

Title

Schizosaccharomyces Japonicus Has Low Levels of CoQ 10 Synthesis, Respiration Deficiency, and Efficient Ethanol Production

Author(s)

Tomohiro Kaino , Kai Tonoko , Shiomi Mochizuki , Yuriko Takashima , Makoto Kawamukai

Journal Biosci Biotechnol Biochem, 82 (6)

Published Jun 2018

URL https://doi.org/10.1080/09168451.2017.1401914

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

Schizosaccharomyces japonicus has low levels of CoQ_{10} synthesis, respiration deficiency, and efficient ethanol production

Tomohiro Kaino, Kai Tonoko, Shiomi Mochizuki, Yuriko Takashima, and Makoto Kawamukai*

Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan

Running title: Physiological properties of S. japonicus

Corresponding author: Makoto Kawamukai Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan Phone & Fax: +81-852-32-6583 E-mail: kawamuka@life.shimane-u.ac.jp

1 Abstract

- 2 Coenzyme Q (CoQ) is essential for mitochondrial respiration and as a cofactor for sulfide
- 3 quinone reductase. *Schizosaccharomyces pombe* produces a human-type CoQ₁₀. Here, we
- 4 analyzed CoQ in other fission yeast species. S. cryophilus and S. octosporus produce
- 5 CoQ_9 . S. *japonicus* produces low levels of CoQ_{10} , although all necessary genes for CoQ
- 6 synthesis have been identified in its genome. We expressed three genes (*dps1*, *dlp1*, and
- 7 *ppt1*) for CoQ synthesis from *S. japonicus* in the corresponding *S. pombe* mutants, and
- 8 confirmed that they were functional. *S. japonicus* had very low levels of oxygen
- 9 consumption and was essentially respiration defective, probably due to mitochondrial
- 10 dysfunction. S. japonicus grows well on minimal medium during anaerobic culture,
- 11 indicating that it acquires sufficient energy by fermentation. S. japonicus produces
- 12 comparable levels of ethanol under both normal and elevated temperature (42°C)
- 13 conditions, at which *S. pombe* is not able to grow.
- 14
- 15 Keywords: Fission yeast, Schizosaccharomyces japonicus, S. pombe, respiration, CoQ
- 16
- 17

18 Introduction

19

Schizosaccharomyces fission yeast species are believed to have diverged from 20 21 Saccharomyces budding yeast species about a billion years ago. Fission yeasts are named 22 based on their binary fission cell division pattern, in contrast to the cellular budding 23 division pattern in Saccharomyces. Four fission yeast species are currently known, and all belong to the genus *Schizosaccharomyces*, including *S. pombe*, *S. japonicas*,¹⁾ *S.* 24 cryophilus,²⁾ and S. octosporus.³⁾ S. pombe has been extensively studied in genetic, 25 molecular biological, biochemical, and cytological analyses,⁴⁾ but studies of the other 26 27 three species are limited. The S. pombe whole genome was completely sequenced by $2002^{(5)}$ and the whole genomes of the other three species were determined in $2011^{(6)}$ 28 29 Genomic differences among the four Schizosaccharomyces species were determined; 30 3,924 genes are common among the four species, whereas 133–401 genes are different. 31 S. *japonicus* is a dimorphic yeast, which can transit from unicellular yeast to long 32 filamentous hyphae, and form ascospores with eight spores when starved.¹⁾ S. *japonicus* was isolated in 1928 in Japan, and is currently undergoing re-evaluation because of its 33 unique properties.⁷⁾ Nuclear organization and division have been investigated in S. 34 *japonicus*,¹⁾ but physiological studies of this yeast are limited. A prominent characteristic 35 36 of S. japonicus is that it does not respire, and instead grows via fermentation. It was reported that S. *japonicus* does not produce Coenzyme O (CoO).⁸⁾ despite its essential 37 38 role in respiration and oxidative ATP synthesis in mitochondria. CoQ synthesis in eukaryotes has been studied primarily in the Saccharomyces cerevisiae budding yeast⁹⁻¹¹ 39 and the S. pombe fission yeast, and these knowledge extended to higher eukaryotes ¹²⁻¹⁴, 40 41 but has not been studied in S. japonicus. As CoQ is synthesized in mitochondria, it is 42 interesting to know how S. japonicus adapted to deficiency of its synthesis, which causes 43 respiration deficiency.

CoQ contains a quinone frame and isoprenoid side chain, with variable isoprene
units in each organism. *S. cerevisiae* produces CoQ₆, whereas *S. pombe* and *Homo sapiens* produce CoQ₁₀.^{10, 12, 15)} CoQ isoprenoid side chains are synthesized by the
homomeric form of Coq1 (hexaprenyl diphosphate synthase) in *S. cerevisiae*, and by the
heterotetrameric form of Dps1 and Dlp1 (decaprenyl diphosphate synthase) in *S.*

