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The present paper deals with the following system:

x′ = − e(t)x+ f(t)ϕp∗(y),

y′ = −(p− 1)g(t)ϕp(x)− (p− 1)h(t)y,

where p and p∗ are positive numbers satisfying 1/p + 1/p∗ = 1, and ϕq(z) =

|z|q−2z for q = p or q = p∗. This system is referred to as a half-linear system.

We herein establish conditions on time-varying coefficients e(t), f(t), g(t) and

h(t) for the zero solution to be uniformly globally asymptotically stable. If

(e(t), f(t)) ≡ (h(t), g(t)), then the half-linear system is integrable. We consider

two cases: the integrable case (e(t), f(t)) ≡ (h(t), g(t)) and the nonintegrable

case (e(t), f(t)) ̸≡ (h(t), g(t)). Finally, some simple examples are presented to

illustrate our results.

1. Introduction

We consider the half-linear system

x′ = − e(t)x+ f(t)ϕp∗(y),

y′ = −(p− 1)g(t)ϕp(x)− (p− 1)h(t)y,
(1.1)

where the prime denotes d/dt; the coefficients e(t), f(t), g(t) and h(t) are continuous
for t ≥ 0; the numbers p and p∗ are positive and satisfy

1

p
+

1

p∗
= 1;

the function ϕq(z) is defined by

ϕq(z) = |z|q−2z

1
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for q = p or q = p∗. Note that p and p∗ are naturally greater than 1, and ϕp∗ is
the inverse function of ϕp. System (1.1) has the zero solution (x(t), y(t)) ≡ (0, 0). If
(x(t), y(t)) is a solution of (1.1), then (cx(t), ϕp(c)y(t)) is also a solution of (1.1) for
any c ∈ R. However, even if (x1(t), y1(t)) and (x2(t), y2(t)) are two solutions of (1.1),
the function (x1(t) + x2(t), y1(t) + y2(t)) is not always a solution of (1.1). If f(t) ̸= 0
for t ≥ 0, then by putting

w = exp

(∫ t

0

e(τ)dτ

)
x and z = exp

(
(p− 1)

∫ t

0

h(τ)dτ

)
y,

system (1.1) is transformed into the system

w′ =
ϕp∗(z)

r(t)
,

z′ = − c(t)ϕp(w),

where

r(t) = ϕp

(
exp

(∫ t

0

(h(τ)− e(τ))dτ

)/
f(t)

)
and

c(t) = (p− 1)g(t) exp

(
(p− 1)

∫ t

0

(h(τ)− e(τ))dτ

)
.

This system is equivalent to the half-linear differential equation(
r(t)ϕp(w

′)
)′
+ c(t)ϕp(w) = 0. (HL)

It is known that for any t0 ≥ 0 and (c1, c2) ∈ R2, there exists a unique solution of
(HL) satisfying w(t0) = c1 and w′(t0) = c2 which is continuable in the future. For
details, see [5, p. 170] or [6, pp. 8–10]. Hence, the global existence and uniqueness of
solutions of (1.1) are guaranteed for the initial value problem.
The purpose of this paper is to present conditions on e(t), f(t), g(t) and h(t)

for the zero solution of (1.1) to be uniformly globally asymptotically stable (for the
definition, see §2).
In the special case in which p = 2, system (1.1) becomes the linear system

x′ = A(t)x, (1.2)

where

x =

(
x

y

)
and A(t) =

(
− e(t) f(t)

− g(t) −h(t)

)
.

Let ∥x∥ be the Euclidean norm of a vector x and let X(t) be a fundamental matrix
for system (1.1). We define the norm of X(t) to be

∥X(t)∥ = sup
∥x∥=1

∥X(t)x∥.

As is well known, the zero solution of (1.2) is merely asymptotically stable; that is,
every solution (x(t), y(t)) of (1.2) tends to the origin (0, 0) as time t increases if and
only if

∥X(t)∥ → 0 as t→ ∞, (1.3)
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and the zero solution of (1.2) is uniformly asymptotically stable if and only if there
exist positive constants R and λ such that

∥X(t)X−1(s)∥ ≤ R exp(−λ(t− s)) for 0 ≤ s ≤ t <∞ (1.4)

(for example, see [4, p. 54] or [9, p. 84]). Note that if the zero solution of (1.2) is
asymptotically stable (uniformly asymptotically stable), then it must become globally
asymptotically stable (uniformly globally asymptotically stable). This means that we
may remove the term “globally” in the linear system (1.2).
In the general case, where p ̸= 2, however, the concept of fundamental matrices

does not apply, because the sum of two solutions of (1.1) is not always a solution of
(1.1), namely, the solution space of (1.1) is not additive. Hence, the criteria (1.3) and
(1.4) are useless for verifying that the zero solution of (1.1) is globally asymptotically
stable and uniformly globally asymptotically stable, respectively.
Let S(t) be the solution of a basic half-linear differential equation(

ϕp(x
′)
)′
+ (p− 1)ϕp(x) = 0

satisfying the initial condition (S(0), S ′(0)) = (0, 1). Then, S(t) satisfies the general-
ized Pythagorean identity

|S(t)|p + |S ′(t)|p ≡ 1,

and S(t) is positive and increasing on [0, πp/2] with S(πp/2) = 1 and S ′(πp/2) = 0,
where

πp =

∫ 1

0

2

(1− sp)1/p
ds =

2π

p sin(π/p)
.

