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Abstract In the research of mathematical programming, duality theorems
are essential and important elements. Recently, Lagrange duality theorems for
separable convex programming have been studied. Tseng proves that there is
no duality gap in Lagrange duality for separable convex programming without
any qualifications. In other words, although the infimum value of the pri-
mal problem equals to the supremum value of the Lagrange dual problem,
Lagrange multiplier does not always exist. Jeyakumar and Li prove that La-
grange multiplier always exists without any qualifications for separable sublin-
ear programming. Furthermore, Jeyakumar and Li introduce a necessary and
sufficient constraint qualification for Lagrange duality theorem for separable
convex programming. However, separable convex constraints do not always
satisfy the constraint qualification, that is, Lagrange duality does not always
hold for separable convex programming.

In this paper, we study duality theorems for separable convex program-
ming without any qualifications. We show that a separable convex inequality
system always satisfies the closed cone constraint qualification for quasiconvex
programming, and investigate a Lagrange-type duality theorem for separable
convex programming. In addition, we introduce a duality theorem and a nec-
essary and sufficient optimality condition for a separable convex programming
problem, whose constraints do not satisfy the Slater condition.

Keywords separable convex programming · duality theorem · constraint
qualification · generator of quasiconvex functions

S. Suzuki (corresponding author)
Department of Mathematics, Shimane University,
Shimane, Japan.
suzuki@math.shimane-u.ac.jp

D. Kuroiwa
Department of Mathematics, Shimane University,
Shimane, Japan.
kuroiwa@math.shimane-u.ac.jp



2 Satoshi Suzuki, Daishi Kuroiwa

Mathematics Subject Classification (2000) 90C25 · 26B25

1 Introduction

In the research of mathematical programming, duality theorems are essential
and important elements. Various types of duality theorems have been inves-
tigated by many researchers; for example, Lagrange duality, Fenchel duality,
surrogate duality, Wolfe duality, and so on. Constraint qualifications for dual-
ity theorems are also essential elements for mathematical programming. Re-
cently, necessary and sufficient constraint qualifications for Lagrange duality
have been studied; see [1–6]. To find a necessary and sufficient constraint qual-
ification is one of the destinations of the study of mathematical programming.

In [7], Lagrange duality for separable convex programming has been studied
by Tseng. It is proved that there is no duality gap without any qualifications.
In other words, although the infimum value of the primal problem equals to
the supremum value of the Lagrange dual problem, Lagrange multiplier does
not always exist for separable convex programming. In [8], it is shown that
Lagrange duality theorem for separable sublinear programming always holds
without any qualifications, that is, if the objective function is sublinear and the
constraint functions are separable sublinear, then there exists a Lagrange mul-
tiplier. Furthermore, in [9], a necessary and sufficient constraint qualification
for Lagrange duality theorem for separable convex programming is introduced
by Jeyakumar and Li. However, separable convex constraints do not always
satisfy the constraint qualification, that is, exact duality does not always hold
for separable convex programming.

In [10–15], Lagrange-type duality theorems for quasiconvex programming
are studied by the authors. The closed cone constraint qualification for qua-
siconvex programming, Q-CCCQ, is introduced as a necessary and sufficient
constraint qualification for Lagrange-type duality. A Lagrange-type duality
theorem is also valid for convex programming. Actually, even if Lagrange ex-
act duality does not hold for convex constraints, we may choose a suitable
generator such that Lagrange-type exact duality holds; in detail, see [10–15].

In this paper, we study duality theorems for separable convex programming
without any qualifications. We show that a separable convex inequality system
always satisfies Q-CCCQ, and investigate a Lagrange-type duality theorem for
separable convex programming. Furthermore, we introduce a duality theorem
and a necessary and sufficient optimality condition for a separable convex
programming problem, whose constraints do not satisfy the Slater condition.

The remainder of the present paper is organized as follows. In Section 2,
we introduce some preliminaries and previous results. In Section 3, we study
a Lagrange-type duality theorem for separable convex programming without
any qualifications. In Section 4, we show a duality theorem and a necessary and
sufficient optimality condition for a separable convex programming problem
whose constraints do not satisfy the Slater condition. We show an example
which illustrate usefulness of our results.
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2 Preliminaries

Let ⟨v, x⟩ denote the inner product of two vectors v and x in the n-dimensional
Euclidean space Rn. Given a set A ⊂ Rn, we denote the closure, the convex
hull, and the conical hull generated by A, by cl A, conv A, and cone A,
respectively. We stipulate that cone ∅ := {0}. We denote the unit sphere
of Rn by S, that is, S := {x ∈ Rn : ∥x∥ = 1}. The indicator function δA is
defined by

δA(x) :=

{
0, x ∈ A,
∞, otherwise.