49	<i>pombe</i> . ¹⁴⁾ The type of CoQ such as CoQ ₆ in <i>S. cerevisiae</i> and CoQ ₁₀ in <i>S. pombe</i> is
50	determined by the supplied prenyl diphosphate synthesized by the species specific
51	polyprenyl diphosphate synthase. ^{16, 17)} After synthesis, the isoprenoid is transferred to
52	<i>p</i> -hydroxy benzoate (PHB) by Coq2 (Ppt1) (PHB-polyprenyl diphosphate transferase). ^{18,}
53	¹⁹⁾ Prenylated PHB undergoes the following modifications: hydroxylation by Coq6 and
54	Coq7, O-methylation by Coq3, C-methylation by Coq5, and decarboxylation by an
55	unknown protein (Fig. 1). ¹³⁾ Almost all CoQ synthetic genes in humans and Arabidopsis
56	thaliana can function to complement each of the corresponding S. pombe gene deletion
57	mutants. ²⁰⁾ Biotechnology approaches have successfully enhanced CoQ ₁₀ biosynthesis
58	in <i>S. pombe</i> fission yeast. ^{21, 22)} Therefore, an analysis of CoQ biosynthesis in other
59	fission yeast species may provide insights for the utilization of fission yeast for
60	commercial production of CoQ ₁₀ .
61	In this study, we investigated CoQ synthesis in S. japonicus, genes involved in CoQ
62	synthesis in S. pombe, and yeast phenotypes associated with respiration and ethanol
63	production. We show that evolutionally unique properties of S. japonicus which lost
64	major mitochondrial function and enforced fermentation for energy acquirement.
65	
66	Materials and Methods
67	
68	Yeast strains and media
69	The genotypes of all yeast strains used in this study are listed in Table 1. S. pombe and S.
70	<i>japonicus</i> strains were grown in YES medium (0.5% yeast extract, 3% glucose, and 225
71	mg/L each of adenine, leucine, uracil, histidine, and lysine hydrochloride), YPD medium
72	(1% yeast extract, 2% glucose, and 2% polypeptone) or EMM synthetic medium
73	containing nutritional supplements when necessary. ²³⁾ Yeast cells were transformed using
74	either lithium acetate ²⁴⁾ or electroporation. ²⁵⁾ General genetic methods used for <i>S. pombe</i>
75	have been described previously. ²⁶⁾ The thiamine-repressible <i>nmt1</i> promoter was
76	repressed by adding 5 μ g/ml thiamine to EMM medium.
77	
78	DNA manipulation

- 79 Cloning, restriction enzyme analysis, and plasmid DNA preparation were performed
- 80 essentially as described previously.²⁷⁾ Oligonucleotides used in this study are listed in
- 81 Table S1. *Escherichia coli* strain DH5α was used for plasmid construction and
- 82 propagation. DNA sequences were determined using the dideoxynucleotide
- 83 chain-termination method and the ABI377 DNA sequencer.
- 84

85 Plasmid construction

- The plasmids used in this study are listed in Table 2, and the primers used for plasmid construction are listed in Table S1. The pREP41-Sjppt1 plasmid was constructed by amplifying a fragment using the Sjppt1(ORF)-SalI-F and Sjppt1-BamHI-R primers, and inserting the amplified product into the *Sal*I and *Bam*HI sites of pREP41. The pREP1-Sjdps1, pREP41-Sjdps1, and pREP2-Sjdps1 plasmids were constructed by amplifying a fragment using the Sjdps1-SalI-F and Sjdps1-BamHI-R primers, and
- 92 inserting the amplified product into the *Sal*I and *Bam*HI sites of pREP1, pREP41, and
- 93 pREP2, respectively. The pREP1-Sjdlp1 and pREP2-Sjdlp1 plasmids were constructed
- by amplifying a fragment using the Sjdlp1-SalI-F and Sjdlp1-BamHI-R primers, and
- 95 inserting the amplified product into the *Sal*I and *Bam*HI sites of pREP1 and pREP2,
- 96 respectively. The pREP41-dps1 and pREP2-dps1 plasmids were constructed inserting the
- 97 *dps1* gene which was cut from pREP1-cloning plasmid by restriction enzymes into the
- 98 same sites of pREP41 and pREP2, respectively. The pSJU11-Spppt1-15 plasmid was
- 99 constructed by amplifying fragments using the Sjnmt1-897-F and Sjnmt1-24-R primers
- 100 for Sjnmt1 promoter, and Spppt1-Sjnmt1-24-F-New and Spppt1-BamHI-R primers for
- 101 *Spppt1* coding gene. Amplified fragments were fused by PCR reaction, and the product
- 102 was cloned into the *Kpn*I and *Bam*HI sites of pSJU11.
- 103

104 **Spot assay**

105 Cells were grown on YES plates for 3 days at 30° C, and then resuspended in water to a 106 density of 2×10^{6} cells/ml. Cell suspensions were serially diluted (1:10), spotted onto 107 YES or EMMU plates, and incubated for 3–5 days at 30°C. Plates were placed in a sealed 108 chamber under anaerobic conditions with AnaeroPack Kenki (Mitsubishi Gas Chemical 109 Co., Inc., Tokyo), and incubated for 2 days at 30°C.

111 **CoQ extraction and measurement**

- 112 CoQ was extracted as described previously.²⁸⁾ The CoQ crude extract was analyzed by 113 normal-phase thin-layer chromatography (TLC) with authentic CoQ₆ or CoQ₁₀ standards. 114 Normal-phase TLC was conducted on a Kieselgel 60 F_{254} plate and developed with 115 benzene. The plate was viewed under UV illumination, the CoQ band was collected, and 116 the sample was extracted with chloroform/methanol (1:1, v/v). Samples were dried and 117 solubilized in ethanol. Purified CoQ was subjected to high-performance liquid
- 118 chromatography (HPLC) with ethanol as the solvent.
- 119

120 Liquid chromatography-mass spectrometry (LC-MS) analysis

121 The CoQ sample was extracted for liquid chromatography-mass spectrometry (LC-MS) 122 analysis as described above. Samples were resuspended in 80 µl of methanol:2-propanol 123 (4:1) solution and filtered with YMC Duo-Filter XQ DUO 04 (pore size, $0.2 \mu m$), and 8 124 µl of sample was used for analysis. LC-MS data were obtained using a MassLynx system 125 (Waters) coupled to a Xevo-TQS mass spectrometer (Waters). LC separation was 126 performed on an ACQUITY UPLC BEH C18 column (2.1×50 mm, 1.7 µm particle size; 127 Waters). The mobile phase was methanol:2-propanol (4:1) solution (buffer A) and 128 methanol:2-propanol (4:1) solution containing 5 mM ammonium formate (buffer B). 129 Chromatographic conditions were 98% buffer A and 2% buffer B. The flow rate was 0.5 130 ml/min. Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry 131 (MALDI-TOF MS) (SYNAPT G2-S; Waters) was performed to determine the precise 132 molecular masses of compounds.

