (yet unpublished), plate-
lets and liver cells, concurrently with inhibition of plate-
let aggregation [32,33], canalicular-plasma membrane
bound-Mg þ 2-ATPase and 5-nucleotidase enzyme activ-
ities. All these results agree well with the proposition
that DHA-induced increases in membrane fluidity,
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Figure 4. Effects of oral administration of DHA on hypertension and associated mechanism of actions of DHA in rats. (A) After
chronic administration of DHA for 12 weeks, blood pressure was monitored. At the end of the dietary regimen, the rats were killed
and the thoracic blood vessels were cleaned and subjected to organ bath/transducer. Then, stimulated and basal levels of total
purines (ATP, ADP, AMP and adenosine) were measured. Plasma and arterial levels of DHA and total cholesterol were measured.
Plasma noradrenaline levels were also determined by HPLC. (B) Proposed mechanism of action of DHA. Increased release of total
purines inhibited the release of adrenaline from the sympathetic adrenergic nerve endings with a concurrent increase in the level
of endothelial derived relaxing factor (EDRF) and all these finally reduced the blood pressure. The membrane DHA increased the
membrane fluidity, which is believed to ameliorate membrane associated functions involved in the regulation of blood pressure.

CRITICAL REVIEWS IN BIOTECHNOLOGY 5

Shahdat
Sticky Note
32

Shahdat
Sticky Note
34

Shahdat
Inserted Text
32

Shahdat
Cross-Out

Shahdat
Sticky Note
Please insert here [34]

Shahdat
Inserted Text
32

Shahdat
Inserted Text
[34].

Shahdat
Cross-Out



at least partially, affect membrane-related functions that
influence hypertension, platelet aggregation and other
related cardiovascular functions. With the results of
these investigations, we also showed that polyunsatur-
ated fatty acid DHA might provide beneficial effects
other than those provided by its anti-hypercholesterole-
mic/anti-hypertriglyceridemic effects. Furthermore, in a
meta-analysis of 48 studies of more than 100,000 sub-
jects, fish oil consumption statistically improved cardio-
vascular health and overall health [68]. These benefits
have been attributed mainly to its positive effects on tri-
glyceride, lipoprotein metabolism, healthy blood flow,
platelet function, vasodilation and vascular tone [69].
Finally, if hypertension is definitely a risk factor for AD
or shares the same pathophysiology, it is reasonable to
expect that measures, such as increasing the intake of
dietary DHA, directed at hypertension control will
enhance cognitive function. This might be an important
public health goal of DHA.

DHA improves memory

Memory, which denotes the recall of past events or
information in the absence of the original, can be meas-
ured by testing the changes in an animal’s behavior dur-
ing/after learning processes. The hippocampus and the
cerebral cortex are referred to as the key structures of
memory formation [70]. To our knowledge, direct bene-
ficial effects of DHA on memory were first reported by
Gamoh et al. [71] at our laboratory. DHA (300 mg/kg/
day, for 10 weeks) fed to male Wistar rats (tested by
radial maze tasks and/or active shuttle avoidance appar-
atus) (Figure 5(A), (A1) and/or (B,B1)) significantly ame-
liorated learning-related memory in DHA-deficient rat
groups. Although the mechanism is unclear, corticohip-
pocampal enrichment of DHA was positively correlated
with improvement of memory [71,72]. Lim and Suzuki H
[73] also reported that dietary administration of DHA to
young mice for 4–7 months improved their spatial cog-
nition learning ability. Although at that time we lacked
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Figure 5. (A) Evaluation of learning-associated memory in DHA-fed rats in the eight-arm radial maze experimental paradigm.
Memory (long-term) was measured by determining the number of reference memory errors (RMEs) (repeated entry into baited/
unbaited arms) of young rats in the radial maze task [71]. (A1) The number of RMEs over blocks of trials. Each value denotes the
number of RMEs made until the rat acquired all the rewards; results are mean ± SE in each block of six trials. (B) Evaluation of
memory of DHA-fed rats by active shuttle avoidance apparatus [72]. The performance of each rat was automatically recorded at
each trial, and learning ability was determined as the number (#) of avoidance responses/session and the response latency in avoid-
ing and escaping/UCS shock. The upper the number of avoidance responses, the higher the learning ability. One session consisted
of 10 trials. Each rat had a total of three sessions, at days 7, 14 and 21 after surgery. (B1) Mean total number of ‘‘avoidance
responses’’ at 7, 14 and 21 days after the commencing of surgery. Values are mean ± SE for each group of 30 trials. DHA was
administered at 300 mg/kg/day.
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data describing the mechanism(s) of action of DHA, our
investigation supported the notion that oral administra-
tion of DHA ameliorates learning-related memory of rats
[71]. The hippocampus plays a vital role in learning and
memory [74], and synaptic plasticity of the hippocam-
pus promotes to the acquisition and retention of memo-
ries [75,76]. To reveal the mechanism of action of DHA,
we assessed the levels of some important proteins
responsible for memory formation along with some of
their mRNA expression levels.

