

Title

Crystal Structure of a Family 80 Chitosanase From Mitsuaria Chitosanitabida

Author(s)

Yutaka Yorinaga, Takashi Kumasaka, Masaki Yamamoto, Kensaku Hamada, Makoto Kawamukai

Journal FEBS Letters, Volume 591, Issue 3

Published 13 January 2017

URL https://doi.org/10.1002/1873-3468.12557

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

1	Crystal structure of a family 80 chitosanase from Mitsuaria chitosanitabida		
2			
3	Yutaka Yorinaga, ¹ Takashi Kumasaka, ² * Masaki Yamamoto, ³ Kensaku Hamada, ⁴ and		
4	Makoto Kawamukai ¹ *		
5			
6	¹ Department of Life Science and Biotechnology, Faculty of Life and Environmental		
7	Science, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.		
8	² Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198 Japan		
9	³ RIKEN SPring-8 Center, Sayo, Hyogo, 679-5148 Japan.		
10	⁴ X-ray Research Laboratory, Rigaku Co., Akishima, Tokyo, 196-8666 Japan.		
11			
12			
13	*Corresponding authors:		
14	Makoto Kawamukai: E-mail: kawamuka@life.shimane-u.ac.jp.		
15	Telephone/Fax: 81-852-32-6583, Fax: 81-852-32-6092.		
16	Takashi Kumasaka: E-mail: kumasaka@spring8.or.jp.		
17			
18	^{1,2} These authors contributed equally to this work		
19			
20			
21			
22	Author Contributions: MK designed the project. YY was involved all experiments. TK,		
23	MY and KH contributed to structure determination and data interpretation. TK and MK		
24	wrote the manuscript. All authors read and approved the final manuscript.		
25			
26	The atomic coordinates and structure factors (PDB code 5B4S) have been deposited in		
27	the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers		
28	University, New Brunswick, NJ (http://www.rcsb.org/).		
29			

1 Abstract

 $\mathbf{2}$ Chitosanases belong to glycoside hydrolase families 5, 7, 8, 46, 75 and 80 and 3 hydrolyse GlcN polymers produced by partial or full deacetylation of chitin. Herein, we 4determined the crystal structure of chitosanase from Mitsuaria chitosanitabida (McChoA) at 1.75 Å resolution, the first structure of a family 80 chitosanase. McChoA $\mathbf{5}$ 6 is a 34 kDa extracellular protein of 301 amino acids that fold into two (upper and lower) 7globular domains with an active site cleft between them. Key substrate-binding features 8 are conserved with family 24 lysozymes and family 46 chitosanases. The distance 9 between catalytic residues E41 and E61 (10.8 Å) indicates an inverting type mechanism. 10 Uniquely, three disulphide bridges and the C-terminus might contribute to enzyme 11 activity. 1213Key words: Chitosan, chitosanase, crystal structure, Mitsuaria

1 **1. Introduction**

 $\mathbf{2}$ Chitosan is a deacetylated product of chitin consisting of a polymer of N-acetyl 3 glucosamine (GlcNac) that is generally thought to contain more than 50% glucosamine (GlcN). Chitosanases (EC3.2.1.132) hydrolyse chitosan into oligomers and dimers of 4 $\mathbf{5}$ GlcN; hence they are useful for producing chitooligosaccharides and GlcN for use in the 6 food and pharmacological industries [1, 2]. Chitosanases belong to glycoside hydrolase 7 (GH) families 5, 7, 8, 46, 75 and 80, based on the classification of Henrissat [3]. GH5, 7, 8 and 8 chitosanases also possess other glycoside hydrolase activities such as cellulase 9 and licheninase. Chitosanases have been found in many different microorganisms, 10 including a few in plants [4]. The enzymatic properties and complete amino acid 11 sequences of bacterial chitosanases have been reported from Bacillus circulans MH-K1 [5], Streptomyces sp. N174 [6], Nocardioides sp. N106 [7], Nocardioides sp. K-01, 1213Amycolatopsis sp. CsO-2 [8], Mitsuaria chitosanitabida (formerly Matsuebacter chitosanotabidus) [9-11] and Pseudomonas sp. A-01 [12], and eukaryotic chitosanases 1415from Fusarium solani [13] and Aspergillus oryzae [14] have also been reported. It is 16important to understand the substrate recognition and catalytic mechanisms of 17chitosanases based on their three-dimensional structures. Although crystal structures of chitinases from several species have been determined [15], structural information is 18 19 only available for two families: family 46 (Streptomyces sp. N174, 1CHK [16]; Bacillus 20circulans MH-K1, 1QGI [17]; 2D05, K281P mutant [5]; Streptomyces sp. SirexAA-E, 214ILY; Microbacterium sp. OU01, 4OLT, inactive mutant with hexasaccharide; 4QWP, 22complex with digested substrates [18, 19]), and family 8 (Bacillus sp. K17 [20]). All of 23these are inverting type enzymes and are considered to act in a non-processive mode. In 24GH46, domain motion apparently results in an induced fit mechanism of substrate 25binding, as indicated by structural analysis of the Microbacterium sp. OU01 chitosanase 26complexed with hexaglucosamine $((GlcN)_6)$ [18, 19].