As is customary, we define the generalized sine function sinp θ as follows:

sinp θ =

{
S(θ) if 0 ≤ θ ≤ πp/2

S(πp − θ) if πp/2 < θ ≤ πp

and

sinp θ =

{
− sinp(θ − πp) if πp ≤ θ < 2πp

sinp(θ − 2nπp) if 2nπp ≤ θ < 2(n+ 1)πp

for n = ±1,±2, · · · . The generalized cosine function cosp θ is defined as cosp θ =
(sinp θ)

′. Then,

| sinp θ|p + | cosp θ|p = 1 for θ ∈ R. (1.5)

For details concerning πp, sinp θ and cosp θ, see [1, 5–7, 12, 15].
If e(t) ≡ h(t) and f(t) ≡ g(t), then system (1.1) is rewritten as the system

r′ = −h(t)r,

θ′ = g(t)
(1.6)

by using the generalized Prüfer transformation

x = r sinp θ and y = ϕp(r cosp θ).
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Let (x(t), y(t)) be the solution of (1.1) initiating at t = t0 ≥ 0. Then, this solution is
expressed as

x(t) = r(t) sinp θ(t) = r(t0) exp

(
−
∫ t

t0

h(τ)dτ

)
sinp

(
θ(t0) +

∫ t

t0

g(τ)dτ

)
y(t) = ϕp(r(t) cosp θ(t)) = ϕp

(
r(t0) exp

(
−
∫ t

t0

h(τ)dτ

)
cosp

(
θ(t0) +

∫ t

t0

g(τ)dτ

))
.

We therefore conclude that a necessary and sufficient condition for the zero solution
of (1.1) to be globally asymptotically stable is that∫ ∞

0

h(t)dt = ∞ (1.7)

in the special case in which e(t) ≡ h(t) and f(t) ≡ g(t). As proven in §2, the zero
solution of (1.1) with e(t) ≡ h(t) and f(t) ≡ g(t) is uniformly globally asymptotically
stable if and only if∫ t

s

h(τ)dτ ≥ λ(t− s)− κ for 0 ≤ s ≤ t <∞ (1.8)

with λ > 0 and κ > 0. For example, if h(t) = 1/(1 + t) for t ≥ 0, then it is easy to
confirm that condition (1.7) holds, but condition (1.8) does not hold. Hence, in the
case in which e(t) ≡ h(t) = 1/(1 + t) and f(t) ≡ g(t), the zero solution of (1.1) is
globally asymptotically stable, but not uniformly globally asymptotically stable.
In the general case in which p ̸= 2 and (e(t), f(t)) ̸≡ (h(t), g(t)), we cannot express

the solutions of (1.1) accurately. Then, can we decide whether the zero solution is
uniformly globally asymptotically stable in the general case? What kind of condition
on the coefficients e(t), f(t), g(t) and h(t) will guarantee the uniform global asymp-
totic stability of the zero solution of (1.1)? As an answer to these questions, in §3,
we present sufficient conditions for uniform global asymptotic stability that can be
applied even in the case in which p ̸= 2 and (e(t), f(t)) ̸≡ (h(t), g(t)). To present
our result, we define a characteristic function obtained from coefficients in system
(1.1). In the final section, we take some concrete examples to illustrate the results
presented in §3.

2. Definitions

First, let us give some definitions. For this purpose, we denote the solution of (1.1)
through (t0,x0) ∈ [0,∞) × R2 by x(t; t0,x0). The zero solution of (1.1) is said to
be uniformly stable if, for any ε > 0, there exists a δ(ε) > 0 such that t0 ≥ 0 and
∥x0∥ < δ imply ∥x(t; t0,x0)∥ < ε for all t ≥ t0. The zero solution of (1.1) is said to
be uniformly globally attractive if, for any ρ > 0 and any η > 0, there is a T (ρ, η) > 0
such that t0 ≥ 0 and ∥x0∥ < ρ imply ∥x(t; t0,x0)∥ < η for all t ≥ t0 + T . The
solutions of (1.1) are said to be uniformly bounded if, for any ρ > 0, there exists a
B(ρ) > 0 such that t0 ≥ 0 and ∥x0∥ < ρ imply ∥x(t; t0,x0)∥ < B for all t ≥ t0.
The zero solution of (1.1) is uniformly globally asymptotically stable if it is uniformly
stable and is uniformly globally attractive, and if the solutions of (1.1) are uniformly
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bounded. With respect to the various definitions of stability and boundedness, the
reader can refer to [2, 8, 14, 17, 22] for example.

The most important points are that δ is independent of the initial time t0 and
that T and B are independent of the initial time t0 and the initial state x0 in the
definitions above. In the research on uniform global asymptotic stability, it is difficult
to choose δ, T and B which do not depend on t0 or (t0,x0). In order to demonstrate
this fact, we have to pay scrupulous attention to its proof.

When δ depends on t0, or when T or B depends on (t0,x0), even if all solutions
approach the origin, each approaching speed or each asymptotic motion is not nec-
essarily the same. This situation is not desirable. For example, if a system has a
unique solution with respect to the initial condition (t0,x0) and if the zero solution of
the system is uniformly globally asymptotically stable, then there exists a Lyapunov
function with suitable properties (i.e., this is the converse Lyapunov theorem). How-
ever, as Massera demonstrated in [13, Example 2], non-uniform asymptotic stability
of the zero solution of a time varying system does not generally imply the existence
of a good Lyapunov function. For details concerning converse Lyapunov theorems
and their applications to mathematical control theory, see [2, 8, 14, 17, 18, 22] and the
references cited therein.