DHA affects important molecular substrates and
contributes to memory formation

The mechanism(s) of action that underlies learning and
memory is changes in synaptic plasticity (synaptic con-
nectivity between neurons) with experience. Synaptic
plasticity is umpired by long-term potentiation (LTP)
[77], which involves an interaction between an extracel-
lular ligand and membrane-bound receptors and a ser-
ies of downstream signaling events in postsynaptic
neurons, very often followed by retrograde signals to
the presynaptic cells. The purpose of all these events is
to make (synthesize) new proteins and sculpt new syn-
apses, and finally to increase the connectivity among
neurons. Accordingly, new synaptic infrastructures are
formed for a given activity (memory) by changing the
numbers and shape of the synapses or functions over
periods of time that might last for a few seconds,
minutes or hours or even for a lifetime. It is then said
that a memory has been formed. Depending on time, it
is referred to as a short-term, long-term or other kind of
memory. Plasticity thus describes how experiences
restructure neural pathways in the brain. Long-lasting
functional changes in brain neurons occur when we
learn new things or memorize new information for a
longer period of time, and vice versa. For the above rea-
sons, LTP is said to be the foundation of memory

formation. LTP can be induced by the activation of the
NMDA receptor (NMDAR). Inhibitors of NMDARs such as
AP5 [78] stop the induction of LTP in the hippocampus.
Transgenic mice with increased NMDAR expression,
showed increased memory [79]. The NMDAR subunits
NR2A and NR2B are associated with activity of the
receptors. Disruption of hippocampal NR2A and NR2B
subunits is associated with impairment of LTP and mem-
ory [80–82], signifying that expression of both NR2A and
NR2B subunits is important for memory formation. How
does an increase in the level of neuronal DHA affect syn-
aptic function? Dietary supplementation with DHA
restores neurotransmitter release and impairment in
expression of LTP. DHA is required for induction of LTP
[83,84]. We accordingly investigated the effect of
chronic oral administration of DHA on the NMDAR-sub-
unit proteins, including NR2A and NR2B and other syn-
aptosome-associated proteins. This included presynaptic
synaptophysin and presynaptic density protein-95 (PSD-
95), and brain derived neurotrophic factor (BDNF) and
BDNF’s receptor tyrosine protein kinase B (TrKB)
(Figure 6). The mRNA levels of both NR2A and NR2B sig-
nificantly increased in the hippocampus of DHA-fed rats,
compared with those in control rats. The oral adminis-
tration of DHA to rats increased the expression of NR2A,
whereas the expression of NR2B and TrKB was
decreased in the cortex. At present, we are not certain
about the (differential) effect of DHA on the expression
patterns of NR2A/NR2B and/or TrKB in the brain.
Literature reviews, however, suggest that these four
subunits of NMDARs are distinct in terms of their distri-
bution, properties and regulation. Thus, the reason why
DHA exhibited a differential effect on the expression of
these proteins remains unresolved. If the roles of
NMDAR appear to be valid, our data suggest that dietary
supplementation with DHA can modulate LTP, hence
can help to form memory. The impairment of memories
of control rats also coincided with a significant decrease
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Figure 6. Effect of oral administration of DHA on the relative protein levels of brain-derived neurotrophic factor (BDNF) (A), synap-
tophysin (B) and post-synaptic density protein-95 (PSD-95) in the hippocampus. (D) Effect of oral administration of DHA on the
mRNA levels of NMDA-receptor subunits NR2A and NR2B and tyrosine receptor kinase B (TrKB), the receptor of the BDNF in both
the cortex and hippocampus. The DHA significantly increased both the translation (protein levels) and transcription (mRNA levels)
of important cognition-related proteins.