M. chitosanotabida, originally isolated as a chitosan degrading bacterium, belongs to the β -proteobacteria [21]. Chitosanase McChoA from M. chitosanotabida has been purified, and its gene cloned and sequenced [9], and functionally expressed in fission yeast [22]. The N-terminal 80 amino acid residues of McChoA are processed upon secretion. Two amino acids (Glu41 and Glu61) were identified as catalytic residues based on mutagenic analysis and catalytic activity measurements [23]. Chitosanases similar to McChoA are found in a variety of closely related species isolated from natural environments [11]. A thermostable form of McChoA has been generated by random mutagenesis [10]. The accumulating knowledge suggests that this GH80 chitosanase has unique features. Previous purification and characterisation of McChoA is summarised in Table 1. McChoA is able to completely hydrolyse chitosan but not chitin or cellulose [9]. The gene encoding McChoA has been cloned and its amino acid sequence deduced. Full-length McChoA is synthesised as a 391 residue precursor, and the 80 N-terminal amino acids are removed during secretion [9].

- 8 In the present work, we determined the crystal structure of McChoA at 1.75 Å
 9 resolution, and explored this first structure of a GH80 chitosanase.
- 10

11 **2. Materials and methods**

12 2.1 Protein preparation

13Recombinant ChoA from M. chitosanotabida was purified from E. coli expressing the 14gene encoding McChoA. Briefly, a ~1 kb DNA fragment encoding a 311 amino acid 15mature form of McChoA was cloned into the SphI and HindIII sites of the pQE31 16vector using standard procedures and primers 17TAGCATGCCGCCGCGGGGGGGGGGGAT (to generate a *Sph*I site) and 18 ATCCCGGGAAGCTTATTTGTATAGTTCATC (to generate a HindIII site) to 19 amplify the choA gene by PCR. The resulting McChoA protein contains a 20hexa-histidine tag at the N-terminus. Native McChoA was expressed in E. coli JM109 21cells, and purification of selenomethionine-substituted McChoA (Se-McChoA) was 22performed using *E. coli* B834 (DE3) harbouring pQE31-choA and pREP4 (*lacI* kan^r). *E.* 23coli B834 (DE3) cells were grown in minimal medium containing 50 µg/mL DL-SeMet 24and 50 μ g/mL kanamycin and ampicillin to an optical density (OD₆₀₀) of 0.5. 25Expression of *choA* was induced with 1 mM isopropyl β-D-1-thiogalactopyranoside 26(IPTG), and culturing continued for a further 5 h at 37°C. Cells were pelleted by 27centrifugation and disrupted by sonication. McChoA and Se-McChoA were purified 28using a Ni-NTA affinity column, and purified Se-McChoA at 20 mg/mL was used for 29crystallisation. Crystallisation of Se-McChoA was performed at 22°C by the sitting 30 drop vapour diffusion method using 0.2 M ammonium sulphate, 25% (w/v) polyethylene glycol (PEG) 4000 and 0.1 M Na acetate (pH 5.6) as the precipitant. 3132Crystals of Se-McChoA belong to the orthorhombic space group $P2_12_12_1$ with unit cell 33 dimensions a = 51.9 Å, b = 56.4 Å and c = 207.1 Å.

1

2 2.2 Data collection and processing

3 X-ray diffraction data were collected from Se-McChoA crystals at beamline BL45XU 4of SPring-8 (Sayo, Hyogo, Japan) using radiation with a wavelength of 1.02 Å. X-ray $\mathbf{5}$ diffraction experiments were performed under a cold N₂ gas stream (100 K) using a 6 Rigaku R-AXIS V image plate detector. The structure was determined by MAD phasing 7 as described previously [24]. The structural model was constructed with Arp/Warp [25] 8 and refined with phenix refine [26] following data re-processing using XDS [27]. There 9 are two highly similar but independent ChoA molecules in the asymmetric unit with a 10 root mean square deviation (rmsd) of 0.46 Å. Data collection and refinement statistics 11 are listed in Table 2. Sequence alignment was performed with Clustal Omega [28], and 12figures were drawn using ESPript [29].