Converse theorems for uniform (global) asymptotic stability are very useful for deal-
ing with perturbation problems. For example, if the zero solution of (1.2) is uniformly
asymptotically stable and if f(t,x) and Γ (t) satisfy the condition ∥f(t,x)∥ ≤ Γ (t)∥x∥
for t ≥ 0 and x ∈ R2, where ∫ ∞

0

Γ (t)dt <∞,

then the zero solution of the perturbed system

x′ = A(t)x+ f(t,x)

is uniformly asymptotically stable. Note that if δ and T depend on t0, then we cannot
derive this conclusion. For details, see [16] (also [3, pp. 169–170] or [9, p. 88]). There-
fore, the problems considered in the present study are closely related to perturbation
problems.　
A scalar function a : [0,∞) → [0,∞) is said to be of the class CIP , if a(r) is

continuous and strictly increasing with a(0) = 0. For such a function, we write
a(r) ∈ CIP . In the definitions of uniform stability and uniform global attractivity
of the zero solution of (1.1), we may replace ∥x(t; t0,x0)∥ < ε and ∥x(t; t0,x0)∥ < η
with

∥x(t; t0,x0)∥ < a(ε) and ∥x(t; t0,x0)∥ < a(η),

respectively, where a(r) ∈ CIP . In the definition of uniform boundedness of the
solutions of (1.1), we may replace ∥x(t; t0,x0)∥ < B with

∥x(t; t0,x0)∥ < a(B),

where a(r) ∈ CIP and a(r) → ∞ as r → ∞.

Consider again the special case in which e(t) ≡ h(t) and f(t) ≡ g(t). Then, we
have the following result.
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Theorem 2.1. Suppose that e(t) = h(t) and f(t) = g(t) for t ≥ 0. Then the zero
solution of (1.1) is uniformly globally asymptotically stable if and only if condition
(1.8) holds .

To prove theorem 2.1, we prepare the following lemma.

Lemma 2.2. Let b(r) ∈ CIP and c(r) ∈ CIP. If

b(|x|) + c(|y|) < b(r), (2.1)

then there exists a scalar function a(r) ∈ CIP such that ∥x∥ =
√
x2 + y2 < a(r).

Proof. Since c(r) ∈ CIP , there exists the inverse function c−1(r) ∈ CIP . Let
a(r) = r + c−1(b(r)). Since a composite function of two CIP functions also belong
to CIP , a(r) ∈ CIP . By (2.1), we have

|x| < r and |y| < c−1(b(r)).

Hence, we obtain
∥x∥ ≤ |x|+ |y| < r + c−1(b(r)) = a(r),

as desired.

Proof of theorem 2.1. From the generalized Prüfer transformation it follows that

rp| sinp θ|p = |x|p and rp| cosp θ|p = |ϕp∗(y)|p = |y|(p∗−1)p = |y|p∗.

Hence, by the relation (1.5), we have

|x|p + |y|p∗ = rp. (2.2)

Recall that system (1.1) is equivalent to system (1.6) in the case in which e(t) ≡ h(t)
and f(t) ≡ g(t). Let (x(t), y(t)) = x(t; t0,x0) and let r(t; t0, r0) be the solution of the
scalar equation

r′ = −h(t)r (2.3)

corresponding to (x(t), y(t)). Then, it is clear that

r(t; t0, r0) = r0 exp

(
−
∫ t

t0

h(τ)dτ

)
with r0 = ∥x0∥. Hence, it is easy to verify that condition (1.8) is necessary and
sufficient for the zero solution of (2.3) to be uniformly globally asymptotically stable;
that is,

(i) for any ε > 0, there exists a δ(ε) > 0 such that t0 ≥ 0 and r0 < δ imply
r(t; t0, r0) < ε for all t ≥ t0,

(ii) for any ρ > 0 and any η > 0, there is a T (ρ, η) > 0 such that t0 ≥ 0 and r0 < ρ
imply r(t; t0, r0) < η for all t ≥ t0 + T ,

(iii) for any ρ > 0, there exists a B(ρ) > 0 such that t0 ≥ 0 and r0 < ρ imply
r(t; t0, r0) < B for all t ≥ t0.
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Suppose that condition (1.8) holds. Then, from (2.2) and (i) we see that

|x(t)|p + |y(t)|p∗ = rp(t; t0, r0) < εp for t ≥ t0.

Let b(r) = rp and c(r) = rp
∗
. Then, b(r) ∈ CIP and c(r) ∈ CIP . Hence, by means

of lemma 2.2, we can find a function a(r) ∈ CIP such that

∥x(t; t0,x0)∥ < a(ε) for t ≥ t0,

and therefore, the zero solution of (1.1) is uniformly stable. By a similar way, we can
show that the zero solution of (1.1) is uniformly globally attractive and the solutions
of (1.1) are uniformly bounded. Thus, the zero solution of (1.1) is uniformly globally
asymptotically stable.
Conversely, suppose that the zero solution of (1.1) is uniformly globally asymptot-

ically stable. Let q = max{1, p/p∗} and q = min{1, p/p∗}. Since the zero solution of
(1.1) is uniformly stable, for any ε > 0, there exists a δ(ε) > 0 such that t0 ≥ 0 and
∥x0∥ < δ imply ∥x(t; t0,x0)∥ < a(ε) for all t ≥ t0, where a(r) = (r/2)q ∈ CIP . We
may assume that ε is sufficiently small. Hence, we have