CRITICAL REVIEWS IN BIOTECHNOLOGY 7



in the mRNA levels of the TrKB, and protein levels of
the PSD-95, synaptophysin and BDNF in the hippo-
campus and cortex. NMDARs interact with the BDNF/
TrkB pathway to support synaptic plasticity [85].
NMDARs remain anchored to PSD-95, aiding in signal
trafficking of NMDARs and LTP regulation [86]. BDNF/
TrKB plays important roles in consolidation of memo-
ries [87]. The presynaptic membrane-associated pro-
tein synaptophysin increases spatial memory [88] and
is also involved in the regulation of the kinetics of
synaptic vesicle endocytosis [89]. Taken together, the
results of our DHA-study indicate that decreased lev-
els of these memory-related protein-substrates in
control rats may have accounted for the decreased
or poor expression of memory. Consistent with the
results of other studies, DHA increased the levels of
BDNF [90], NR2B [91], and TrKB [90] in the hippo-
campus. Therefore, the DHA-instigated increased
expressions of TrKB, NR2A/NR2B subunits of NMDAR
and BDNF, synaptophysin, and PSD-95 levels may
have been responsible for the increased memory of
DHA-fed rats. We have previously reported that diet-
ary DHA increases the expression of hippocampal Fos
protein [92], encoded by the immediate early gene
c-fos, a transcription factor and a functional marker
of neuronal activity. In awake rats, a rapid increase
in the level of Fos-related protein is associated with
LTP generation in the dentate gyrus [93]. All these
findings suggest that DHA directly or indirectly

regulates the expression of various genes and may
exert increasing effects on learning and memory.

Effects of DHA on neurogenesis and
improvement of memory

The dentate gyrus is a part of the hippocampus and is
critical for forming/storing spatial memories. It is one of
the regions in the brain where neural progenitor cells
constantly produce new neurons (i.e. undergo neuro-
genesis), which then integrate into the new neural net-
work and form new synapses with other numerous
neurons. Although the exact mechanisms remain
unknown, neurogenesis is believed to participate in
learning and memory [94]. Therefore, we studied
whether DHA affects the differentiation of neural stem
cells (NSCs) both in vitro and in vivo conditions [95].
NSCs isolated from 15.5-day-old rat embryos were
propagated as neurospheres and cultured with or with-
out DHA for the periods of 4 and 7 days. DHA signifi-
cantly elevated the number of Tuj1-positive neurons
when compared with that of the control on both 4 and
7 culture days, and the newborn neurons in the DHA
group were morphologically more mature than those in
the control (Figure 7, left panel). Thus, DHA stimulates
the differentiation of neural stem cells into neurons
by helping the exit from cell cycle and suppressing
the cell death. Furthermore, dietary chronic administra-
tion of DHA significantly increased the number of
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Figure 7. Left panel: (A) confocal images of Tuj1 immunostaining in control (A) and DHA groups (B) on day 7, Tuj1 (green), PI
(red). Scale barQ6 , 100 lm. (C) Quantification of Tuj1 immunoreactive cells in control and DHA groups on days 4 and 7. Data are
shown as means ± SEM obtained from five to six independent cultures. Seven random fields were counted in each culture.
p< 0.0005. Right panel: (A) neuronal identification of newly-divided cells in the adult rat DG. (A, B): confocal images of DG in
vehicle (A) and DHA-treatedQ7 (B) rats. BrdU (red), NeuN (blue). Scale bar þ50 lm. (C) BrdU(þ)/NeuN(þ) newborn neuron in the
white box in B. (D) Quantitative analysis of the number of newborn neuron (a) and reference volume (b) in the entire granule cell
layer of the dentate gyrus (DG) in the control and the DHA rats. Data are shown as means ± SEM obtained from six hemispheres in
three animals. p< 0.005 (with permission of Elsevier).
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5-BrdU(þ)/NeuN(þ) newborn neurons in the granule-
cell layer of the dentate gyrus in the adult rats (Figure 7,
right panel). These results indicate that DHA efficiently
stimulates neurogenesis process both in vitro and in vivo
conditions, suggesting that it modulates hippocampal
function regulated by neurogenesis [95]. Therefore,
DHA-induced enhancements of (spatial) memory might
be mediated by DHA-induced escalations in neurogen-
esis in the hippocampus. The molecular mechanism of
DHA-induced neurogenesis is complicated and remains
to be clarified. For differentiation, neural cells must be
arrested at the G1 phase, and has to arrive at the G0
phase without passing the cell-cycle restriction-point.
The repressor-type bHLH transcription factors, including
Hes1 and Hes5 support NSCs in the undifferentiated
state and/or delay neuronal differentiation [96,97]. On
the other hand, the activator-type bHLH transcription
factors, including neurogenin, Mash1 and NeuroD
enhance neuronal differentiation. Katakura et al. [98]
reported that DHA increases the differentiation of neural
stem cells by stimulating activator-type transcription
factors (e.g. neurogenin, Mash1, NeuroD) by arresting
the cell cycle at the G0 phase, with concomitant inhib-
ition of the repressor-type transcription factors, includ-
ing Mes1, which otherwise inhibits the transcription/
translation of the activator-type transcription factors
(Neurogenin, Mash1, NeuroD) (Figure 8). These results
thus show that DHA influences progenitor cells,

