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Abstract. A simple effective scheme to improve the self energy obtained by the dynamical
mean field theory is proposed, in which a feedback of magnetic fluctuations is taken into account.
We demonstrate effectiveness of the scheme for the two-dimensional periodic Anderson model
by investigating the effect of the magnetic fluctuation in the formation of heavy quasiparticles.
It is found that the spectral intensity near the Fermi level is strongly suppressed by the
antiferromagnetic fluctuation slightly above the magnetic instability.

1. Introduction
In the heavy-fermion systems, the Kondo effect leading to a coherent Fermi-liquid state and
the inter-site interaction for a magnetic order often compete with each other. The heavy
quasiparticle emerges as a consequence of the strong local fluctuations, and simultaneously
the evolution is affected by developing magnetic fluctuations. As a result, the interplay between
nonlocal magnetic fluctuations and the evolution of the Fermi liquid has attracted considerable
interest to elucidate the origin of the characteristic phenomena observed in the heavy fermion
systems, especially so-called the quantum critical behaviors. However, a useful scheme to treat
effects of the magnetic fluctuations and the strong local correlations on the same footing is still
under development. In the present study, we propose a simple effective scheme to treat the
strong local correlations and the nonlocal magnetic fluctuations based on the dynamical mean
field theory (DMFT). We demonstrate effectiveness of the scheme for the periodic Anderson
model by showing the effect of the antiferromagnetic spin fluctuations on the formation of the
heavy quasiparticles.

2. Model and Method
In order to demonstrate our scheme, let us consider the periodic Anderson model on a two-
dimensional square lattice,

H =
∑

kσ

{(εk − µ)c†kσckσ + (εf
k − µ)f †

kσfkσ + V (c†kσfkσ + f †
kσckσ)} + U

∑

i

f †
i↑fi↑f

†
i↓fi↓,

εk = −2(cos kx + cos ky), εf
k = εf + αεk,

where εf denotes the f level and α is a dispersiveness coefficient of the f electron, and the
nearest-neighbor hopping on the square lattice is assumed (the hopping energy of the conduction
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electron and a lattice constant is set to be unity). In the present model, we introduce the energy
dispersion of the f electron so that the metallic ground state can be realized in the model under
the particle-hole symmetric condition between the f level εf , the on-site Coulomb energy U ,
and the chemical potential µ: εf + U/2 = µ = 0.

To treat the strong local correlation between f electrons, we employ the DMFT, i.e., the
local approximation for the self energy [1]. As an impurity solver in the DMFT framework, we
adopt the iterative perturbation theory (IPT) [1, 2]. It is well known that the IPT is accurate
to calculate the Green’s function at wide temperature range in the presence of the particle-hole
symmetry [3]. We calculate the local Green’s function of f electrons Gff (z) by the DMFT with
the IPT,

Gff (z) =
1
N

∑

k

Gff (k, z), Gff (k, z) =
(

z − εf
k − Σ(z) − V 2

z − εk

)−1

,

where z denotes either the Matsubara frequency or the real frequency, and N represents a total
number of the lattice points (hereafter a paramagnetic phase is considered and spin indices are
omitted). In the IPT, the self energy is approximated by the second-order contribution in terms
of the Weiss function G(z),

Σ(iεn) ≃ U2T
∑

m

χ̄0(iωm)G(iεn + iωm), χ̄0(iωm) ≡ −T
∑

n

G(iεn)G(iεn + iωm),

G(z)−1 = Gff (z)−1 + Σ(z).

After the self-consistent solution of the Green’s function is obtained in the IPT-DMFT
framework, we take account of the magnetic fluctuations as follows. First, we construct
the (longitudinal) spin susceptibility χff

S (q, z) by the RPA-like procedure with use of the
renormalized repulsion U∗,

χff
S (q, z) =

χff
0 (q, z)

1 − U∗χff
0 (q, z)

, χff
0 (q, iωm) = − 1

N

∑

k

T
∑

n

Gff (k, iεn)Gff (k + q, iεn + iωm).

Next, we improve the DMFT self energy by taking account of the spin fluctuations as

Σ(k, iεn) = Σ(iεn) +
UU∗

2
1
N

∑

q

T
∑

m

(
χff

S (q, iωm) − χff
S (iωm)

)
Gff (k + q, iεn + iωm), (1)

where we have subtracted the local contributions in the second term, since it is already taken
into account in the DMFT self energy, Σ(iϵn). χff

S (z) is the local counterpart of the susceptibility
defined by

χff
S (z) ≡ χff

0 (z)
1 − U∗χff

0 (z)
, χff

0 (iωm) = −T
∑

n

Gff (iεn)Gff (iεn + iωm).