|x(t)| <
(ε
2

)q
≤ ε

2
and |y(t)| <

(ε
2

)q
≤
(ε
2

)p/p∗
for t ≥ t0. From these inequalities and (2.2), we see that

rp(t; t0, r0) = |x(t)|p + |y(t)|p∗ <
(ε
2

)p
+
(ε
2

)p
< εp

for t ≥ t0. Thus, (i) holds, and hence the zero solution of (2.3) is uniformly stable.
Using the same argument with a(r) = (r/2)q ∈ CIP , we can show that the zero
solution of (2.3) is uniformly globally attractive, namely (ii). Since the zero solution
of (1.1) is uniformly bounded, for any ρ > 0, there exists a B(ρ) > 0 such that t0 ≥ 0
and ∥x0∥ < ρ imply ∥x(t; t0,x0)∥ < b(B) for all t ≥ t0, where b(r) = (r/2)q ∈ CIP .
We may assume that B is sufficiently large. Hence, we have

|x(t)| <
(
B

2

)q

≤ B

2
and |y(t)| <

(
B

2

)q

≤
(
B

2

)p/p∗

for t ≥ t0. From these inequalities and (2.2), we see that

rp(t; t0, r0) = |x(t)|p + |y(t)|p∗ <
(
B

2

)p

+

(
B

2

)p

< εp

for t ≥ t0. Thus, (iii) holds, and hence the zero solution of (2.3) is uniformly bounded.
We therefore conclude that the zero solution of (2.3) is uniformly globally asymptot-
ically stable and condition (1.8) holds.

3. The general case

To state our main result, we need some notations. Let

ϕ+(t) = max{0, ϕ(t)} and ϕ−(t) = max{0,−ϕ(t)}



8 M. Onitsuka and J. Sugie

for a continuous function ϕ(t). In other words, the graph of ϕ+(t) is corresponding
to the one that removed the negative portion from the graph of ϕ(t); the graph of
ϕ−(t) is corresponding to the one that removed the negative portion from the graph
of −ϕ(t). The function ϕ(t) and the absolute value |ϕ(t)| of the function ϕ(t) are
expressed as follows:

ϕ(t) = ϕ+(t)− ϕ−(t) and |ϕ(t)| = ϕ+(t) + ϕ−(t).

The function ϕ+(t) is said to be integrally positive if∫
I

ϕ+(t)dt = ∞

for every set I =
∞∪
n=1

[τn, σn] such that τn + ω < σn < τn+1 for some ω > 0. For

example, sin2 t is an integrally positive function (see [10, 11, 19–21]).
Here, we introduce a function that plays an important role in this paper. To this

end, we assume that f(t)g(t) > 0 and g(t)/f(t) is differentiable for t ≥ 0. Define

ψ(t) = ph(t) +
f(t)

g(t)

(
g(t)

f(t)

)′

.

Then, we have the following result.

Theorem 3.1. Suppose that f(t), g(t) and h+(t) are bounded for t ≥ 0. If

(i) f(t)g(t) > 0 for t ≥ 0 and lim inf
t→∞

f(t)g(t) > 0,

(ii)

∫ ∞

0

e−(t)dt <∞,

∫ ∞

0

h−(t)dt <∞ and

∫ ∞

0

ψ−(t)dt <∞,

(iii) ψ+(t) is integrally positive,

then the zero solution of (1.1) is uniformly globally asymptotically stable.

To prove theorem 3.1, we give some brief explanations about the assumptions.
Using assumption (i) and the boundedness of f(t), g(t) and h+(t), we can find positive
numbers f , g, h, k and K such that

|f(t)| ≤ f, g ≤ |g(t)|, h+(t) ≤ h and k ≤ f(t)

g(t)
≤ K

for t ≥ 0. We may assume without loss of generality that k ≤ 1 ≤ K. From
assumption (ii) it follows that there exist positive constants L and M such that

L =

∫ ∞

0

(2e−(t) + ψ−(t))dt and M =

∫ ∞

0

h−(t)dt.

It is known that assumption (iii) holds if and only if

lim inf
t→∞

∫ t+γ

t

ψ+(τ)dτ > 0
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for every γ > 0. Hence, there exist an l > 0 and a t̂ > 0 such that∫ t+1

t

ψ+(τ)dτ ≥ l for t ≥ t̂.

The values mentioned above are used for the proof of theorem 3.1 without a notice.

Proof of theorem 3.1. We will divide the proof into eight steps. In the first step, we
prove that the zero solution of (1.1) is uniformly stable. We next prove that the zero
solution of (1.1) is uniformly globally attractive in the seventh step from the second
step. Finally, we prove that the solutions of (1.1) are uniformly bounded.
Step 1: Define

p = max{p, p∗} and p = min{p, p∗}.
For an ε > 0 sufficiently small, we choose

δ(ε) =

(
kε p

2 p/2+1KeL

)1/p
. (3.1)

Note that
δ < εp/p ≤ ε≪ 1.

Let t0 ≥ 0 and x0 = (x0, y0) be given. We will show that t ≥ t0 and ∥x0∥ =√
x20 + y20 < δ imply ∥x(t; t0,x0)∥ < ε. For the sake of convenience of notation, we

write (x(t), y(t)) = x(t; t0,x0), where (x(t), y(t)) is a solution of (1.1).
Let

u(t) =
f(t)

g(t)
|y(t)|p∗ and v(t) = |x(t)|p + u(t).