directing their differentiation and transformation into
new neurons leading to maturity, which in turn, in vivo,
form synapses to increase synaptic connectivity (cir-
cuitry), and thereby contribute to new learning and
memory.

Alzheimer’s disease pathology and effects of
DHA on it

Since AD is a progressive neurodegenerative disorder,
regeneration of neurons from neural stem cells would
thus have possible therapeutic values. If DHA could act
as a stimulus of neurogenesis in the brain, it would be
an ultimate brain food. Usually, AD is characterized by a
deterioration of memory and cognition [99].
Neuropathologically, AD is identified by three major
signs: amyloid-b plaques (Ab), neurofibrillary tangles
(NFT), and synaptic loss [100]. The amyloid beta pepti-
des that are the main components of amyloid aggre-
gates are Ab1–42, Ab1–40 and Ab25–35. The purified
amyloids are commercially available, enabling us to pre-
pare model rats by directly infusing amyloid beta pepti-
des into the rat brain ventricle, from which Abs diffuse
into the surrounding hippocampus and cortical tissues,
mimicking the deposition of Ab seen in AD patients
(Figure 9, left panel). We used third-generation
DHA-deficient rats to generate AD model rats, with each
generation fed on fish oil-deficient diets [71]. These
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Figure 8. Schema of the effect of DHA on the cell cycle of neural stem cell progenitors. DHA inhibits the repressor-type transcrip-
tion factor Hes1 and stimulates activator-type transcription factors including NeuroD. DHA also increases the brain-derived neuro-
trophic factor (BDNF) and its receptor TrKB. DHA-instigated downstream signal from BDNF-TrKB activation may have activated the
cAMP-bound response-element binding protein (CREB), initiating the transcription and translation of other effector/relay proteins.
These proteins may be the pre-/post-synaptic proteins (e.g. synaptophysin/PSD-95) required for new synaptogenesis or receptors
such as NMDA-receptor subunits NR2A and NR2B. Addition of DHA to the stem cell culture and/or oral administration of dietary
DHA to rats significantly ameliorated these neurogenesis/synaptogenesis-associated proteins, with a concurrent amelioration of
learning and memory of elderly/Alzheimer’s disease model rats.
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produced DHA deficiency in both brain and serum of
the rats. Under these conditions, the effect of oral
administration of DHA was prominent in normal aged
rats. However, such a direct manipulation of human
brain DHA concentration is not possible, for ethical rea-
sons. These results stimulated us to investigate the
effect of oral administration of DHA on cognitive impair-
ment of Ab-infused AD model rats [72,101]. After 12-
week oral administration of DHA, increases in brain DHA
levels were significantly associated with amelioration of
learning-related memory of the rats. These results pro-
vided us with an ample opportunity to study the effect
of DHA in AD model rats maintained in DHA-deficient
conditions for three generations. The oral administration
of DHA for 12 weeks to Abeta-infused AD model rats
significantly improved memory loss. The mechanism of
the ameliorative effect was associated with: (i) increases
in the levels of DHA and decreases in levels of arachi-
donic acid in both brain cortex and hippocampus, with
resulting increases in the molar ratios of DHA/AA;
(ii) decreases in the levels of LPOs in the

cortex–hippocampus of DHA-fed AD model rats; (iii)
decreases in reactive oxygen species (ROS) levels in syn-
aptosomal plasma membranes; (iv) decreases in the lev-
els of histone-associated DNA fragments, an apoptosis
marker; (v) decreases in cortical lipid-raft cholesterol; (vi)
increases in lipid-raft DHA levels and (vii) decreases in
the amyloid burden in the cortex of AD model rats.
Several studies have reported the beneficial effects of
DHA in AD model animals (Figure 9, right panel). Dietary
supplementation of DHA in an APP/PS1 transgenic rat
model reduced behavioral deficits and Ab pathology,
with concurrent reductions in prefibrillar toxic oligomers
[102]. Moreover, DHA supplementation decreased Ab
accumulation in the APP/PS1 transgenic mouse models
[103,104], particularly at the earlier stages of disease
progression [105–107]. The anti-Ab effects of DHA sup-
plementation have been primarily ascribed to its cap-
ability to reduce Ab production via various mechanisms,
including modulating APP localization and reducing a-
and b-secretase enzyme activity [103], reducing PS1 lev-
els [106], or reducing b- and c-secretase enzyme activity
and increasing a-secretase enzyme activity [108]. All
these data were compatible with the expected positive
effects of DHA on the AD model rats. In agreement with
other studies, there is a link between DHA and brain
cognition in AD.