Let f be a function from Rn to R, where R := [−∞,∞]. A function f is said
to be proper if for all x ∈ Rn, f(x) > −∞ and there exists x0 ∈ Rn such that
f(x0) ∈ R. The epigraph of f is defined as epif := {(x, r) ∈ Rn×R : f(x) ≤ r},
and f is said to be convex if epif is convex. The subdifferential of f at x is
defined as ∂f(x) := {v ∈ Rn : ∀y ∈ Rn, f(y) ≥ f(x)+ ⟨v, y − x⟩}. The Fenchel
conjugate of f , f∗ : Rn → R, is defined as f∗(v) := supx∈Rn{⟨v, x⟩ − f(x)}.
Define the ⋄-level sets of f with respect to a binary relation ⋄ on R as

L(f, ⋄, β) := {x ∈ Rn : f(x) ⋄ β}

for each β ∈ R. A function f is said to be quasiconvex if for each β ∈ R,
L(f,≤, β) is convex. Any convex function is quasiconvex, but the opposite is
not true. A function f is said to be quasiaffine if f and −f are quasiconvex. In
quasiconvex analysis, it is known that f is lower semicontinuous (lsc) quasi-
affine if and only if there exists k ∈ Q and w ∈ Rn such that f = k ◦ w,
where Q := {h : R → R, lsc and non-decreasing}. In addition, f is lsc qua-
siconvex if and only if there exists {(kj , wj) : j ∈ J} ⊂ Q × Rn such that
f = supj∈J kj ◦wj ; see [16,17] for more details. This result indicates that a lsc
quasiconvex function f consists of a supremum of a some family of lsc quasi-
affine functions. Based on this result, in [10], the authors define a notion of a
generator of a quasiconvex function, that is, G := {(kj , wj) : j ∈ J} ⊂ Q×Rn

is said to be a generator of f if f = supj∈J kj ◦ wj . All lsc quasiconvex func-
tions have at least one generator. The following function h−1 is said to be the
hypo-epi-inverse of a extended real-valued function h on R:

h−1(a) := sup{b ∈ R : h(b) ≤ a}.

It is known that, if h ∈ Q has an inverse function, then the inverse and the
hypo-epi-inverse of h are the same; in detail, see [17]. In this paper, we denote
the hypo-epi-inverse of h by h−1. Let g be an extended real-valued function
on Rn. We define the function gw from R to R for each w ∈ Rn as follows:

gw(t) := inf{g(x) : ⟨w, x⟩ ≥ t}.

Clearly, gw is non-decreasing and g(x) ≥ gw(⟨w, x⟩) for each x ∈ Rn.
In mathematical programming, constraint qualifications for duality theo-

rems are essential elements. Especially in convex programming, necessary and
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sufficient constraint qualifications for Lagrange duality theorems have been
investigated extensively; see [1–6]. In [7], Tseng proves that there is no dual-
ity gap in Lagrange duality for separable convex programming without any
qualifications: if f and fi, i ∈ I := {1, . . . ,m}, are separable convex, then

inf{f(x) : ∀i ∈ I, fi(x) ≤ 0} = sup
λ∈Rm

+

inf
x∈Rn

{
f(x) +

m∑
i=1

λifi(x)

}
.

Although there is no duality gap, a Lagrange multiplier does not always exist.
In [8], Jeyakumar and Li prove that Lagrange duality theorem always holds
for separable sublinear programming without qualifications: if f is sublinear
and fi is separable sublinear for each i ∈ I = {1, . . . ,m}, then

inf{f(x) : ∀i ∈ I, fi(x) ≤ 0} = max
λ∈Rm

+

inf
x∈Rn

{
f(x) +

m∑
i=1

λifi(x)

}
.

Furthermore, in [9], Jeyakumar and Li introduce a necessary and sufficient
constraint qualification for the Lagrange duality theorem for separable convex
programming; see the following Theorem 2.1.