Then,
v(t) ≥ |x(t)|p + k|y(t)|p∗ ≥ k

(
|x(t)|p + |y(t)|p∗

)
and

v′(t) = pϕp(x(t))x
′(t) +

p∗(g(t)/f(t))ϕp∗(y(t))y
′(t)− (g(t)/f(t))′|y(t)|p∗

(g(t)/f(t))2

= − pe(t)|x(t)|p − ψ(t)u(t) ≤ (pe−(t) + ψ−(t))v(t)

for t ≥ t0. Hence, we obtain

k
(
|x(t)|p + |y(t)|p∗

)
≤ v(t) ≤ exp

(∫ t

t0

(pe−(τ) + ψ−(τ))dτ

)
v(t0)

≤ eLv(t0) ≤ KeL
(
|x0|p + |y0|p

∗)
(3.2)

for t ≥ t0. Since |x0| < δ ≪ 1 and |y0| < δ ≪ 1, we see that

k
(
|x(t)|p + |y(t)|p∗

)
< KeL

(
δp + δp

∗) ≤ 2KeLδp = k

(
ε√
2

)p

,

and therefore,

|x(t)| ≤
(
ε√
2

)p/p

≤ ε√
2

and |y(t)| ≤
(
ε√
2

)p/p∗

≤ ε√
2
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for t ≥ t0. Consequently,

∥x(t; t0,x0)∥ =
√
x2(t) + y2(t) <

√
ε2

2
+
ε2

2
≤ ε for t ≥ t0.

Thus, the zero solution of (1.1) is uniformly stable. This completes the proof of
Step 1.
Step 2: To prove that the zero solution of (1.1) is uniformly globally attractive, for
any ρ large enough and any η small enough, we must determine a T (ρ, η) > 0 such
that t0 ≥ 0 and ∥x0∥ < ρ imply ∥x(t; t0,x0)∥ < η for all t ≥ t0+T . For this purpose,
we define several numbers as follows. Let

v = KeL
(
ρ p + ρ p∗

)
and v =

kδ p(η)

2 p/2
,

where δ(·) is given in (3.1). Because δ is small enough, we may consider that v/k is
smaller than 1. Using the numbers v and v, we define

µ = min

{
v

2
,
kv

2

(
g

2h

)p∗
}

and τ = t̂+

[
2(1 + L)v

lµ

]
+ 2,

where [c] means the greatest integer that is less than or equal to a real number c.
Note that the number µ depends only on η and the number τ depends only on ρ and
η. Let

ν = lim inf
t→∞

1

4v

∫ t+µk1/p/(4pfv)

t

ψ+(τ)dτ.

The upper limit of integration depends only on ρ and η, and so is the number ν. In
addition, ν is positive, because ψ+(t) is integrally positive. From assumptions (ii)
and (iii), we see that there exists a positive number σ depending only on ρ and η
such that ∫ ∞

t

(pe−(τ) + ψ−(τ))dτ ≤ min
{ µ

4v
,
µν

4

}
(3.3)

and ∫ t+µk1/p/(4pfv)

t

ψ+(τ)dτ ≥ 2νv (3.4)

for t ≥ σ. We combine numbers µ, ν, σ and τ , and define

T = σ +

([
4

µν

]
+ 1

)(
3eM

(p− 1)h
+ τ

)
which depends only on ρ and η.
Step 3: Consider a solution x(t; t0,x0) of (1.1) through (t0,x0) with t0 ≥ 0 and
∥x0∥ =

√
x20 + y20 < ρ. To prove that the zero solution of (1.1) is uniformly globally

attractive, we have only to show that there exists a t∗ ∈ [t0, t0 + T ] such that

|x(t∗)|p + |y(t∗)|p∗ < δ p(η)

2 p/2
=

v

k
. (3.5)
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In fact, if (3.5) holds, then

|x(t∗)| <
( v
k

)1/p
and |y(t∗)| <

( v
k

)1/p∗
.

Noticing that
v

k
< 1,

1

p
<

1

p
< 1 and

1

p
<

1

p∗
< 1,

we obtain

|x(t∗)| <
( v
k

)1/p
and |y(t∗)| <

( v
k

)1/p
.

Let x∗ = (x(t∗), y(t∗)). Then,

∥x∗∥ =
√
x2(t∗) + y2(t∗) <

√
2
( v
k

)1/p
= δ(η).

Hence, from the conclusion of Step 1, we see that any solution x(t; t∗,x∗) of (1.1)
through (t∗,x∗) satisfies that

∥x(t; t∗,x∗)∥ < η for t ≥ t∗.

As mentioned in the top paragraph of §1, system (1.1) has a unique solution of the
initial value problem. From this property of solutions of (1.1) and the fact that
x(t∗; t0,x0) = x∗ = x(t∗; t∗,x∗), it turns out that x(t; t0,x0) is corresponding to
x(t; t∗,x∗) for t ≥ t∗. Hence, we obtain

∥x(t; t0,x0)∥ < η for t ≥ t0 + T ≥ t∗,

as required.
By way of contradiction, we will prove that inequality (3.5) holds. Suppose that

|x(t)|p + |y(t)|p∗ ≥ v

k
for t0 ≤ t ≤ t0 + T.

Then, we have

0 < v ≤ k
(
|x(t)|p + |y(t)|p∗

)
≤ |x(t)|p + k|y(t)|p∗ ≤ v(t) (3.6)

for t0 ≤ t ≤ t0 + T . On the other hand, from (3.2) we see that

v(t) ≤ KeL
(
|x0|p + |y0|p

∗)
< KeL

(
ρ p + ρ p∗

)
= v for t ≥ t0. (3.7)

Step 4: If u(t) ≥ µ/2 for any interval [α1, β1] ⊂ [t0, t0 + T ], then β1 − α1 < τ , where
µ and τ are numbers given in Step 2. In fact, taking into account that

v′(t) = − pe(t)|x(t)|p − ψ(t)u(t)

= − pe(t)|x(t)|p + ψ−(t)u(t)− ψ+(t)u(t)

for t ≥ t0 and using (3.7), we have

0 ≤ ψ+(t)u(t) = − v′(t)− pe(t)|x(t)|p + ψ−(t)u(t)