Effect of DHA on lipid rafts

Lipid rafts or caveolae are specialized membrane struc-
tures consisting of saturated fatty acid- and cholesterol-
rich membrane-invaginated floating microdomains.
They harbor many key proteins and serve as signaling
platforms to facilitate the transfer of substrates and pro-
tein–protein and protein–lipid interactions to facilitate
specific signal transduction in living cells (Figure 10(C)).
Functionally, lipid rafts are also involved in intracellular
trafficking of proteins, lipids, secretory-endocytotic path-
ways, signal transduction, inflammatory and proteolytic
signals [109]. The enrichment of DHA in these lipid-raft
domains, concurrently with expulsions of cholesterol
and saturated fatty acid, has been attributed to the
beneficial effects of DHA on signal transduction in ret-
inal endothelial cells and immunoresponse by T cells
[110,111]. The augmented presence of Ab in blood
plasma is a potential noninvasive diagnostic marker for
AD [112,113]. Ab has previously been shown to be cap-
able of binding to RBCs in in vitro as well as in vivo ani-
mal studies [114]. Similarly, in humans, Ab in blood
plasma may readily contact RBCs in the circulating
blood and impair their oxygen binding capacity
[115,116]. Indeed, we (Hashimoto et al., 2015) Q5and
others [114,117] have found that Ab can bind to RBCs to
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Figure 9. Left panel: preparation of amyloid beta peptide-
infused AD model rats. A mini-osmotic pump (alzet 2002;
Durect Co., Cupertino, CA), containing either Ab(1–40/42) solu-
tion or the vehicle-alone was quickly inserted in the upper-
backs of the rats. The opening of the pump was inserted
3.5 mm into the left ventricle (right and left, relative to
Bregma; 0.8 mm posterior, 1.4 mm lateral) and attached to the
skull with small screws and dental glue. Oral administration of
either DHA emulsion and/or gum Arabic solution (vehicle of
DHA) was restarted 2 days after surgery and continued until
the end of the experiment. Right panel: at the end of the
behavioral experiments (8-arm radial maze/shuttle avoidance
apparatus), the rats were killed and several parameters (as
shown in the figure) were measured. The oral administration of
DHA significantly ameliorated these parameters. A downward
arrow indicates a decrease and an upward arrow an increase.
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induce oxidative injury. Moreover, Ab induces the bind-
ing of erythrocytes to endothelial cell layers and
decreases endothelial viability [118]. Together, these
studies suggest that Ab plays a key role in the blood
and oxidatively impairs the function of RBCs, which is
important for adequate O2 supply to the brain. Kiko
et al. [119] reported that human RBC-Ab1–40 and -Ab1–42

levels increased with aging and imply a pathogenic role
for RBC-Ab. RBC membranes in AD patients are injured
by unavoidable exposure to Ab [119]. The reasoning is
that once amyloid b peptides (Abs) of Alzheimer’s dis-
ease build in the blood circulation, they are capable of
binding RBCs and inducing hemolysis. The mechanisms
of the interaction between RBC and Ab are largely
unknown. Very recently, we investigated whether Ab1–42

interacts with caveolin-1-containing detergent-resistant
membranes (DRMs) of RBCs and whether the interaction
could be modulated by dietary pre-administration of
DHA. DHA pre-administration to rats inhibited hemolysis
by Ab1–42 (Hashimoto et al., 2015)Q5 . This activity was
accompanied by increased DHA levels and membrane