133

134 Sulfide measurement

Sulfide content was determined quantitatively using the methylene blue method as described previously.¹⁴⁾ Briefly, *S. pombe* and *S. japonicus* cells were grown in YES medium (50 ml) until the late log phase. Then, cells were collected and disrupted by glass beads, and cell extracts were resuspended in 0.1 ml of 0.1% dimethylphenylenediamine (in 5.5 N HCl) and 0.1 ml of 23 mM FeCl₃ (in 1.2 N HCl). The samples were incubated at 37°C for 5 min, and the sample absorbance at 670 nm was determined using a blank containing only the reagents.

143 **Oxygen consumption**

- 144 Oxygen consumption was measured in the medium where the tested strains were grown
- 145 using the YSI model 53 oxygen monitor (YSI, Inc.). Cells were cultured until log phase in
- 146 YES medium at 30°C. Cells were collected by centrifugation, washed in MilliQ water,
- 147 and resuspended in water to a density of 1×10^9 cells/ml. Then, 3 ml of air-saturated
- 148 culture was used to calculate the rate of oxygen consumption.
- 149

150 Ethanol measurement

- 151 Ethanol production by the tested strains was measured using a refractive index detector
- 152 (Shimazu HPLC LC6AD) equipped with an ULTRON PS80-H column. Ethanol was
- 153 quantified by differential refractive index with glycerol as a standard.
- 154

155 **Results**

156

157 Respiration is deficient in *Schizosaccharomyces japonicus*

- 158 We measured CoQ species and their contents in four fission yeast species: S. pombe, S.
- 159 *cryophilus*, *S. octosporus*, and *S. japonicus*. *S. pombe* produces CoQ₁₀.^{13, 14)} We
- 160 confirmed an earlier report that *S. octosporus* produces CoQ₉. The type of CoQ produced
- 161 in S. cryophilus was unknown; we identified CoQ₉, similar as in S. octosporus. A
- 162 previous study reported that *S. japonicus* does not produce detectable CoQ,⁸⁾ but we
- 163 detected a very small amount of CoQ_{10} using HPLC analysis (Fig. 2A). The CoQ_{10}
- 164 content was approximately $0.167 \ \mu g/1 \times 10^9$ cells or $0.3 \ \mu g/100$ ml of culture, which is
- approximately 220 times lower than the CoQ₁₀ content in *S. pombe* grown in YES
- 166 medium $(37 \ \mu g/1 \times 10^9 \text{ cells or } 69.5 \ \mu g/100 \text{ ml of culture})$. We subjected the sample to
- 167 MS analysis (Fig. 2B). A peak appearing at 885.6797 m/z [M+Na]⁺ corresponded with
- 168 CoQ₁₀, and a peak at 197.0831 m/z [M]⁺ by MS/MS corresponded with tropylium ion
- 169 $[M]^{+9}$. These results verified that this product is CoQ_{10} .
- 170 Because the amount of CoQ was very low in *S. japonicus*, we measured the
- 171 respiration capacity. We tested the growth of *S. japonicus* on non-fermentable carbon
- 172 sources. S. japonicus and the S. pombe CoQ-deficient mutant ($\Delta ppt1$) could not grow on
- 173 2% glycerol + 1% ethanol as carbon sources (Fig. 3A). Next, we measured oxygen
- 174 consumption of *S. japonicus* and compared it with that of *S. pombe* wild type and *ppt1*

- 175 mutants (Fig. 3B). S. japonicus did not consume oxygen, which was similar to the S.
- 176 pombe respiration-deficient mutant. These combined results suggest that S. japonicus can
- grow well under anaerobic conditions. We measured the growth of S. japonicus under 177
- 178 oxygen-depleted conditions, and compared it with that of S. pombe wild type and
- 179 CoQ-deficient mutants (Fig. 4). Under anaerobic conditions, S. japonicus grew much
- 180 faster than S. pombe wild type and CoQ-deficient mutants. There was no difference in S.
- 181 *japonicus* growth under aerobic and anaerobic conditions, whereas *S. pombe* and *S.*
- 182 cerevisiae grew much faster under aerobic conditions, and growth of the S. pombe
- 183 CoQ-deficient mutants was slow.
- 184

185 Sensitivity to oxidative stress

- S. pombe coq deletion mutants are sensitive to H_2O_2 .²⁹⁾ To determine the S. japonicus 186
- 187 oxidative stress sensitivity, we determined the sensitivity to H_2O_2 and paraquat (PQ). S.
- 188 *japonicus* was sensitive to both H₂O₂ and PQ (Fig. 5). Wild-type S. pombe does not
- 189 display oxidative stress sensitivity. S. japonicus has much greater oxidative stress
- 190 sensitivity than S. pombe ppt1 (coq2) mutants.
- 191

192 **Sulfide production**

- 193 S. pombe coq mutants produce higher sulfide levels than the wild type due to defective sulfide quinone reductase activity in mitochondria.³⁰⁻³²⁾ As S. japonicus produces very
- 194
- 195 little CoQ₁₀, we assessed the amount of sulfide produced in S. japonicus. S. japonicus did
- 196 not produce sulfide even though it produces almost no CoQ (Fig. 6B). These combined
- 197 results indicate that the metabolic regulation of sulfide and CoQ in mitochondria of S.
- 198 *japonicus* differs from that in *S. pombe*.
- 199

200 Expression of CoQ biosynthetic genes in S. pombe

- 201 We investigated possible reasons for low CoQ_{10} levels in S. *japonicus* by performing
- 202 complementation assays of CoQ biosynthetic genes in S. pombe. We tested three genes
- 203 involved in early steps of CoQ biosynthesis: *ppt1*, *dps1*, and *dlp1*. These genes were
- 204 isolated from S. japonicus by searching databases using S. pombe homolog sequences for
- 205 Ppt1, Dps1, and Dlp1 [National Center for Biotechnology Information (NCBI) BLAST
- 206 program]. Homologous proteins [SJAG 06603 (named SjPpt1), SJAG 04568 (named