≤ − v′(t) + (pe−(t) + ψ−(t))v(t)

≤ − v′(t) + v (pe−(t) + ψ−(t)) (3.8)
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for t ≥ t0. Integrating the both sides of (3.8) from α1 to β1 and using (3.6) and (3.7),
we obtain

µ

2

∫ β1

α1

ψ+(τ)dτ ≤
∫ β1

α1

ψ+(τ)u(τ)dτ

≤ −
∫ β1

α1

v′(τ)dτ + v

∫ β1

α1

(pe−(τ) + ψ−(τ))dτ

≤ v(α1)− v(β1) + Lv < (1 + L)v. (3.9)

Let

m =

[
2(1 + L)v

lµ

]
+ 1 ∈ N.

Then, m ≥ 2(1 + L)v/(lµ). Hence, we obtain∫ t+m

t

ψ+(τ)dτ =

∫ t+1

t

ψ+(τ)dτ +

∫ t+2

t+1

ψ+(τ)dτ + · · ·+
∫ t+m

t+m−1

ψ+(τ)dτ

≥ lm ≥ 2(1 + L)v

µ

for t ≥ t̂. If α1 ≥ t̂, then by (3.9), we have∫ β1

α1

ψ+(τ)dτ ≤ 2(1 + L)v

µ
≤
∫ α1+m

α1

ψ+(τ)dτ,

and therefore, β1 − α1 ≤ m < τ . Otherwise, using (3.9) again, we get∫ β1

α1

ψ+(τ)dτ ≤ 2(1 + L)

µ
≤
∫ t̂+m

t̂

ψ+(τ)dτ ≤
∫ α1+t̂+m

α1

ψ+(τ)dτ.

Hence, β1 − α1 ≤ t̂ + m < τ . Thus, we conclude that u(t) ≥ µ/2 for α1 ≤ t ≤ β1
implies β1 − α1 < τ .
Step 5: If u(t) ≤ µ for any interval [α2, β2] ⊂ [t0, t0+T ], then β2−α2 ≤ 2eM/(p−1)h.
In fact, from

u(t) =
f(t)

g(t)
|y(t)|p∗, v(t) = |x(t)|p + u(t) and µ = min

{
v

2
,
kv

2

(
g

2h

)p∗
}
,

it follows that

|x(t)| = (v(t)− u(t))1/p ≥ (v − µ)1/p ≥
( v
2

)1/p
(3.10)

and

|y(t)| =
(
g(t)u(t)

f(t)

)1/p∗
≤
( µ
k

)1/p∗
≤

g

2h

( v
2

)1/p∗
(3.11)

for α2 ≤ t ≤ β2. Noticing that

y′(t)− (p− 1)h−(t)y(t) = − (p− 1)g(t)ϕp(x(t))− (p− 1)h+(t)y(t)
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for t ≥ t0 and using (3.10) and (3.11), we obtain∣∣∣∣∣
(
exp

(
− (p− 1)

∫ t

t0

h−(τ)dτ

)
y(t)

)′
∣∣∣∣∣ = (p− 1) exp

(
− (p− 1)

∫ t

t0

h−(τ)dτ

)
×
∣∣g(t)ϕp(x(t)) + h+(t)y(t)

∣∣
≥ (p− 1) exp

(
− (p− 1)

∫ t

t0

h−(τ)dτ

)
×
(
|g(t)||x(t)|p−1 − h+(t)|y(t)|

)
≥ (p− 1)e−M

(
g
( v
2

)1/p∗
− h|y(t)|

)
≥

(p− 1)ge−M

2

( v
2

)1/p∗
> 0

for α2 ≤ t ≤ β2. Hence, combining this estimation with (3.11), we get

g

h

( v
2

)1/p∗
≥ |y(β2)|+ |y(α2)|

≥
∣∣∣∣exp(− (p− 1)

∫ β2

t0

h−(τ)dτ

)
y(β2)

− exp

(
− (p− 1)

∫ α2

t0

h−(τ)dτ

)
y(α2)

∣∣∣∣
=

∣∣∣∣∣
∫ β2

α2

(
exp

(
− (p− 1)

∫ t

t0

h−(τ)dτ

)
y(t)

)′

dt

∣∣∣∣∣
=

∫ β2

α2

∣∣∣∣∣
(
exp

(
− (p− 1)

∫ t

t0

h−(τ)dτ

)
y(t)

)′
∣∣∣∣∣ dt

≥
(p− 1)ge−M

2

( v
2

)1/p∗
(β2 − α2),

namely, β2 − α2 ≤ 2eM/(p − 1)h. Thus, we conclude that u(t) ≤ µ for α2 ≤ t ≤ β2
implies β2 − α2 ≤ 2eM/(p− 1)h.
Step 6: Let us divide the interval [t0 + σ, t0 + T ] into several pieces. To this end, we
define

Ji =

[
t0 + σ + (i− 1)

(
3eM

(p− 1)h
+ τ

)
, t0 + σ + i

(
3eM

(p− 1)h
+ τ

)]
for any i ∈ N. Then, it is clear that the length of Ji is 3eM/(p − 1)h + τ for each
i ∈ N. Hence, we can denote the interval [t0 + σ, t0 + T ] by

[t0 + σ, t0 + T ] = J1 ∪ J2 ∪ · · · ∪ J[4/(µν)]+1.