fluidity and by decreased cholesterol levels, lipid peroxi-
dation, and reactive oxygen species in the RBCs of the
DHA-pretreated rats, suggesting that the antioxidant
activity of DHA rescues RBCs from oxidative damage by
Ab1–42. Furthermore, to supply adequate oxygen to the
brain, RBCs must deform as they pass through the nar-
row pores of capillaries in the brain, and this deformabil-
ity decreases when Ab is bound to them [116].
Therefore, the interaction of Ab with RBCs may decrease
blood flow, impair oxygen delivery to the brain, and
contribute to brain hypoxia, thereby potentially facilitat-
ing AD. RBC deformability is also impaired by reduced
membrane fluidity, which is reduced by decreased
membrane fatty acid unsaturation [120] and increased
by lipid peroxidation [121] and/or membrane choles-
terol. Moreover, increased RBC-membrane cholesterol is
accompanied with reduced oxygen unloading to the tis-
sues [122]. Thus, DHA-induced improvements of these
parameters in RBCs may improve the detrimental effects
of Ab on RBCs and subsequently enhance the brain
function in patients with AD. The level of caveolin-1 was
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Figure 10. Effect of oral administration of DHA on the raft-driven clearance of Ab1–42. DHA pre-administration significantly
increased the accumulation of fluorescently labeled Ab1–42 (TAMRA-Ab1–42) in the lipid-rafts of RBCs ghost membranes both in
vitro (A) and in vivo conditions (B). (C) Schema of ghost bilayer, lipid-rafts (c1) and lipid-raft-bound Ab1–42 (c2).
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increased in the DRMs of DHA-preadministered rats.
Binding between Ab1–42 and DRMs of RBC signifi-
cantly increased in DHA-pretreated rats (Figure 10(A)).
When fluorescently labeled Ab1–42 (TAMRA-Ab1–42)
was directly infused into the bloodstream, it again
occupied the caveolin-1-containing detergent resist-
ance membrane (DRMs) of the RBCs from the DHA-
preadministered rats to a larger extent, indicating
that circulating Abs interact with the Caveolin1-rich
rafts of DRMs and that the interaction is stronger in
DHA-enriched RBCs (Hashimoto et al., 2015)Q5 (Figure
10(B)). We described the mechanisms as follows:
DRM vesicles displayed Abs bound onto their surface.
Ab might also bind with caveolin1-containing lipid-
rafts of RBCs. Then, the bound-Ab is subjected to
protease-degrading enzymes present on their surfaces
via their raftal pockets, which deliver the Abs to the
liver for detoxification by liver proteolytic enzymes
such as cathepsin D (Hashimoto et al., 2015)Q5 .
Whatever the mechanism, DHA may help in the
clearance of circulating Abs by increased raft-depend-
ent degradation pathways and implicate to therapies
in Alzheimer’s disease. The results of this study are
in agreement with the hypothesis that the enhance-
ment of DHA in RBCs decreases the plasma burden
of amyloids. Finally, alterations in morphology initi-
ated from modifications caused by toxic interactions
of oligomeric Ab with RBCs, and these interactions
involved caveolin-1-rich lipid-rafts. However, these
RBC-disrupting actions were improved by the pread-
ministration of DHA, leading to antioxidation, amyloid
clearance and changes in the membrane properties
of RBC.

Amyloid fibrillation in vitro and the effects
of DHA

The chronic oral administration of DHA, besides playing
a beneficial role in cardiovascular system, improves the
memory-related learning ability in rats, and the level of
DHA is depleted in the brains of AD [123,124], which fre-
quently exhibits a decline in learning-related memory.
Dietary administration of DHA protects against memory
loss [72] and improves the impairment of memory-
related learning ability of Ab-infused AD model rats
[101]. AD is characterized by aggregation of misfiled
Abs, including Ab1–42, Ab1–40 and Ab25–35 in affected
brains. The mechanism of Ab-fibrillation and the rela-
tionship of Ab fibers and AD pathology are not clearly
known, but involve a series of stages, including a-helix
to b-sheet transformation, nucleation, oligomerization,
beading of oligomers to matured fibers, and finally,
coalescence of fibers into larger aggregates [125]. As we

have previously reported, dietary DHA decreases the
brain amyloid burden [72] or even helps in plasma clear-
ance of amyloid levels by the RBC lipid-raft-driven
mechanism (Hashimoto et al., 2015) Q5. Thus, we also
wished to determine whether DHA directly inhibits the
degree of fibrillation conducted in in vitro conditions.
DHA (5.0–20 lM) significantly inhibited the in vitro fibril-
lation of Ab1–42, Ab1–40, and Ab25–35, as determined by
ThT-fluorescence fluorospectrometry, laser-confocal
microfluorescence and transmission electron micros-
copy (TEM) (Figure 11) [126–128]. By Western blotting, it
was found that DHA inhibits the Ab1–40/42 at the di-to-
tetramer species [126,128], while Ab25–35 was inhibited
at the decamer level during their route to matured
fibers [127]. Recent findings suggest that soluble Ab
oligomers, rather than matured-fibrils, correlate
intensely with neuronal dysfunction, damage and AD
symptoms [129]. If Ab1–42-oligomers could be inhibited
in vivo, as they are in vitro, again, DHA would be a wor-
thy therapeutic agent against Ab-induced AD. DHA is an
essential brain nutrient and can easily cross the blood–-
brain–barrier, with risk of its cytotoxic side effects being
minimal. Finally, using antioligomer antibody, it was
shown that DHA can inhibit the oligomers of the Ab1–42