13

14 **3. Results and discussion**

15 *3.1 Overall structure*

16 The overall molecular structure of McChoA includes 12 α -helices and 5 β -strands (Figs. 17 1 and 2) that fold into upper and lower domains of comparable size; the upper domain 18 of 153 amino acids spans residues 1–22 and 46–176 and includes helices α 1–7 and 19 strands β 1–5; the lower domain of 158 amino acids spans residues 23–45 and 177–311 20 and includes helices α 7–12. The longest helix, α 7, forms the backbone that connects the 21 two globular domains.

22McChoA belongs to the GH80 group, which is grouped into the GH-I clan 23together with other inverting enzymes from GH24 (lysozymes) and GH46 24(chitosanases). Although the sequence identity between McChoA and GH46 25chitosanases whose structures have been determined is less than 20% (16.3% and 17.4% 26with Streptomyces sp. N174 and Bacillus circulans MH-K1 chitosanases, respectively), 27the overall assembly is similar, with all structures sharing a similar two-domain 28arrangement although some topological differences are apparent (Fig. 1). Conversely, 29GH8 chitosanase from Bacillus sp. K-17 shares only 11.1% sequence identity with 30 McChoA, and has a very different topological assembly, forming a typical $\alpha 6/\alpha 6$ double 31 barrel structure.

32 Due to the topological similarity with GH46 chitosanases, we were able to 33 successfully superpose McChoA with the hexaglucosamine complex structure of

Microbacterium OU01 chitosanase (PDB ID: 40LT; Figs. 3 and 4). Although each 1 2 domain had to be aligned independently, no severe clashes resulted from the 3 superposition, suggesting that the two domains of McChoA may be able to rotate almost 4 13°, as calculated by CCP4/DynDom [30]. This indicates that the domains of McChoA $\mathbf{5}$ may close upon substrate binding. The mechanical hinges are formed from the loop 6 regions between $\alpha 1$ and $\alpha 2$ (45–50) and $\alpha 6$ and $\alpha 7$ (158–163) that are analogous with 7residues 29–33 and 108–111 in OU01 chitosanase [19]. It is reasonable to assume a 8 similar closed form of McChoA, even though insertions of two and six residues are 9 present.

10 Another overall difference was the unique configuration of disulphide bonds 11 in McChoA, which has six cysteines, all of which form disulphide bonds 12 (Cys56-Cys151, Cys227-Cys235 and Cys260-Cys297; Fig. 2). One of them, 13 Cys56-Cys151, was also observed in the *Bacillus circulans* MH-K1 chitosanase as 14 Cys50-Cys124. Our previous mutational analysis showed that replacement of any of 15 these cysteines results in the loss of catalytic activity [23]. The importance of these 16 features is discussed in the following section.

17

18 3.2 Catalytic mechanism and substrate recognition

19 McChoA appears to catalyse an inverting hydrolysis reaction, based not only on the structural similarity with GH-I clan enzymes, but also the distance between the two 2021catalytic residues (Glu41 and Glu61) determined in our previous work [23]. The active 22site cleft can be clearly seen, with Glu41 located on helix $\alpha 1$ of the lower domain, and 23Glu61 located on helix α 3 of the upper domain (Fig. 2). The distance between oxygen 24atoms of Glu41 and Glu61 is ~10.8 Å. This value is similar to those in the apo 25structures of GH46 chitosanases, and consistent with the distance predicted for an 26inverting hydrolysis reaction [31]. By comparison, this distance is changed to 7.7 Å in 27the predicted closed McChoA structure.

Residues in the active site cleft are highly conserved with those of GH46 enzymes, implying a similar mechanism of substrate recognition. GH-I clan enzymes share an invariant core [32] comprising the region around one β -sheet consisting of β 1, β 2 and β 3 in the upper domain, and the two helices (α 1 and α 8) that form the base of subsites in the lower domain. In the OU01 enzyme, Ser27 (corresponding to Gly43 in McChoA), Tyr37 (Tyr55), Arg45 (Arg70), Thr58 (Gly83), Asp60 (Asp84), His203 (no equivalent in McChoA) and Asp235 (no equivalent in McChoA) form the -2, -1 and +1
subsites that are essential for substrate binding and catalysis [18]. Superposition of the
structures indicated that Arg70 and Asp84 of McChoA are located in the -2 subsite (Fig.
4), consistent with our previous study in which mutation of these residues abolished
catalytic activity [23].

6 By contrast, five distinct regions are visible in the primary sequence: (i) the 7 loop between β 1 and β 2, which provides the catalytic base residue Glu61; (*ii*) the loop 8 between $\alpha 10$ and $\alpha 11$ that forms the base of the kissing loops; (*iii*) the region containing 9 β 4 and β 5 between α 5 and α 6; (*iv*) the loop connecting α 8 and α 9 that forms the -3 10 subsite in GH46 chitosanases; $(v) \alpha 12$ and its extended C-terminal region. The third of 11 these regions is located far from the active site cleft and might only contribute to the 12integrity of the upper domain. Although the Asn142Ser mutation in this region 13increased enzyme activity [10], its relation to the structure remains unclear.