Theorem 2.1 For each i = 1, 2, . . . ,m, let gi : Rn → R be a separable convex
function. Then, the following statements are equivalent:

(i)

epi

(
inf

λ∈Rm
+

(
m∑
i=1

λigi

)∗)
=

∪
λ∈Rm

+

epi

(
m∑
i=1

λigi

)∗

,

(ii) for each real-valued convex function f on Rn,

inf
x∈Rn

{f(x) : gi(x) ≤ 0, i = 1, . . . ,m} = max
λ∈Rm

+

inf
x∈Rn

{
f(x) +

m∑
i=1

λigi(x)

}
.

The statement (i) of Theorem 2.1 is a necessary and sufficient constraint quali-
fication for Lagrange duality for convex programming problems with separable
convex constraints. It is known that the Slater condition implies the statement
(i). In addition, by Example 3.2 in [9], the statement (i) is not always satisfied
for separable convex constraints. This means that the Lagrange exact duality
does not always hold for separable convex programming.

In [10,15], the authors study the closed cone constraint qualification for
quasiconvex programming, Q-CCCQ, as a necessary and sufficient constraint
qualification for Lagrange-type duality for quasiconvex programming.

Definition 2.1 [15] Let I be an arbitrary index set, {gi : i ∈ I} a family of
lsc quasiconvex functions from Rn to R, {(k(i,j), w(i,j)) : j ∈ Ji} ⊂ Q × Rn a
generator of gi for each i ∈ I, and T = {t = (i, j) : i ∈ I, j ∈ Ji}. Assume that
A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0} is a non-empty set.
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A quasiconvex inequality system {gi(x) ≤ 0 : i ∈ I} is said to satisfy the
closed cone constraint qualification for quasiconvex programming (Q-CCCQ)
w.r.t. {(kt, wt) : t ∈ T} if

cone conv
∪
t∈T

{(wt, δ) ∈ Rn+1 : k−1
t (0) ≤ δ}+ {0} × [0,∞[

is closed.

Let I be an arbitrary index set, {gi : i ∈ I} a family of lsc quasiconvex functions
from Rn to R, {(k(i,j), w(i,j)) : j ∈ Ji} ⊂ Q×Rn a generator of gi for each i ∈ I,
g = supi∈I gi, and T = {t = (i, j) : i ∈ I, j ∈ Ji}. Then, {(kt, wt) : t ∈ T} is a
generator of g. We can check easily that Gg := {(k,w) ∈ Q× Rn : k ◦ w ≤ g}
is a generator of g. A quasiconvex inequality system {gi(x) ≤ 0 : i ∈ I} is said
to satisfy the Q-CCCQ if {g(x) ≤ 0} satisfies the Q-CCCQ w.r.t. Gg.

In [13], we introduce a necessary and sufficient condition of the Q-CCCQ.

Theorem 2.2 Let {gi : i ∈ I} be a family of lsc quasiconvex functions from
Rn to R, and g = supi∈I gi. Assume that A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0} is
a non-empty set.

Then, the following statements are equivalent:

(i) {gi(x) ≤ 0 : i ∈ I} satisfies the Q-CCCQ,
(ii) for all v ∈ Rn \ {0} and t > δ∗A(v), gv(t) = inf{g(x) : ⟨v, x⟩ ≥ t} > 0.

In [15], we show the following Lagrange-type duality theorem with its nec-
essary and sufficient constraint qualification, Q-CCCQ.

Theorem 2.3 Let {gi : i ∈ I} be a family of lsc quasiconvex functions from
Rn to R, and g = supi∈I gi. Assume that A = {x ∈ Rn : ∀i ∈ I, gi(x) ≤ 0} is
a non-empty set.

Then, the following statements are equivalent:

(i) {gi(x) ≤ 0 : i ∈ I} satisfies the Q-CCCQ,
(ii) for each real-valued convex function f on Rn, there exist a finite subset

S0 = {w1, . . . , wm} ⊂ S such that g−1
wj

(0) ∈ R for each j ∈ {1, . . . ,m}, and

inf
x∈A

f(x) = max
λ∈Rm

+

inf
x∈Rn

f(x) +
m∑
j=1

λj(wj(x)− g−1
wj

(0))

 .