Let us pay attention to the motion of u(t) in the subinterval J1. We will show
that u(t) moves from µ/2 to µ in the subinterval J1. Suppose that u(t) ≥ µ/2 for
t ∈ [t0 + σ, t0 + σ + τ ] ⊂ [t0, t0 + T ]. Then, we may consider α1 and β1 in Step 4 to
be t0 + σ and t0 + σ + τ , respectively. From the conclusion of Step 4 it follows that

τ = t0 + σ + τ − (t0 + σ) = β1 − α1 < τ,
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which is a contradiction. Hence, we see that there exists a t1 ∈ [t0+σ, t0+σ+τ ] ⊂ J1
such that u(t1) < µ/2. Next, suppose that u(t) ≤ µ for t ∈ [t0+σ+τ, γ] ⊂ [t0, t0+T ],
where γ = t0 + σ + 3eM/(p− 1)h+ τ . Then, we may consider α2 and β2 in Step 5 to
be t0 + σ + τ and γ, respectively. From the conclusion of Step 5 it follows that

3eM

(p− 1)h
= γ − (t0 + σ + τ) = β2 − α2 ≤

2eM

(p− 1)h
.

This is a contradiction. Hence, we see that that there exists a t2 ∈ [t0+σ+ τ, γ] ⊂ J1
such that u(t2) > µ. Since u(t) is continuous for t ≥ t0, there exists an interval
[α, β] ⊂ [t1, t2] such that u(α) = µ/2, u(β) = µ and

µ

2
≤ u(t) ≤ µ for α ≤ t ≤ β. (3.12)

Hence, together with (3.3) and (3.7), we have

µ

2
= u(β)− u(α) =

∫ β

α

u′(τ)dτ

=

∫ β

α

(−ψ(τ)u(τ)− pf(τ)ϕp(x(τ))ϕp∗(y(τ))) dτ

≤
∫ β

α

(
ψ−(τ)v(τ) + p|f(τ)||x(τ)|p−1|y(τ)|p∗−1

)
dτ

≤ µ

4
+ pf

∫ β

α

|x(τ)|p−1|y(τ)|p∗−1dτ,

and therefore,
µ

4pf
≤
∫ β

α

|x(τ)|p−1|y(τ)|p∗−1dτ.

Using (3.7) again, we obtain

|x(t)| = (v(t)− u(t))1/p < v 1/p and |y(t)| =
(
g(t)u(t)

f(t)

)1/p∗
≤
(
v

k

)1/p∗
for t ≥ t0. From these inequalities and the relation that 1/p+ 1/p∗ = 1, we conclude
that

µk1/p

4pfv
< β − α. (3.13)

Step 7: We may understand v(t) as an energy-type function. Let us examine a change
of the energy in the subinterval J1. We will estimate the difference between the values
of v(t0+σ), v(α), v(β) and v(γ) in particular. By using (3.3), (3.4), (3.8), (3.12) and
(3.13), we obtain

µνv ≤ µ

2

∫ α+µk1/p/(4pf)

α

ψ+(τ)dτ ≤ µ

2

∫ β

α

ψ+(τ)dτ

≤
∫ β

α

ψ+(τ)u(τ)dτ ≤
∫ β

α

{
− v′(τ) + v (pe−(τ) + ψ−(τ))

}
dτ

= v(α)− v(β) + v

∫ β

α

(pe−(τ) + ψ−(τ))dτ ≤ v(α)− v(β) +
µνv

4
,
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and therefore,

v(β)− v(α) ≤ −3µνv

4
.

It also follows from (3.3) and (3.8) that

v(α)− v(t0 + σ) =

∫ α

t0+σ

v′(τ)dτ ≤ v

∫ α

t0+σ

(pe−(τ) + ψ−(τ))dτ ≤ µνv

4

and

v(γ)− v(β) =

∫ γ

β

v′(τ)dτ ≤ v

∫ γ

β

(pe−(τ) + ψ−(τ))dτ ≤ µνv

4
.

We therefore conclude that∫
J1

v′(τ)dτ = v(γ)− v(β) + v(β)− v(α) + v(α)− v(t0 + σ)

≤ µνv

4
− 3µνv

4
+
µνv

4
= −µνv

4
.

By means of the same process as in the proof of Steps 6 and 7, we see that∫
Ji

v′(τ)dτ ≤ −µνv
4

for 1 ≤ i ≤ [4/(µν)] + 1,

and therefore,

v(t0 + T )− v(t0 + σ) =

[4/(µν)]+1∑
i=1

∫
Ji

v′(s)ds ≤ −µν
4

([
4

µν

]
+ 1

)
< −v.

Hence, from (3.7) it follows that

v(t0 + T ) < v(t0 + σ)− v < 0.

This contradicts the fact that v(t) ≥ 0 for t ≥ t0. This contradiction is caused
because it had been assumed that inequality (3.5) did not hold. Thus, (3.5) is true.
Consequently, as shown in Step 3, the zero solution of (1.1) is uniformly globally
attractive.
Step 8: Consider again a solution x(t; t0,x0) of (1.1) through (t0,x0) with t0 ≥ 0 and
∥x0∥ =

√
x20 + y20 < ρ for any ρ large enough. Let

B(ρ) =

√(
v

k

)2/p
+

(
v

k

)2/p∗
,

where v is the number given in Step 2. We will show that ∥x(t; t0,x0)∥ < B for
t ≥ t0. Recall that (x(t), y(t)) = x(t; t0,x0). By the same way as in Step 1, we have
the estimation (3.2). Since |x0| < ρ and |y0| < ρ, we see that

|x(t)|p + |y(t)|p∗ <
KeL

(
ρ p + ρ p∗

)
k

=
v

k
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and therefore,

|x(t)| ≤
(
v

k

)1/p
and |y(t)| ≤

(
v

k

)1/p∗
for t ≥ t0. Consequently,

∥x(t; t0,x0)∥ =
√
x2(t) + y2(t) < B for t ≥ t0.