The first two regions described above form the edges of both globular 1415domains in the active site cleft, and determine the dynamic and polymorphic character 16of GH46 chitosanases [33]. The lower domain loop between α 9 and α 10 (α 10 and α 11 17in McChoA) is structurally different in the apo and substrate-bound forms in GH46 18 chitosanases [19]. Substrate binding presumably induces this variation that causes the 19 loop to be flipped over the substrate or loop $\alpha 2-\beta 2$ of the upper domain. This kissing 20structure might be maintained by a salt bridge between Arg45 and Glu200 in OU01 21chitosanase (Fig. 4). In McChoA, Asp255 is one of three aspartates in the corresponding 22loop that may form a salt bridge with Arg70 in the upper domain. However, it is 23possible that the bulky loop $\beta 1 - \beta 2$ containing a short helix may interfere with the 24flipping of the lower globular domain loop.

25The last two regions might contribute to the -3 subsite. The extended 26C-terminal region is uniquely conserved in GH80 enzymes, and lies close to loop $\alpha 8-\alpha 9$. 27While the corresponding loop α 7– α 8 expands and forms the base of the -3 subsite in 28OU01 chitosanase, this region is compact and does not provide any subsites in McChoA. 29To compensate for this, the C-terminal extended chain spans across $\alpha 11$ and $\alpha 10$, and 30 finally reaches and lies beside α 9 to form this subsite (Figs. 2B and 4). At its C-terminal 31end, Gln311 is located close to the putative -3 subsite. Even though the electron density 32of its side chain is somewhat ambiguous, the backbone is clearly visible and supported

by hydrogen bonds between the NH group and the OG atom of Ser211. Moreover, the 1 $\mathbf{2}$ adjacent residue Trp310 is embedded in a hydrophobic cluster.

3

Interestingly, the C-terminal residue is limited to glutamine or asparagine in 4 all known GH80 sequences. Although there is no direct evidence for its importance, we $\mathbf{5}$ have a possible explanation. We previously reported that three nonsense mutants at the 6 C-terminal region (Trp247*, Trp261*, Gln284*) abolished enzyme activity [23]. All of 7 these mutants lack Gln311, and also Cys297. Since all six cysteines are needed for 8 maximum catalytic activity as stated above, we conclude that they are essential for 9 stabilising the proper folded structure. However, the Cys297Gly mutant did exhibit 10 slight but significant catalytic activity, and the possibility that other disulphides may 11 form cannot be excluded at this stage [23]. Although the -3 subsite is not considered to 12be essential for chitosan hydrolysis in GH46 [18, 19], the role of the C-terminal residue 13in GH80 should be investigated by mutagenesis and enzymatic assays.

14

15Acknowledgments

16We would like to thank Dr K Shimono for providing the materials used in this study. We 17also thank Dr T Nakagawa and various members of our laboratory for helpful 18discussion and experimental support. This work was partly supported by a Grant-in-Aid 19from the Ministry of Education, Culture, Sports, Science and Technology of Japan 20awarded to MK (#25660059).

21

1 **References**

- 1 Thadathil, N. and Velappan, S. P. (2014) Recent developments in chitosanase research
 and its biotechnological applications: a review. *Food Chem* 150, 392-399.
- 4 2 Brzezinski, R. (2011) Uncoupling chitosanase production from chitosan.
 5 *Bioengineered Bugs* 2, 226-229.
- 6 3 Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V. and
- Henrissat, B. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert
 resource for Glycogenomics. *Nucleic Acids Res* 37, D233-238.
- 9 4 Hoell, I. A, Vaaje-Kolstad, G. and Eijsink, V. G. H. (2010) Structure and function of

10 enzymes acting on chitin and chitosan. *Biotechnol Genet Eng Rev* 27, 331-366.