207 SjDps1), and SJAG 05776 (named SjDlp1)] were identified, and amino acid sequence 208 alignments of these proteins are shown in Figs. S1, S2, and S3. Ppt1 (Coq2) condenses polyprenyl diphosphate with PHB.¹⁹⁾ SjPpt1 was identified, but the annotation stated that 209 210 the first methionine was absent. When we carefully searched the S. japonicus genome 211 data, the ATG codon was found in the 5' upstream region of SJAG 06603 and no other 212 ATG codon was found around there. We were able to find the real open reading frame 213 (ORF) of SJAG 06603 in the S. japonicus NIG5091 genome. Then, we tested Sippt1 214 expression in the S. pombe $\Delta ppt1$ strain. The delayed growth of S. pombe $\Delta ppt1$ in 215 minimal medium was complemented by the S. japonicus Sippt1 gene (Fig. 7A). SiPpt1 216 functioned well and restored CoQ₁₀ production in *S. pombe* $\Delta ppt1$ (Fig. 7B). We also 217 expressed S. pombe ppt1 in S. japonicus, but did not observe any significant increase in 218 CoQ_{10} (Fig. S4). Furthermore, we observed that addition of PHB increases the CoQ_{10} 219 levels in S. japonicus (Fig. S5) and mitochondria show weak staining with Mitotracker 220 (data not shown). We believe that the reason for the lack of CoQ synthesis is not due to 221 Ppt1 function.

222 S. japonicus Sjdps1 and Sjdlp1 are homologous to dps1 and dlp1, respectively, which are highly likely to encode prenyl diphosphate synthases.^{14, 28) 33)} We tested the 223 functionality of S. japonicus dps1 and dlp1 in the corresponding S. pombe deletion 224 225 mutants. When Sidps1 was expressed in the S. pombe dps1 deletion mutant, it restored 226 growth in minimal medium (Fig. 8A) but produced little CoQ₁₀ (Fig. 8B). When Sjdlp1 227 was expressed in the S. pombe dlp1 deletion mutant, it restored growth in minimal 228 medium (Fig. 9A) and produced normal levels of CoQ_{10} (Fig. 9B). When *Sidps1* and 229 Sidlp1 were expressed in the S. pombe dps1 dlp1 double mutant, they restored growth in 230 minimal medium (Fig. 10A) and produced equivalent CoQ_{10} levels to those produced by 231 the homomer *ddsA* gene fused to the mitochondrial targeting sequence (Fig. 10B). We 232 swapped the cloning vector of Sidps1 and Sidlp1, but this did not affect growth or CoQ₁₀ 233 production. These combined results indicate that *Sippt1*, *Sidps1*, and *Sidlp1* are functional 234 in S. pombe, suggesting that S. japonicus possesses functional genes.

235

236 Ethanol production by S. japonicus

S. japonicus lacks respiration and grows by fermentation. Therefore, we expect that it might produce higher ethanol levels during fermentation. A previous study reported

ethanol production by S. pombe.³⁴⁾ We measured the ethanol produced by the other three 239 fission yeasts, S. pombe, S. octosporus, and S. cryophilus (Fig. 11). S. japonicus 240 produces comparable ethanol levels to S. pombe, whereas S. octosporus and S. 241 242 cryophilus did not produce ethanol as efficiently as S. japonicus and S. pombe (Fig. 11A). 243 S. *japonicus* grew at 42°C (Fig. S6); therefore, we measured ethanol production at 42°C. 244 At higher temperature, ethanol production was not as efficient as at 30°C, but significant ethanol was produced at 42°C (Fig. 11B). These results indicate that S. japonicus is 245 246 potentially useful for ethanol production, especially at higher temperatures.

247

248 **Discussion**

249

250 In this study, we analyzed the physiological properties of the hyphal-forming fission 251 yeast S. *japonicus*. We observed that S. *japonicus* did not respire, and it grew well under anaerobic conditions.³⁵⁾ We found that S. *japonicus* produces very low levels of CoQ_{10} , is 252 253 sensitive to oxidative stress, does not produce hydrogen sulfide as in S. pombe CoQ-deficient mutants,³⁰⁾ and produces ethanol under higher temperatures (42° C). S. 254 255 *japonicus* is guite different from *S. pombe* in its mitochondrial dependency, even though 256 these two species are within the same genus. S. japonicus was first isolated from a 257 strawberry field in Kyushu, Japan. The reason why S. japonicus lacks respiration is 258 unknown. We also isolated a natural S. japonicus species (S. japonicus Kinzaki in Matsue 259 City). This strain also produced only a low level of CoQ_{10} and had defective respiration 260 (data not shown). At least two other strains of S. *japonicus* have been isolated from 261 natural environments in Nagano and Hirosaki, Japan. These strains also produced only a 262 low level of CoQ₁₀ and had deficient respiration (data not shown). At least four 263 independently isolated strains display the same properties, so it is unlikely that the 264 phenotypes we observed in this study are specific to certain strains. We measured very low levels of CoQ of S. japonicus, although a previous study reported that CoQ was not 265 detected in S. japonicus.⁸⁾ The low CoQ levels may cause the respiration deficiency, but 266 267 this is not conclusive. Low CoQ levels may be a consequence of mitochondrial 268 dysfunction, but not a reason for respiration deficiency. Mitochondrial dysfunction in S.

japonicus probably affects the production of hydrogen sulfide, which is synthesized inmitochondria.

271 We tried to determine why S. *japonicus* produces very little CoQ_{10} by analyzing the CoQ biosynthetic genes in the whole-genome sequence of S. *japonicus*.⁶⁾ All genes [dps1, 272 *dlp1*, *ppt1* (*coq2*)-*coq9*] involved in CoQ synthesis were identified in the whole-genome 273 274 data (Table 3). We performed complementation analyses of *Sidps1*, *Sidlp1*, and *Sippt1* in 275 the corresponding S. pombe mutants dps1, dlp1, and ppt1. The results show that the S. 276 *japonicus* genes are functional and complement the S. *pombe* strains to produce CoQ_{10} , 277 which is consistent with the finding that S. *japonicus* naturally produces CoQ₁₀ despite its 278 level is very low. SjDps1 and SjDlp1 function as decaprenyl diphosphate synthases, similar as in S. pombe and H. sapiens.^{14, 15)} All coq genes, dps1, and dlp1 were confirmed 279 280 by RNA seq analysis,⁶⁾ the expression levels in *S. japonicus* were within normal ranges, 281 and the alignment of all Coq proteins was well-conserved. Although we did not test every 282 gene related to CoQ biosynthesis, we think it unlikely that very low CoQ levels in S. 283 japonicus are due to lack of specific CoQ genes. We also observed that addition of PHB 284 increases the CoQ₁₀ levels in S. *japonicus* (Fig. S5), which suggests that the whole 285 enzymatic reaction is not disrupted. CoQ synthetic enzymes are active, but have weak 286 activity. The low level of CoQ synthesis results from mitochondrial incompleteness. Mitochondrial DNA is present,^{36, 37)} and mitochondria show weak staining with 287 288 Mitotracker (data not shown). Further analysis of mitochondrial function will be 289 necessary to determine the reason for low CoQ₁₀ synthesis in *S. japonicus*.