Thus, the solutions of (1.1) are uniformly bounded.
The proof of theorem 3.1 is thus complete.

By transforming (x, y) → (y, x), system (1.1) becomes the system

x′ = − ẽ(t)x+ f̃(t)ϕp̃∗(y),

y′ = −(p− 1)g̃(t)ϕp̃(x)− (p− 1)h̃(t)y,

where p̃ = p∗, p̃∗ = p; ẽ(t) = (p − 1)h(t), f̃(t) = −(p − 1)g(t), g̃(t) = −f(t)/(p − 1)

and h̃(t) = e(t)/(p− 1) for t ≥ 0. Let

ψ̃(t) =
p

(p− 1)2
e(t) +

f(t)

g(t)

(
g(t)

f(t)

)′

.

Then, we have the following result.

Theorem 3.2. Suppose that e+(t), f(t), and g(t) are bounded for t ≥ 0. If

(i) f(t)g(t) > 0 for t ≥ 0 and lim inf
t→∞

f(t)g(t) > 0,

(ii)

∫ ∞

0

e−(t)dt <∞,

∫ ∞

0

h−(t)dt <∞ and

∫ ∞

0

ψ̃−(t)dt <∞,

(iii) ψ̃+(t) is integrally positive,

then the zero solution of (1.1) is uniformly globally asymptotically stable.

4. Examples

To illustrate theorems 3.1 and 3.2, we give simple examples in which e(t), f(t), g(t)
and h(t) are periodic functions with period 2π. We consider the positive number p in
system (1.1) as a parameter. Before we present the examples, it is helpful to mention
a property of a periodic function w(t) defined by

w(t) = cesin t − sin t

for any positive c. By a straightforward calculation, we can confirm that w(t) is
nonnegative for t ≥ 0 if and only if c ≥ 1/e. Since w(t) is periodic, we see that
c ≥ 1/e is a necessary and sufficient condition for w(t) to be integrally positive.

Example 4.1. Consider system (1.1) with

e(t) = − 1

(1 + t)2
, f(t) = esin t, g(t) = ecos t and h(t) =

1√
2
esin(t+π/4)−1. (4.1)
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Then, ψ+(t) is integrally positive if and only if

p ≥ 2. (4.2)

If (4.2) holds, then the zero solution is uniformly globally asymptotically stable.

From (4.1) it follows that

ψ(t) =
p√
2e
esin(t+π/4) + e(sin t−cos t)

(
e(cos t−sin t)

)′
=

p√
2e
esin(t+π/4) − sin t− cos t

=
√
2
( p
2e
esin(t+π/4) − sin(t+ π/4)

)
for t ≥ 0. Hence, (4.2) is a necessary and sufficient condition under which ψ+(t) is
integrally positive.
It is clear that f(t) and g(t) are bounded and g(t)/f(t) is differentiable for t ≥ 0.

Since e−(t) = h−(t) = 0 and

h+(t) =
1√
2
esin(t+π/4)−1,

e−(t) and h−(t) are integrable and h+(t) is bounded for t ≥ 0. We have

f(t)g(t) = esin t+cos t ≥ e−
√
2 > 0 for t ≥ 0.

If (4.2) holds, then ψ(t) is nonnegative for t ≥ 0, and therefore, ψ−(t) ≡ 0. Thus,
by virtue of Theorem 3.1, we conclude that the zero solution is uniformly globally
asymptotically stable provided that p ≥ 2.

Example 4.2. Consider system (1.1) with

e(t) =
1√
2
esin(t+π/4)−1, f(t) = esin t, g(t) = ecos t and h(t) = − 1

(1 + t)2
. (4.3)

Then, ψ̃+(t) is integrally positive if and only if

1 < p ≤ 2. (4.4)

If (4.4) holds, then the zero solution is uniformly globally asymptotically stable.

From (4.1) we see that

ψ̃+(t) =
p√

2(p− 1)2e
esin(t+π/4) + e(sin t−cos t)

(
e(cos t−sin t)

)′
=

p√
2(p− 1)2e

esin(t+π/4) − sin t− cos t

=
√
2

(
p

2(p− 1)2e
esin(t+π/4) − sin(t+ π/4)

)
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for t ≥ 0. It is clear that p/(p−1)2 ≥ 2 if and only if 1/2 ≤ p ≤ 2. Recall that p > 1.

Hence, (4.4) is a necessary and sufficient condition under which ψ̃+(t) is integrally
positive.
It is easy to confirm that all of the assumptions in Theorem 3.2 are satisfied if

1 < p ≤ 2. We omit the details.

Acknowledgments

The research of J.S. was supported in part by a Grant-in-Aid for Scientific Research,
No. 22540190, from the Japan Society for the Promotion of Science.

References

1 R. P. Agarwal, S. R. Grace and D. O’Regan. Oscillation theory for second order
linear, half-linear, superlinear and sublinear dynamic equations (Kluwer, 2002).

2 A. Bacciotti and L. Rosier. Liapunov functions and stability in control theory
(Springer, 2005).

3 F. Brauer and J. Nohel. The Qualitative theory of ordinary differential equa-
tions (Benjamin, 1969; (revised) Dover, 1989).

4 W.A.Coppel. Stability and asymptotic behavior of differential equations (Heath,
1965).
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6 O. Došlý and P. Řehák. Half-linear differential equations (Elsevier, 2005).
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