- 11 5 Fukamizo, T., Amano, S., Yamaguchi, K., Yoshikawa, T., Katsumi, T., Saito, J.,
- 12 Suzuki, M., Miki, K., Nagata, Y. and Ando, A. (2005) Bacillus circulans MH-K1
- chitosanase: amino acid residues responsible for substrate binding. J Biochem 138,
 563-569.
- Fukamizo, T. and Brzezinski, R. (1997) Chitosanase from *Streptomyces* sp. strain
 N174: a comparative review of its structure and function. *Biochem Cell Biol* 75,
 687-696.
- 18 7 Masson, J. Y., Boucher, I., Neugebauer, W. A., Ramotar, D. and Brzezinski, R.
 19 (1995) A new chitosanase gene from a *Nocardioides* sp. is a third member of glycosyl
- 20 hydrolase family 46. *Microbiology*. **141 (Pt 10)**, 2629-2635.
- 20 Injurolase family 40. *Microbiology*. 141 (Ft 10), 2029-2033.
- 21 8 Saito, A., Ooya, T., Miyatsuchi, D., Fuchigami, H., Terakado, K., Nakayama, S. Y.,
- Watanabe, T., Nagata, Y. and Ando, A. (2009) Molecular characterization and antifungal
 activity of a family 46 chitosanase from *Amycolatopsis* sp. CsO-2. *FEMS Microbiol Lett.* **293**, 79-84.
- Park, J. K., Shimono, K., Ochiai, N., Shigeru, K., Kurita, M., Ohta, Y., Tanaka, K.,
 Matsuda, H. and Kawamukai, M. (1999) Purification, characterization, and gene
- analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. J Bacteriol
- **181**, 6642-9.
- 29 10 Yun, C., Matsuda, H. and Kawamukai, M. (2006) Directed evolution to enhance

30 secretion efficiency and thermostability of chitosanase from *Mitsuaria chitosanitabid*a

- 31 3001. *Biosci Biotechnol Biochem* **70**, 559-563.
- 32 11 Yun, C., Amakata, D., Matsuo, Y., Matsuda, H. and Kawamukai, M. (2005) New 33 chitosan-degrading strains that produce chitosanases similar to ChoA of *Mitsuaria*

- 1 chitosanitabida. Appl Environ Microbiol 71, 5138-5144.
- Ando, A., Saito, A., Arai, S., Usuda, S., Furuno, M., Kaneko, N., Shida, O. and
 Nagata, Y. (2008) Molecular characterization of a novel family-46 chitosanase from *Pseudomonas* sp. A-01. *Biosci Biotechnol Biochem* 72, 2074-2081.
- + 1 Set uomonus Sp. IV 01. Dioset Dioteennot Dioenem 12, 2014 2001.
- 5 13 Liu, H., Zhang, B., Li, C. and Bao, X. (2010) Knock down of chitosanase
- 6 expression in phytopathogenic fungus *Fusarium solan*i and its effect on pathogenicity.
- 7 *Curr Genet* **56**, 275-281.
- 8 14 Zhang, X. Y., Dai, A. L., Kuroiwa, K., Kodaira, R., Nogawa, M., Shimosaka, M.

9 and Okazaki, M. (2001) Cloning and characterization of a chitosanase gene from the

- 10 koji mold Aspergillus oryzae strain IAM 2660. Biosci Biotechnol Biochem 65, 977-581.
- 11 15 Fukamizo, T. (2000) Chitinolytic enzymes: catalysis, substrate binding, and their 12 application. *Curr Protein Peptide Sci* **1**, 105-124.
- 13 16 Marcotte, E. M., Monzingo, A. F., Ernst, S. R., Brzezinski, R. and Robertus, J. D.
- 14 (1996) X-ray structure of an anti-fungal chitosanase from *Streptomyces* N174. *Nat*15 *Struct Biol* 3, 155-162.
- Saito, J., Kita, A., Higuchi, Y., Nagata, Y., Ando, A. and Miki, K. (1999) Crystal
 structure of chitosanase from *Bacillus circulans* MH-K1 at 1.6-A resolution and its
 substrate recognition mechanism. *J Biol Chem* 274, 30818-30825.
- 18 Lyu, Q., Wang, S., Xu, W., Han, B., Liu, W., Jones, D. N. and Liu, W. (2014)
 20 Structural insights into the substrate-binding mechanism for a novel chitosanase.
- 21 Biochem J 461, 335-345.
- Lyu, Q., Shi, Y., Wang, S., Yang, Y., Han, B., Liu, W., Jones, D. N. and Liu, W.
 (2015) Structural and biochemical insights into the degradation mechanism of chitosan
 by chitosanase OU01. *Biochim Biophys Acta* 1850, 1953-1961.
- 25 20 Adachi, W., Sakihama, Y., Shimizu, S., Sunami, T., Fukazawa, T., Suzuki, M.,
 26 Yatsunami, R., Nakamura, S. and Takenaka, A. (2004) Crystal structure of family GH-8
- chitosanase with subclass II specificity from *Bacillus* sp. K17. *J Mol Biol* **343**, 785-795.
- 28 21 Amakata, D., Matsuo, Y., Shimono, K., Park, J. K., Yun, C. S., Matsuda, H.,
- 29 Yokota, A. and Kawamukai, M. (2005) Mitsuaria chitosanitabida gen. nov., sp. nov., an
- 30 aerobic, chitosanase-producing member of the 'Betaproteobacteria', Int J Syst Evol
- 31 *Microbiol* **55**, 1927-1932.
- 32 22 Shimono, K., Matsuda, H. and Kawamukai, M. (2002) Functional expression of 33 chitinase and chitosanase, and their effects on morphologies in the yeast