In Theorem 2.3, the statement (ii) is Lagrange duality for the convex program-
ming problem with the objective function f and affine constraint functions
{w − g−1

w (0) : w ∈ S}. We call the statement (ii) Lagrange-type duality.
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3 Lagrange-Type Duality Theorem without Qualifications

In this paper, we consider the following separable convex programming prob-
lem:

(P ) min f(x), s.t. x ∈ A := {x ∈ Rn : g(x) ≤ 0},

where f is a real-valued convex function on Rn, gi is a real-valued convex func-
tion on R for each i ∈ {1, . . . , n}, and g(x) =

∑n
i=1 gi(xi). If a problem has mul-

tiple separable convex constraints, that is, A = {x ∈ Rn : ∀t ∈ T, ht(x) ≤ 0},
then we can obtain the single constraint {x ∈ Rn : supt∈T ht ≤ 0}. Addition-
ally, if T is finite and ht is separable convex for each t ∈ T , then supt∈T ht

is also separable and convex. Hence, the problem (P) contains the problems
in [7–9].

In the rest of the paper, we often use the following assumption:

(A) the set A = L(g,≤, 0) is nonempty whereas L(g,<, 0) is empty.

We show the following lemma.

Lemma 3.1 Let gi be a real-valued convex function on R for each i ∈ {1, . . . , n},
g(x) =

∑n
i=1 gi(xi), and mi := inf gi(R). Assume that (A) is satisfied.

Then, the following statements hold:

(i) for each i ∈ {1, . . . , n}, mi ∈ R,

(ii) A =

n∏
i=1

L(gi,≤,mi),

(iii)

n∑
i=1

mi = 0.

Proof (i) Clearly, for each i ∈ {1, . . . , n}, mi < ∞. If mi = −∞, then there
exists a0 ∈ R such that gi(a0) < −

∑
j ̸=i gj(1)− 1. Hence,

g(1, . . . , 1, a0, 1, . . . , 1) =
∑
j ̸=i

gj(1) + gi(a0) < −1.

This is a contradiction.
(ii) Let x ∈ A. Since L(g,<, 0) is empty, g(x) =

∑n
i=1 gi(x) = 0. If there

exists i0 ∈ {1, . . . , n} such that gi0(xi0) > mi0 , then there exists yi0 ∈ R such
that gi0(xi0) > gi0(yi0). Hence,

g(x1, . . . , xi0−1, yi0 , xi0+1, . . . , xn) < g(x) = 0.

This is a contradiction. Hence, x ∈
∏n

i=1 L(fi,≤,mi).
Let x /∈ A. Then, g(x) > 0. Since A is non-empty, there exists y ∈ A such

that

g(x) =
n∑

i=1

gi(xi) > 0 = g(y) =
n∑

i=1

gi(yi).
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Clearly, there exists i0 ∈ {1, . . . , n} such that gi0(xi0) > gi0(yi0) ≥ mi0 . This
shows that x /∈

∏n
i=1 L(gi,≤, infa∈R gi(a)).

(iii) Since A is non-empty, there exists x ∈ A. By the condition (ii) and
(A),

0 = g(x) =

n∑
i=1

gi(xi) ≤
n∑

i=1

mi ≤
n∑

i=1

gi(xi) = 0.

This completes the proof. ⊓⊔

We introduce the following lemma without proofs.

Lemma 3.2 Let h be a real-valued convex function on R. Then, the following
conditions hold:

(i) there exists a, b ∈ R such that L(h,≤, inft∈R h(t)) = {t ∈ R : a ≤ t ≤ b}
and a ≤ b,

(ii) if b ∈ R, then for each ε > 0 and t ≥ b+ ε, h(t) ≥ h(b+ ε) > inft∈R h(t),
(iii) if a ∈ R, then for each ε > 0 and t ≤ a− ε, h(t) ≥ h(a− ε) > inft∈R h(t).

A convex inequality system {g(x) ≤ 0} is said to satisfy the Slater condition
if L(g,<, 0) is non-empty. It is well known that the Slater condition implies the
existence of Lagrange multiplier for convex programming. Furthermore, Farkas
Minkowski (FM) is known as a necessary and sufficient constraint qualification
for Lagrange duality for convex programming, and FM implies Q-CCCQ; in
detail, see [1–6,10–15,18–20]. Hence, if the Slater condition is satisfied, then
{g(x) ≤ 0} satisfies the Q-CCCQ.

In the following theorem, we show that a separable convex inequality sys-
tem always satisfies the Q-CCCQ.

Theorem 3.1 Let gi be a convex function from R to R for each i ∈ {1, . . . , n},
g(x) =

∑n
i=1 gi(xi), mi = inf gi(R), and A = {x ∈ Rn : g(x) ≤ 0} is non-

empty. Then, {g(x) ≤ 0} satisfies the Q-CCCQ.