290 S. japonicus is a unique yeast in that it evolved limited respiratory function. It grows 291 much faster than S. pombe under anaerobic conditions (fermentation). We found that S. 292 *japonicus* produces more ethanol at higher temperatures than the other three fission 293 yeasts. S. japonicus and S. pombe produce comparable ethanol levels at 30 and 37°C, but 294 S. japonicus has much more efficient ethanol production at 42°C. Therefore, this yeast 295 has great potential for ethanol production at higher temperatures or during fermentation 296 to make beer or sake. S. japonicus smells better than S. pombe because it lacks hydrogen 297 sulfide synthesis, which is a benefit for the production of alcoholic beverages. 298

299 Author contributions

300 K.T. S.M. and Y.T. performed the experiments and analyzed the data; M.K. and T.

- 301 K. designed the experiments and wrote the manuscript.
- 302
- 303

304 Acknowledgments

305 This work was technically supported by H. Akai and S. Matsumoto. We thank Drs. T.

306 Tonouchi (Hirosaki University) and K. Nozaki (Shinshu University) for allowing us to

307 use naturally isolated *S. japonicus*. We also thank Drs. T. Nakagawa and Y. Matsuo for

- 308 their scientific advice. The *S. japonicus* strains and pSJU11 vector were kindly gifted
- 309 from Dr. Niki (NIG). S. cryophilus and S. octosporus strains were kindly gifted from N.
- 310 Rhind (UMass Medical School). This work was supported in part by a Grant-in-Aid from
- 311 the Ministry of Education, Culture, Sports, Science, and Technology of Japan to TK (no.
- 312 15K07360), and Science and Technology Research Promotion Program for Agriculture,
- 313 Forestry, Fisheries and Food Industry, Japan to MK. The authors thank Faculty of Life
- and Environmental Science in Shimane University for its help in financial supports for
- 315 publishing our results.
- 316
- 317
- 318

- 319 References
- Niki H (2014) *Schizosaccharomyces japonicus*: the fission yeast is a fusion of yeast
 and hyphae, Yeast, 31, 83-90.
- 322 2) Helston RM, Box JA, Tang W, Baumann P (2010) *Schizosaccharomyces cryophilus*323 sp. nov., a new species of fission yeast, FEMS Yeast Res, 10, 779-786.
- 324 3) Conti SF, Naylor HB (1960) Study of life-cycle of *Schizosaccharomyces octosporus*325 by means of ultra-thin sectioning and electron microscopy, Nature, 185,
 326 633-634.
- 4) Hoffman CS, Wood V, Fantes PA (2015) An ancient yeast for young geneticists: a
 primer on the *Schizosaccharomyces pombe* model system, Genetics, 201,
 403-423.
- Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J,
 Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S,
- 332Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell
- 333T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G,
- 334 Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones
- 335 L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K,
- 336 Murphy L, Niblett D, Odell C, Oliver K, O'Neil S, Pearson D, Quail MA,
- 337 Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S,
- 338 Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG,
- 339 Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R,
- Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schafer M,
- 341 Muller-Auer S, Gabel C, Fuchs M, Dusterhoft A, Fritzc C, Holzer E, Moestl D,
- 342 Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger
- 343 P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E,
- 344 Dreano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C,
- 345 Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A,
- 346 Thode G, Daga RR, Cruzado L, Jimenez J, Sanchez M, del Rey F, Benito J,

347		Dominguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L,
348		Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D,
349		Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces
350		pombe, Nature, 415, 871-880.
351	6)	Rhind N, Chen Z, Yassour M, Thompson DA, Haas BJ, Habib N, Wapinski I, Roy S,
352		Lin MF, Heiman DI, Young SK, Furuya K, Guo Y, Pidoux A, Chen HM,
353		Robbertse B, Goldberg JM, Aoki K, Bayne EH, Berlin AM, Desjardins CA,
354		Dobbs E, Dukaj L, Fan L, FitzGerald MG, French C, Gujja S, Hansen K,
355		Keifenheim D, Levin JZ, Mosher RA, Muller CA, Pfiffner J, Priest M, Russ C,
356		Smialowska A, Swoboda P, Sykes SM, Vaughn M, Vengrova S, Yoder R, Zeng
357		Q, Allshire R, Baulcombe D, Birren BW, Brown W, Ekwall K, Kellis M,
358		Leatherwood J, Levin H, Margalit H, Martienssen R, Nieduszynski CA,
359		Spatafora JW, Friedman N, Dalgaard JZ, Baumann P, Niki H, Regev A,
360		Nusbaum C (2011) Comparative functional genomics of the fission yeasts,
361		Science, 332, 930-936.
362	7)	Klar AJ (2013) Schizosaccharomyces japonicus yeast poised to become a favorite
363		experimental organism for eukaryotic research, G3 (Bethesda), 3, 1869-1873.
364	8)	Yamada Y, Arimoto M, Kondao K (1973) Coenzyme Q system in the classification
365		of the ascosporogenous yeast genus Schizosaccharomyces and yeast-like genus
366		Endomyces, J. Gen. Appl. Microbiol., 19, 353-358.
367	9)	Marbois B, Xie LX, Choi S, Hirano K, Hyman K, Clarke CF (2010)
368		para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in
369		Saccharomyces cerevisiae, J. Biol. Chem., 285, 27827-27838.
370	10)	Tran UC, Clarke CF (2007) Endogenous synthesis of coenzyme Q in eukaryotes,
371		Mitochondrion, 7 Suppl, S62-71.
372	11)	Allan CM, Awad AM, Johnson JS, Shirasaki DI, Wang C, Blaby-Haas CE,
373		Merchant SS, Loo JA, Clarke CF (2015) Identification of Coq11, a new