- 1 Schizosaccharomyces pombe. Biosci Biotechnol Biochem 66, 1143-1147.
- 2 23 Shimono, K., Shigeru, K., Tsuchiya, A., Itou, N., Ohta, Y., Tanaka, K., Nakagawa,
 3 T., Matsuda, H. and Kawamukai, M. (2002) Two glutamic acids in chitosanase A from
- 4 *Matsuebacter chitosanotabidus* 3001 are the catalytically important residues. *J Biochem*
- 5 **131**, 87-96.
- 6 24 Kumasaka, T., Yamamoto, M., Yamashita, E., Moriyama, H. and Ueki, T. (2002)
- 7 Trichromatic concept optimizes MAD experiments in synchrotron X-ray 8 crystallography. *Structure* **10**, 1205-1210.
- 9 25 Langer, G., Cohen, S.X., Lamzin, V.S. and Perrakis, A. (2008) Automated
- 10 macromolecular model building for X-ray crystallography using ARP/ wARP version 7.
- 11 *Nat Protoc* **3**, 1171-1179.
- 12 26 Afonine, P.V., Grosse-Kunstleve, R.W., Echols, N., Headd, J.J., Moriarty, N.W.,
- 13 Mustyakimov, M., Terwilliger, T.C., Urzhumtsev, A., Zwart, P.H., and Adams, P.D.
- 14 (2012) Towards automated crystallographic structure refinement with phenix.refine.
- 15 Acta Cryst D 68, 352-367.
- 16 27 Kabsch, W. (2010) XDS. Acta Cryst. D 66, 125-132.
- 17 28 Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R.,
- 18 McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011)
- 19 Fast, scalable generation of high-quality protein multiple sequence alignments using
- 20 Clustal Omega. Mol Syst Biol 7,539.
- 21 29 Robert, X. and Gouet, P. (2014) Deciphering key features in protein structures with
- the new ENDscript server. *Nucleic Acids Res* **42**(W1), W320-324.
- 23 30 Hayward, S., and Berendsen, H.J.C. (1998) Systematic Analysis of domain motions
- 24 in proteins from conformational change; New results on citrate synthase and T4
- 25 lysozyme. *Proteins* **30**, 144-154.
- 26 31 Mhlongo, N. N., Skelton, A. A., Kruger, G., Soliman, M.E.S., and Williams, I.H.
- 27 (2014) A critical survey of average distances between catalytic carboxyl groups in
- 28 glycoside hydrolases. Proteins 82, 1747-1755.
- 29 32 Monzingo, A.F., Marcott, E.M., Hart, P.J., Robertus, J.D. (1996) Chitinases,
- 30 chitosanases, and lysozymes can be devided into procaryotic and eucaryotic families
- 31 sharing a conserved core. *Nat Struct Biol* **3**, 133-140.
- 32 33 Viens, P., Lacombe-Harvey, M. E. and Brzezinski, R. (2015) Chitosanases from 33 family 46 of glycoside hydrolases: from proteins to phenotypes. *Marine Drugs* **13**,

1 6566-6587.

1 Figure legends

2 Figure 1. Sequence alignment of McChoA with GH46 chitosanases. Amino acid 3 sequences of Mitsuaria chitosanitabida ChoA (M. chit.), Bacillus circulans (1QGI), Streptomyces sp. N174 (1CHK), Streptomyces sp. SirexAA-E (4ILY) and 4 $\mathbf{5}$ Microbacterium sp. OU01 (40LT) are indicated. The mature McChoA, which is 6 generated after removal of the 80-residue N-terminal signal sequence, begins at Alanine 7 1. Amino acid residues that are identical in McChoA are indicated by white characters 8 on a red background. Catalytic acid residues (Glu41 in McChoA) are indicated by a red 9 star, and catalytic base residues in McChoA (Glu61) and GH46 chitosanases are 10 indicated by a blue star and blue triangle, respectively. The secondary structures of 11 McChoA and 4OLT are indicated above and below the alignment, respectively.

12

Figure 2. Three-dimensional structure of McChoA. The 12 α-helices are coloured
red, and the 5 β-strands are coloured yellow. The N- and C-termini are also indicated.
Disulphide bonds are shown in yellow stick representation and numbered using a
smaller font size. The catalytic general acid (Glu41) and base (Glu61) are also shown.

17

18 Figure 3. Comparison with OU01 chitosanase. The enzyme-substrate model of 19 McChoA was constructed by simply superposing each domain of McChoA onto the 20 Microbacterium sp. OU10 chitosanase structure complexed with (GlcNAc)₆ as 21described. A, Structures of McChoA. The upper and lower domains of McChoA are 22coloured green and cyan, respectively. A transparent model of the lower domain 23indicates the original orientation in the crystal structure, as shown in Fig. 2B. B, 24Structure of OU10 chitosanase coloured magenta. (GlcNAc)₆ is shown in yellow stick 25representation in both figures.