Proof As mentioned above, if L(g,<, 0) is non-empty, then {g(x) ≤ 0} satisfies
the Q-CCCQ. Assume that L(g,<, 0) is empty and let v ∈ Rn \ {0} and
t > δ∗A(v). By Lemma 3.1 and Lemma 3.2, there exists ai, bi ∈ R such that

A = {x ∈ Rn : ∀i ∈ {1, . . . , n}, ai ≤ xi ≤ bi}.

Let V+ := {i ∈ {1, . . . , n} : vi > 0}, V− := {i ∈ {1, . . . , n} : vi < 0}, and
V0 := {i ∈ {1, . . . , n} : vi = 0}. Since A is non-empty, bi > −∞ and ai < ∞
for each i ∈ {1, . . . , n}. In addition, for each i ∈ V+, bi ∈ R. Actually, if bi = ∞,
then we can check that δ∗A(v) = ∞. This is a contradiction. Similarly, we can

prove that for each i ∈ V−, ai ∈ R. Let di :=
t−δ∗A(v)
2n|vi| for each i ∈ V+ ∪ V−.

Next we prove the following inclusion:

L(v,≥, t) ⊂

 ∪
i∈V+

{x : xi ≥ bi + di}

∪
 ∪

i∈V−

{x : xi ≤ ai − di}

 .
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Let x ∈ L(v,≥, t) and assume that for each i ∈ V+ and j ∈ V−, xi < bi + di
and xj > aj − di. Then,

⟨v, x⟩ =
∑
i∈V+

vixi +
∑
i∈V−

vixi

<
∑
i∈V+

vi (bi + di) +
∑
i∈V−

vi (ai − di)

=
∑
i∈V+

vibi +
∑
i∈V−

viai +
∑

i∈V+∪V−

t− δ∗A(v)

2n

≤
∑
i∈V+

vibi +
∑
i∈V−

viai +
t− δ∗A(v)

2
.

Since A = {x ∈ Rn : ∀i{1, . . . , n}, ai ≤ xi ≤ bi} is non-empty and bi, aj ∈ R
for each i ∈ V+ and j ∈ V−, there exists ck ∈ R for each k ∈ V0 such that
ȳ = ((bi)i∈V+ , (aj)j∈V− , (ck)k∈V0) ∈ A. Hence,

⟨v, x⟩ <
∑
i∈V+

vibi +
∑
i∈V−

viai +
t− δ∗A(v)

2
≤ δ∗A(v) +

t− δ∗A(v)

2
< t.

This is a contradiction. By Lemma 3.1 and Lemma 3.2, for each x ∈ L(v,≥, t),

g(x) ≥ m := min

{
min
i∈V+

yi, min
i∈V−

zi

}
>

n∑
i=1

mi = 0,

where yi := gi (bi + di) +
∑

j ̸=i mj , and zi := gi (ai − di) +
∑

j ̸=i mj . Hence,
gv(t) = inf{g(x) : ⟨v, x⟩ ≥ t} ≥ m > 0. By Theorem 2.2, {g(x) ≤ 0} satisfies
the Q-CCCQ. ⊓⊔

Theorem 2.3 and Theorem 3.1 imply the following Lagrange-type duality
theorem.

Theorem 3.2 Let gi be a convex function from R to R for each i ∈ {1, . . . , n},
g(x) =

∑n
i=1 gi(xi), and A = {x ∈ Rn : g(x) ≤ 0} is non-empty.

Then, for each real-valued convex function f on Rn, there exists a finite
subset S0 = {w1, . . . , wm} ⊂ S such that g−1

wj
(0) ∈ R for each j ∈ {1, . . . ,m},

and

inf
x∈A

f(x) = max
λ∈Rm

+

inf
x∈Rn

f(x) +
m∑
j=1

λj(wj(x)− g−1
wj

(0))

 .

4 A Duality Theorem for Separable Convex Programming without
the Slater Condition

If a convex inequality system satisfies the Slater condition, then we can obtain
Lagrange duality theorem in order to solve the problem. However, the Slater
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condition is often not satisfied for many problems arising in applications. In
this section, we study a duality theorem for a separable convex programming
problem, whose constraints do not satisfy the Slater condition.

In the following theorem, we characterize the hypo-epi-inverse of gw for
separable convex function g.