374		coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces
375		cerevisiae, J. Biol. Chem., 290, 7517-7534.
376	12)	Kawamukai M (2009) Biosynthesis and bioproduction of coenzyme Q10 by yeasts
377		and other organisms, Biotechnol. Appl. Biochem., 53, 217-226.
378	13)	Kawamukai M (2016) Biosynthesis of coenzyme Q in eukaryotes, Biosci
379		Biotechnol Biochem, 80, 23-33.
380	14)	Saiki R, Nagata A, Uchida N, Kainou T, Matsuda H, Kawamukai M (2003) Fission
381		yeast decaprenyl diphosphate synthase consists of Dps1 and the newly
382		characterized Dlp1 protein in a novel heterotetrameric structure, Eur. J.
383		Biochem., 270, 4113-4121.
384	15)	Saiki R, Nagata A, Kainou T, Matsuda H, Kawamukai M (2005) Characterization
385		of solanesyl and decaprenyl diphosphate synthases in mice and humans, FEBS J.,
386		272, 5606-5622.
387	16)	Okada K, Suzuki K, Kamiya Y, Zhu X, Fujisaki S, Nishimura Y, Nishino T,
388		Nakagawa T, Kawamukai M, Matsuda H (1996) Polyprenyl diphosphate
389		synthase essentially defines the length of the side chain of ubiquinone, Biochim.
390		Biophys. Acta, 1302, 217-223.
391	17)	Okada K, Kainou T, Matsuda H, Kawamukai M (1998) Biological significance of
392		the side chain length of ubiquinone in Saccharomyces cerevisiae, FEBS Lett.,
393		431, 241-244.
394	18)	Suzuki K, Ueda M, Yuasa M, Nakagawa T, Kawamukai M, Matsuda H (1994)
395		Evidence that Escherichia coli ubiA product is a functional homolog of yeast
396		COQ2, and the regulation of <i>ubiA</i> gene expression, Biosci. Biotech. Biochem.,
397		58, 1814-1819.
398	19)	Uchida N, Suzuki K, Saiki R, Kainou T, Tanaka K, Matsuda H, Kawamukai M
399		(2000) Phenotypes of fission yeast defective in ubiquinone production due to
400		disruption of the gene for <i>p</i> -hydroxybenzoate polyprenyl diphosphate transferase,
401		J. Bacteriol., 182, 6933-6939.

402	20)	Hayashi K, Ogiyama Y, Yokomi K, Nakagawa T, Kaino T, Kawamukai M (2014)
403		Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants,
404		and humans, PLoS One, 9, e99038.
405	21)	Moriyama D, Hosono K, Fujii M, Washida M, Nanba H, Kaino T, Kawamukai M
406		(2015) Production of CoQ_{10} in fission yeast by expression of genes responsible
407		for CoQ ₁₀ biosynthesis, Biosci Biotechnol Biochem, 79, 1026-1033.
408	22)	Moriyama D, Kaino T, Yajima K, Yanai R, Ikenaka Y, Hasegawa J, Washida M,
409		Nanba H, Kawamukai M (2017) Cloning and characterization of decaprenyl
410		diphosphate synthase from three different fungi, Appl Microbiol Biotechnol, 101,
411		1559-1571.
412	23)	Alfa C, Fantes P, Hyams J, McLeod M, Warbrick E (1993) Experiments with
413		fission yeast., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
414	24)	Okazaki K, Okazaki N, Kume K, Jinno S, Tanaka K, Okayama H (1990)
415		High-frequency transformation method and library transducing vectors for
416		cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces
417		pombe., Nucleic Acids Res., 18, 6485-6489.
418	25)	Prentice HL (1992) High efficiency transformation of Schizosaccharomyces
419		pombe by electroporation, Nucleic Acids Res, 20, 621.
420	26)	Moreno S, Klar A., Nurse P (1991) Molecular genetic analysis of fission yeast
421		Schizosaccharomyces pombe., Methods Enzymol., 194, 795-823.
422	27)	Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a lablatory manual,
423		2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
424	28)	Suzuki K, Okada K, Kamiya Y, Zhu X, Tanaka K, Nakagawa T, Kawamukai M,
425		Matsuda H (1997) Analysis of the decaprenyl diphosphate synthase (dps) gene in
426		fission yeast suggests a role of ubiquinone as an antioxidant, J. Biochem.
427		(Tokyo), 121, 496-505.

428	29)	Miki R, Saiki R, Ozoe Y, Kawamukai M (2008) Comparison of a coq7 deletion
429		mutant with other respiration-defective mutants in fission yeast, FEBS J., 275,
430		5309-5324.
431	30)	Zhang M, Wakitani S, Hayashi K, Miki R, Kawamukai M (2008) High production
432		of sulfide in coenzyme Q deficient fission yeast, Biofactors, 32, 91-98.
433	31)	Saiki R, Ogiyama Y, Kainou T, Nishi T, Matsuda H, Kawamukai M (2003)
434		Pleiotropic phenotypes of fission yeast defective in ubiquinone-10 production. A
435		study from the <i>abc1Sp</i> (<i>coq8Sp</i>) mutant, Biofactors, 18, 229-235.
436	32)	Kawamukai M (2002) Biosynthesis, bioproduction and novel roles of ubiquinone,
437		J. Biosci. Bioeng., 94, 511-517.
438	33)	Zhang M, Luo J, Ogiyama Y, Saiki R, Kawamukai M (2008) Heteromer formation
439		of a long-chain prenyl diphosphate synthase from fission yeast Dps1 and
440		budding yeast Coq1, FEBS J., 275, 3653-3668.
441	34)	Sakurai M, Tohda H, Kumagai H, Giga-Hama Y (2004) A distinct type of alcohol
442		dehydrogenase, adh4+, complements ethanol fermentation in an adh1-deficient
443		strain of Schizosaccharomyces pombe, FEMS Yeast Res, 4, 649-654.
444	35)	Bulder CJ (1971) Anaerobic growth, ergosterol content and sensitivity to a polyene
445		antibiotic, of the yeast Schizosaccharomyces japonicus, Antonie Van
446		Leeuwenhoek, 37, 353-358.
447	36)	Naehring J, Kiefer S, Wolf K (1995) Nucleotide sequence of the
448		Schizosaccharomyces japonicus var. versatilis ribosomal RNA gene cluster and
449		its phylogenetic implications, Curr Genet, 28, 353-359.
450	37)	Svoboda A, Slaninova I (1997) Colocalization of microtubules and mitochondria
451		in the yeast Schizosaccharomyces japonicus var. versatilis, Can J Microbiol, 43,
452		945-953.
453	38)	Okada K, Ohara K, Yazaki K, Nozaki K, Uchida N, Kawamukai M, Nojiri H,
454		Yamane H (2004) The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl