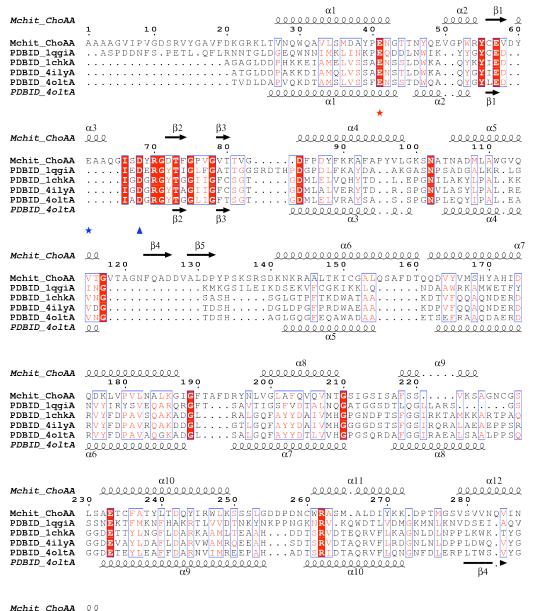
26

Figure 4. Putative model of substrate binding. A close-up view of the superposed model shown in Fig. 3 coloured in the same way. Residues of McChoA described in the main text are labelled, and residues of OU01 chitosanase are coloured magenta. The figure is drawn as a parallel view stereo image.

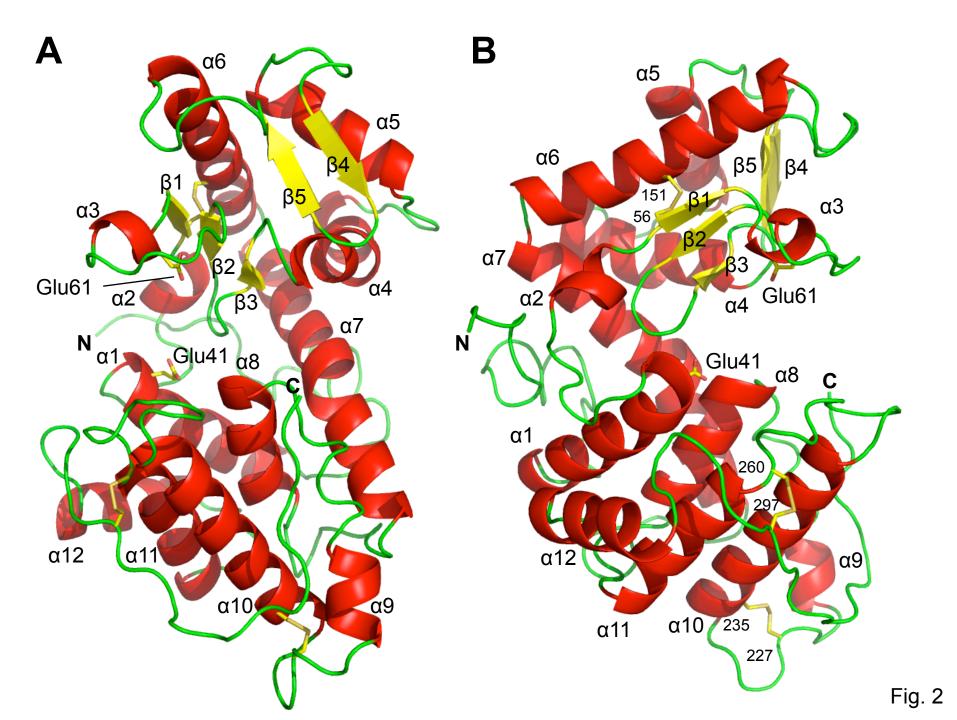
1 Table 1 Characteristics of McChoA chitosanase from *Mitsuaria chitosanitabida*