amyloid species, the most toxic species that affects
the brains of AD patients. If so, it is reasonable to
conclude that Ab-induced toxicity imparted to neur-
onal SH-S5Y5 cells would also be inhibited in the
presence of DHA. As expected, DHA led to significant
anti-amyloidogenic toxicity, as indicated by higher
MTT reduction efficiency, than that in untreated cells
[128]. Cells treated with Ab1–42 for 48 h displayed
altered neuritic budding with dystrophic axonic/den-
dritic systems, whereas Ab1–42þDHA-treated cells
showed well-defined axonic/dendritic sprouting proc-
esses and high viability, including full and spherical
somas [128]. Therefore, the in vitro inhibitory effect
of DHA on fibrillation (or intermediate species – dur-
ing fibrillation) and the associated anti-neurotoxicity
was also manifested in the in vitro cell culture model.
Although there have been few in vivo reports on the
effects of DHA on Ab-aggregation, some results have
indicated that oral dietary DHA supplementation may
decrease the brain concentration of toxic Ab oligom-
ers, as measured using a conformation-specific anti-
oligomer antibody (A11) in transgenic rat (APP/PS1)
[102] and mouse (3xTg-AD) [106] models of AD.

DHA can act as a signaling molecule

DHA is now recognized as an important signaling mol-
ecule, particularly in brain function. Eicosanoids such as
prostaglandins, thromboxanes and leukotrienes, are
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signaling molecules synthesized from the essential fatty
acid arachidonic acid (AA), regulate blood clotting and
important immune functions [130]. EPA, the precursor of
DHA, can also act as a substrate for AA-cascade
enzymes, but it induces the production of alternative
eicosanoids such as 3-series prostanoids and 5-series
leukotrienes, which are considered to be anti-inflamma-
tory and/or less proinflammatory than AA-derived
metabolites [131]. However, endogenous signaling by
DHA-derived mediators (docosanoids) and their roles in
brain circuitry have recently being reported, following
the surprising discovery that a rapid increase in free
DHA pool size occurs at the onset of seizures or brain
injury. This phenomenon was later related to a bioactive
docosanoid, namely neuroprotectin D1 (NPD1), formed
from free DHA through 15-lipoxygenase-1 (15-LOX-1)
[132]. Recently, we reported that a concentrated n-3

fatty acid formulation containing EPA and DHA could
improve the learning ability of aged rats and whether
this specific outcome had any relationship with the
brain levels of EPA-derived eicosanoids and DHA-
derived docosanoids. The rats were tested for reference
memory errors (RMEs) and the working memory errors
(WMEs) in an eight-arm radial maze. The fatty acid pro-
file was analyzed by GC, whereas brain eicosanoids/
docosanoids were measured by LC–ESI-MS–MS analysis.
DHA-derived mediators showed a significant negative
correlation with the number of RMEs, whereas EPA-
derived mediators showed no relationship (Hashimoto
et al., 2015) Q5. The question may arise as to how DHA-
mediators affect memory-related brain activity
and whether DHA-induced ameliorative effects on mem-
ory (in aged or AD model rats) underlie the
phenomena. This question awaits further investigation.
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Figure 11. (A) Primary sequence of Ab1–42, Ab1–40 and Ab25–35. (B) Transmission electron micrographs (TEM) of Ab1–42, Ab1–40 and
Ab25–35 fibers. (C) Effect of DHA (20 lM) on the in vitro fibrillation of Ab1–42, Ab1–40 and Ab25–35. DHA significantly decreased the
amount of fibers, including oligomers (data not shown).
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The ligand-activated transcription factor peroxisome
proliferator-activated receptor-c (PPARc), which regu-
lates lipoprotein metabolism, adipogenesis and insulin
sensitivity, has been implicated in AD [133,134]. Fatty
acids bind to and activate peroxisome proliferator acti-
vated receptors, which control the expression of mul-
tiple genes affecting whole body fatty acid oxidation,
storage, and inflammation. PPARc activation triggers
some of DHA’s anti-inflammatory actions [134].
Moreover, PPARc is a potential NPD1 target, given that
it has a fatty acid binding pocket for polyunsaturated
fatty acids [134] and their derivatives, including DHA
[135]. DHA-derived docosanoids such as 10,17S-docosa-
triene also targets and affects the expression of nuclear
factor jB (NFjB), which controls the production of pro-
teins involved in inflammation and immunity, is seen
during brain strokes, and plays inflammatory roles [136].
The DHA-derived mediator neuroprotectin D1 (NPD1;
10R, 17S-dihydroxy-docosa-4Z,7Z,11E,15E,19Z-hexaenoic
acid) has been ascribed to decreased Ab42 release
[137], NPD1 downregulates inflammatory signaling,
amyloidogenic APP cleavage and apoptosis in neurode-
generation [138]. We conclude that DHA can also regu-
late gene expression, governing the types of protein
cells made and can thus regulate changes in gene
expression that affect metabolism, inflammation, cell
growth and development, and memory formation.