- diphosphate transferase in ubiquinone biosynthesis is required for embryo
 development in *Arabidopsis thaliana*, Plant Mol. Biol., 55, 567-577.
 39) Aoki K, Nakajima R, Furuya K, Niki H. (2010) Novel episomal vectors and a
 highly efficient transformation procedure for the fission yeast *Schizosaccharomyces japonicus*. Yeast, 27, 1049-1060.

- 463 Figure legends
- 464
- 465 Fig. 1. Proposed coenzyme Q (CoQ) biosynthetic pathway in S. pombe. The
- 466 biosynthetic pathway that converts PHB into CoQ consists of eight steps in *S. pombe*.
- 467 Decaprenyl diphosphate which is synthesized by decaprenyl diphosphate synthase (Dps1
- 468 + Dlp1) is transferred to PHB by PHP-decaprenyl diphosphate transferase (Ppt1 (Coq2)),
- 469 and then seven modifications of the aromatic ring are performed in CoQ biosynthesis.
- 470
- 471 **Fig. 2. CoQ contents in four fission yeasts.** (A) HPLC analyses of CoQs from *S. pombe*
- 472 PR110, S. japonicus NIG5091, S. octosporus yFS286, and S. cryophilus OY26 with CoQ9
- 473 and CoQ₁₀ standards. (B) MS analysis of CoQ produced in *S. japonicus*. Open triangle
- 474 marks peak at 197.0831 m/z; closed triangle marks peak at 885.6797 m/z. It is identical to 475 standard CoQ₁₀.
- 476
- 477 Fig. 3. Respiration deficiency of *S. japonicus*. (A) *S. pombe* wild type (PR110), *S.*
- 478 *pombe* Δ*ppt1*, and *S. japonicus* wild type NIG5091 were grown on YES medium
- 479 containing 3% glucose for 5 days or 2% glycerol + 1% ethanol for 7 days at 30°C. (B)
- 480 Oxygen consumption was monitored in *S. pombe* wild type PR110 (diamond), *S. pombe*
- 481 Δ*ppt1* (square), and *S. japonicus* wild type NIG5091 (triangle).
- 482
- 483 Fig. 4. Growth under anaerobic conditions. S. japonicus (NIG2028, NIG5091), S.
- 484 *pombe* (WT (PR110) and $\Delta ppt1$), and S. cerevisiae (WT (W303-1A) and $\Delta coq2$)³⁸⁾
- 485 strains were grown, serially diluted, and spotted on YES and YPAD for 2 days under
- 486 aerobic and anaerobic conditions.
- 487
- Fig. 5. Stress sensitivity of *S. japonicus*. *S. pombe* wild type PR110, *S. pombe* $\Delta ppt1$, and *S. japonicus* NIG5091 were grown on YES medium containing 1 mM H₂O₂ and 1 mM paraguat (PQ) for 5 days at 30°C.
- 491
- 492 **Fig. 6. Sulfide production.** (A) Growth of *S. pombe* wild type PR110 (diamond), *S.* 493 *pombe* $\Delta ppt1$ (square), and *S. japonicus* NIG5091 (triangle) was monitored by counting

- 494 cell numbers in YES medium. (B) Sulfide is measured in the same strains by the495 methylene blue method.
- 496
- 497 Fig. 7. Expression of S. japonicus ppt1 in S. pombe Δppt1 strain. S. pombe wild type
- 498 (PR110) harboring pREP41 and S. pombe $\Delta ppt1$ harboring pREP41,
- pSLF272LGFP-Ppt1, or pREP41-Sjppt1 were grown in minimal medium with or without
 cysteine for 4 days at 30°C (A). Production of CoQ₁₀ was measured by HPLC (B). CoQ₆
 was used as standard.
- 502
- 503 Fig. 8. Expression of *S. japonicus dps1* in *S. pombe* △*dps1* strain. *S. japonicus dps1*
- 504 was expressed in *S. pombe* $\Delta dps l$ strain (LJ1030). Cells were grown on minimal medium
- with or without cysteine for 6 days at 30° C (A), and synthesis of CoQ₁₀ was measured by
- 506 HPLC (B). Vector: LJ1030/pREP41; Spdps1: LJ1030/pREP41-dps1; Sjdps1-1 and
- 507 *Sjdps1-2*: LJ1030/pREP41-Sjdps1-1 or pREP41-Sjdps1-2 (these plasmids were
- 508 constructed independently, but used the same structure).
- 509

510 Fig. 9. Expression of *S. japonicus dlp1* in *S. pombe* $\Delta dlp1$ strain. *S. japonicus dlp1* was

- 511 expressed in *S. pombe* $\Delta dlp1$ strain (RM19). Cells were grown on minimal medium with
- or without cysteine for 5 days at 30° C (A), and synthesis of CoQ₁₀ was measured by
- 513 HPLC (B). Vector: RM19/pREP1; Spdlp1: RM19/pREP1-dlp1; *Sjdlp1*-1 or *Sjdlp1*-2:
- 514 RM19/pREP1-Sjdlp1-1 or pREP1-Sjdlp1-2 (these plasmids were constructed
- 515 independently, but used the same structure).
- 516