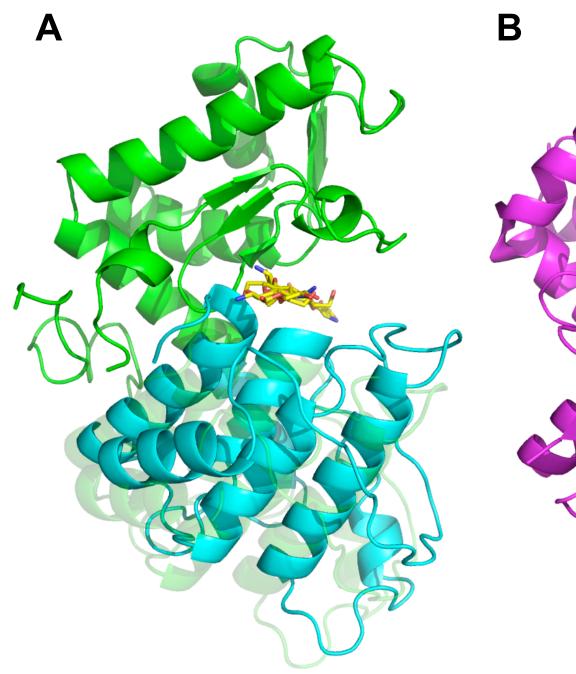
2 3001

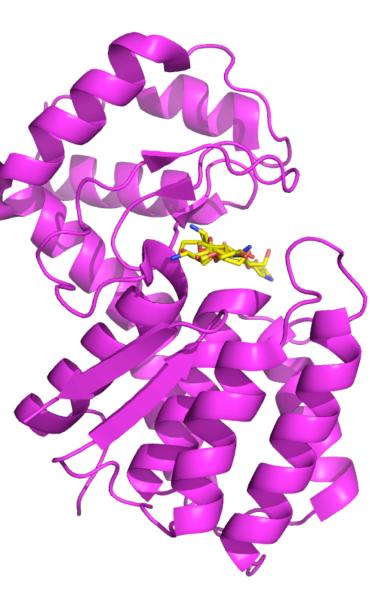
Molecular weight	33,613 (mature form)	
	41,742 (precursor form)	
Length	311 aa (mature form)	
	391 aa (precursor form)	
Optimum pH	5.0-6.0	
Optimum temperature	30-40°C	
Thermal stability	50°C (30% 1 hr)	
pI	9.6	
Preference of substrate	Chitosan (90% deacetylated) >Chitosan	
	(100% deacetylated) >Colloidal Chitin	

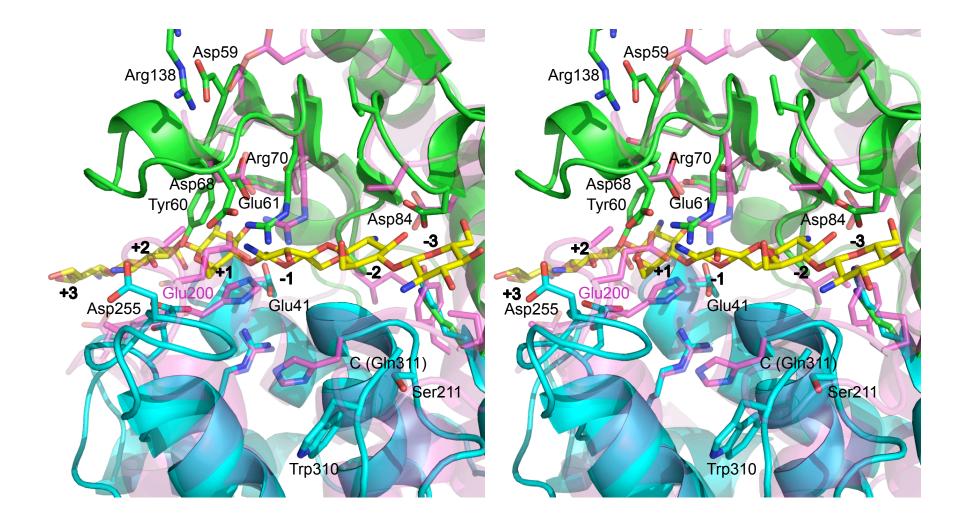

3

	Se-Met ChoA
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell (Å) a, b, c	51.9, 56.4, 207.1
Wavelength (Å)	1.02
Resolution (Å)	43.66-1.75 (1.81-1.75)
R _{merge}	0.057 (0.139)
Completeness	0.993 (0.987)
Mean I / σ_I	23.7 (12.4)
CC _{1/2}	0.998 (0.988)
Number of observed reflections	446,719 (43,766)
Unique reflections	61,905 (6,048)
Number of atoms A / B / Wat	2,370 / 2,374 / 680
Rwork / Rfree	0.160 / 0.192
Rmsd for bonds	0.006
Rmsd for angles	1.04
Ramachandran favoured / outliers	97.6 / 0
(%)	
Clash score	1.6
Average B factor A / B / Wat	13.8 / 13.8 / 22.7


1 Table 2 X-ray data collection and structure determination statistics


 $\mathbf{2}$


3



MCHIL_CHOAA		
	290 300	310
Mchit_ChoAA	ASYPGNSGKCPTS	GIKWSKNMSWQ
PDBID_1qgiA	TD W E M K	
PDBID_1chkA	DPYVINS	
PDBID_4ilyA	DSFHIG	
PDBID_4oltA	DQYSLN	
PDBID_4oltA	>	
	β5	