Epidemiological studies

On the basis of the results of the basic science, neural
cell and animal studies, numerous epidemiological stud-
ies have been conducted. Soderberg et al. [123] and
Prasad et al. [124] independently reported that DHA in
the hippocampus is significantly lower in AD than in
healthy controls. Numerous studies have reported a
relationship between DHA and cognitive decline
[139,140]. Gillette Guyonnet et al. [ 141] suggested that
fish oil might protect the elderly from developing neu-
rodegenerative diseases including AD. Literature reviews
suggest that the beneficial role of x-3 fatty acids in the
prevention and progression of AD is still contradictory,
as both ‘‘positive’’ and ‘‘no-effect’’ results on cognitive
performance have been noted. The effects of x-3 PUFAs
have been reported both in mild cognitive impairment
(MCI), a precursor condition or state of AD, and in AD.
After a randomized double-blinded placebo-controlled
trial, Chiu et al. [142] reported a significant improvement
in cognition score in patients with MCI after DHA
(0.72 g)þEPA (1.08 g) supplementation. Kotani et al.
[143] demonstrated that DHA (240 mg/day) supplemen-
tation significantly ameliorated scores of immediate
memory and attention in adults with MCI, but not in the

AD patients who were provided with the same dose of
supplementation for the same period. One study
reported no significant prevention of cognitive decline
in older people with MCI given DHA over six months
[144]. Lopez et al. [145], in their dietary intervention
study, reported that fish intake was associated with
lower odds of developing AD, but this did not reach
statistical significance. Indeed, numerous x-3 supple-
mentation studies [146–149] in AD patients have
reported no significant improvement in AD measures.
These investigators reported that supplementation with
DHA (1.72 g)þEPA (600 mg) per day for six months did
not show any improvement in cognitive deterioration in
AD patients. However, in a very small subgroup of
patients identified with the slightest form of AD, a sig-
nificant reduction in the cognitive decline rate was
observed in comparison with the placebo group. In
summary, results from controlled studies suggest that
intervention with x-3 fatty acids is beneficial only in the
early stages of cognitive impairment and that patients
with well-established AD show no cognitive improve-
ment with either low or high doses of x-3 fatty acids.
Both encouraging and unpromising data are available
with respect to the link between DHA and cognitive
deficit in AD patients. Thus, it is conceivable that the
link between DHA intake and brain DHA is more
complex than anticipated. Given that DHA synthesis
from a-LNA and b-oxidation are both extremely low
in humans [11], preformed DHA intake plays a signifi-
cant role in human whole body DHA homeostasis. In
principle, the effects of DHA should be experimen-
tally evaluated under DHA deficient conditions. The
brain’s extraordinary and tenacious ability to keep
the concentration of DHA constant has posed a ser-
ious problem. Following a 2-year randomized, double-
blind, placebo-controlled trial, we have also reported
that long-term daily dietary DHA (also EPA) supple-
mentation exerts beneficial effects against age-related
cognitive deterioration in otherwise healthy elderly
Japanese with very mild dementia [150].

Conclusion

It seems astonishing how DHA, a single molecule, plays
so many roles: inflammatory balance, cardiovascular
homeostasis through modulation of blood lipids and lip-
oproteins, cognitive and emotional health in elderly
people and AD patients, using diverse routes to control
multiple facets of cell metabolism, division and
differentiation.
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