517 Fig. 10. Expression of *S. japonicus dlp1* and *dps1* in the *S. pombe* $\Delta dlp1\Delta dps1$ double

518 **mutant.** *S. japonicus dlp1* and *dps1* were expressed in the *S. pombe* $\Delta dps1\Delta dlp1$ double

519 deletion strain (LA1). Cells were grown on the minimum medium with or without

- 520 cysteine for 5 days at 30° C (A), and synthesis of CoQ₁₀ was measured (B).
- 521
- 522 Fig. 11. Ethanol production. (A) The amount of ethanol produced in *S. cerevisiae*
- 523 kyokai No. 9 (Sc), S. pombe L972 (Sp), S. japonicus NIG2028 (Sj), S. octosporus
- 524 yFS286 (So), and S. cryophilus OY26 (Scryo) was measured by HPLC at 0 (white bar),

- 525 24 (light gray bar), 48 (dark gray bar), and 72 (black bar) hours. Cells were grown at
- 526 25°C in YPD (10% glucose). (B) The amount of ethanol produced in *S. cerevisiae*
- 527 kyokai No. 9 (Sc), *S. pombe* L972 (Sp), and *S. japonicus* NIG2028 (Sj) was measured by
- 528 HPLC at 0 (white bar), 24 (light gray bar), 48 (dark gray bar), and 72 (black bar) hours.
- 529 Cells were grown either at 30 or 42°C in YPD (10% glucose).
- 530

YESCarbon sources+3% Glucose+2% Glycerol+1% EtOHS. pombeW. T.
 $\Delta ppt1$ Image: Colspan="3">Image: Colspan="3">YESS. japonicusW. T.Image: Colspan="3">Image: Colspan="3">YES

(B)

(A)

(B)

(B)

S. pombe ∆dps1

S. pombe $\Delta dlp1$

S. pombe $\Delta dps 1 \Delta dlp 1$

Fig. 11

Strain	Genotype	Reference
S. pombe		
L972	h^-	Lab stock
PR110	h ⁺ ura4-D18 leu1-32	Lab stock
LJ1030	h ⁺ leu1-32 ura4-D18 dps1::kanMX6	33)
RM19 (KH2)	h ⁺ leu1-32 ura4-D18 ppt1(coq2)::kanMX6	19)
LA1	h ⁺ leu1-32 ade6-M210 ura4-D18 dlp1::ura4::ADE2	33)
	dps1::kanMx6	
S. japonicus NIG2028	h^-	1)
S. japonicus NIG5091	$h^-\Delta ura4$	1)
S. octosporus yFS286	h^{90}	6)
S. cryophilus OY26		6)
S. cerevisiae		
kyokai No. 9		Brewing Societ
		of Japan
W303-1A	MAT a ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1	Lab Stock
W303∆coq2	MAT a ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1	38)
	coq2::HIS3	

2 Table 1. Strains used in this study

24	Plasmid	Relevant characteristics	Source or reference
25	pREP1	ars1, LEU2, nmt1-P, vector	lab stock
26	pREP41	ars1, LEU2, nmt*-P, vector	lab stock
27	pREP2	ars1, ura4, nmt1-P, vector	lab stock
28	pREP1-TP45ddsA	Mitochondrial transit peptide	14)
29	(pRDDSA)	G. suboxydans ddsA in pREP1	
30	pSLF272LGFP-Ppt1	S. pombe ppt1 in pSLF272L-GFP _{S65}	A 20 ⁾
31	(pSLF272L-GFP _{S65A} -I	Dlp1)	
32	pREP41-dps1	S. pombe dps1 in pREP41	this study
33	pREP2-dps1	S. pombe dps1 in pREP2	this study
34	pREP1-dlp1	S. pombe dlp1 in pREP1	14)
35	pREP2-dlp1	S. pombe dlp1 in pREP2	33)
36	pREP41-Sjppt1	S. japonicus ppt1 in pREP41	this study
37	pREP1-Sjdps1	S. japonicus dps1 in pREP1	this study
38	pREP41-Sjdps1	S. japonicus dps1 in pREP41	this study
39	pREP2-Sjdps1	S. japonicus dps1 in pREP2	this study
40	pREP1-Sjdlp1	S. japonicus dlp1 in pREP1	this study
41	pREP2-Sjdlp1	S. japonicus dlp1 in pREP2	this study
42	pSJU11	Spura4	39)
43	pSJU11-Spppt1-15	S. japonicus nmt1 promoter	this study
44		-S. pombe ppt1 in pSJU11	
45			
46			
17			
+ /			
48			
49			
50			
51			
52			

23 Table 2. Plasmids used in this study

	S. pombe	S. japonicus	S. octosporus	S. cryophilus
dps l	SPBPJ4664.01	SJAG_04568.4	SOCG_05355.5	SPOG_01333.3
dlp1	SPAC19G12.12	SJAG_05776.4	SOCG_05034.5	SPOG_02630.3
pptl	SPAC56F8.04c	SJAG_06603.4	SOCG_02185.5	SPOG_00640.3
coq3	SPCC162.05	SJAG_06463.4	SOCG_02911.5	SPOG_02511.3
coq4	SPAC1687.12c	SJAG_00721.4	SOCG_02103.5	SPOG_00720.3
coq5	SPCC4G3.04c	SJAG_01043.4	SOCG_03809.5	SPOG_03428.3
coq6	SPBC146.12	SJAG_04000.4	SOCG_03515.5	SPOG_04223.3
coq7	SPBC337.15c	SJAG_00459.4	SOCG_03501.5	SPOG_04237.3
coq8	SPBC2D10.18	SJAG_00933.4	SOCG_00248.5	SPOG_02833.3
coq9	SPAC19G12.11	SJAG 01866.4	SOCG 05035.5	SPOG 02631.3

54 Table 3. CoQ biosynthetic genes in four fission yeasts