In fact, the k-summation of Σ(k, iεn) in the above expression (1) gives the local self energy
though the present framework is phenomenologically constructed. In the present framework, U∗

is the phenomenological parameter, corresponding to the local and instantaneous approximation
of the four-point vertex function in the longitudinal particle-hole channel [4]. Here, we have
neglected the charge fluctuations because the charge fluctuations are strongly suppressed in our
parameter range in question. Finally, we obtain the final expression of the spectral function
ρf (k, ε) with including the spin fluctuations,

ρf (k, ε) = − 1
π

Im
(

z − εf
k − Σ(k, z) − V 2

z − εk

)−1
∣∣∣∣∣∣
z=ε+iη

.
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We have used U = 8, V 2 = 3, and α = 0.3 in the present work. In the computation, we have
solved the self-consistent equation in the DMFT scheme and the dynamical spin susceptibilities
in the first Brillouin zone with equally spaced mesh of 256 × 256 and 2048 in the real frequency
range, [-15,15]. Note that since all the above equations can be analytically continued explicitly,
we have performed the computations in the real-frequency domain with the damping factor,
η = 0.01.

3. Results
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Figure 1. The f -electron static spin
susceptibility (proper part) along the
high symmetry line at T = 0.50, 0.30,
0.20, 0.10, and 0.05.

Γ X

M

M'

q
x

q
y

Figure 2. The high
symmetry points of the
first Brillouin zone.

At first, we show the T dependence of a proper part of the f -electron static spin susceptibility,
Reχff

0 (q, 0+iη), along the high symmetry line of the first Brillouin zone in Fig. 1 (The definition
of the high symmetry points is shown in Fig. 2). The peak of Reχff

0 (q, 0 + iη) is always located
at q = (π,π) ≡ Q (M point) at all temperatures due to the perfect nesting across the hybridized
bands, indicating that the antiferromagnetic fluctuation is dominant in the present system. In
order to demonstrate the effect of the critical spin fluctuations, we choose the phenomenological
parameter U∗ so that the magnetic instability occurs at slightly below the lowest temperature in
the present computation, i.e., T = 0.05. By the instability condition, 1−U∗Reχff

0 (Q, 0+iη) = 0,
we have chosen U∗ = 4.68. In principle, the renormalized vertex U∗ does depend on the
temperature, however, we have neglected it for simplicity.

In the results with the spin fluctuation (denoted as DMFT+SF), the self energy is improved
according to the expression (1). As shown in Fig. 3, the spectra of the f -electron density of
states with or without the spin fluctuations exhibit considerable differences in approaching to the
magnetic instability in spite of no essential differences at high temperatures. At temperatures
below the characteristic temperature of the renormalized Fermi energy, the quasiparticle peak
develops at the Fermi level in the spectrum without the spin fluctuation (Fig. 3(b)). On the
other hand, in the spectrum with the spin fluctuation (Fig. 3(a)), the dip structure appears
at the center of the quasiparticle peak, yielding the development of the pseudogap due to the
critical spin fluctuations.

Next, we show the quasiparticle dispersion in the intensity map of the f -electron spectral
function in Fig. 4. The f -electron spectral function without the spin fluctuation exhibits strong
intensities corresponding to the dispersion of the heavy quasiparticle band near the Fermi level.
The critical antiferromagnetic fluctuations strongly influence the electronic states near the Fermi
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Figure 3. The density of states of f electron with the spin fluctuation (a),
and without it (b) at T = 0.50, 0.30, 0.20, 0.10, and 0.05.

level, leading to considerable suppression of the spectral intensity near the Fermi level as shown
in Fig. 4(a).
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Figure 4. The intensity map of the spectral function of f electron with the spin fluctuation (a), and
without it (b) at T = 0.05 in the vicinity of the antiferromagnetic instability.

4. Summary
We have proposed the simple scheme to treat the nonlocal magnetic fluctuations beyond
the DMFT. The application to the periodic Anderson model on a square lattice clearly
demonstrates that the evolution of the heavy quasiparticle is strongly suppressed by the critical
antiferromagnetic spin fluctuations, yielding the pesudogap behavior in the f -electron spectrum
near the Fermi level. The application to more realistic systems is left for future investigations.
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