Theorem 4.1 Let I := {1, . . . , n}, gi be a real-valued convex function on R
for each i ∈ I, g(x) =

∑n
i=1 gi(xi), A = {x ∈ Rn : g(x) ≤ 0}, mi = inf gi(R),

L(gi,≤,mi) = {t ∈ R : ai ≤ t ≤ bi}, w ∈ Rn \ {0}, W+ := {i ∈ I : wi > 0},
W− := {i ∈ I : wi < 0}, and W0 := {i ∈ I : wi = 0}. Assume that (A) is
satisfied. Then,

g−1
w (0) =

∑
i∈W+

wibi +
∑

i∈W−

wiai.

Proof Since A is non-empty, there exists x̄ ∈ A. For each i ∈ {1, . . . , n},
ai ≤ x̄i ≤ bi by Lemma 3.1 (ii), and hence bi > −∞ and ai < ∞. Let
r :=

∑
i∈W+

wibi +
∑

i∈W−
wiai and di :=

ε
2nwi

for each i ∈ I.
Case 1. “there exists i0 ∈ W+ such that bi0 = ∞” or “there exists i0 ∈ W−

such that ai0 = −∞”.
Clearly, r = ∞. Assume that there exists i0 ∈ W+ such that bi0 = ∞. Let
t ∈ R and

x̄t =

x̄1, . . . , x̄i0−1,max

ai,

t−
∑
j ̸=i0

wj x̄j

wi0

 , x̄i0+1, . . . , x̄n

 ;

then, ⟨w, x̄t⟩ ≥ t and g(x̄t) = 0. Hence, gw(t) ≤ 0 for each t ∈ R. This shows
that g−1

w (0) = ∞. The proof of the case “there exists i0 ∈ W− such that
ai0 = −∞” is similar and omitted.

Case 2. “for each i ∈ W+, bi ∈ R” and “for each i ∈ W−, ai ∈ R”.
Now we prove that

r = max{t ∈ R : gw(t) ≤ 0} = g−1
w (0).

By Lemma 3.1,

gw(r) = inf {g(x) : ⟨w, x⟩ ≥ r} ≤
∑
i∈W+

gi(bi) +
∑

i∈W−

gi(ai) +
∑
i∈W0

gi(x̄i) = 0.

Let t > r and ε = t − r > 0. Then, for each x ∈ Rn with ⟨w, x⟩ ≥ t, “there
exists i0 ∈ W+ such that wixi ≥ wibi +

ε
2n” or “there exists i0 ∈ W− such

that wixi ≥ wiai +
ε
2n”. Hence,

gw(t)

= inf{g(x) : ⟨w, x⟩ ≥ t}

≥ min

min
i∈W+

gi (bi + di) +
∑
j ̸=i

mj

 , min
i∈W−

gi (ai + di) +
∑
j ̸=i

mj




> 0.



10 Satoshi Suzuki, Daishi Kuroiwa

This shows that g−1
w (0) = r. ⊓⊔

In the following theorem, we show a duality theorem for a separable convex
programming problem, whose constraints do not satisfy the Slater condition.

Theorem 4.2 Let I = {1, . . . , n}, gi be a convex function from R to R for
each i ∈ I, g(x) =

∑n
i=1 gi(xi), L(gi,≤, inft∈R gi(t)) = {t ∈ R : ai ≤ t ≤ bi}

for each i ∈ I, I+ := {i ∈ I : bi ∈ R}, I− := {i ∈ I : ai ∈ R}, b̄ ∈ Rn

satisfying b̄i = bi for each i ∈ I+, and ā ∈ Rn satisfying āi = ai for each
i ∈ I−. Assume that (A) is satisfied.

Then, for each real-valued convex function f on Rn, there exist v, w ∈ Rn
+

such that vi = 0 for each i /∈ I+, wi = 0 for each i /∈ I−, and

inf
x∈A

f(x) = inf
x∈Rn

{
f(x) +

⟨
v, x− b̄

⟩
− ⟨w, x− ā⟩

}
.

Proof Let f be a real-valued convex function on Rn. By Theorem 3.2, there
exist a finite subset S0 = {w1, . . . , wm} ⊂ S and λ̄ ∈ Rm

+ such that g−1
wj

(0) ∈ R
for each j ∈ {1, . . . ,m}, and

inf
x∈A

f(x) = inf
x∈Rn

f(x) +
m∑
j=1

λ̄j(wj(x)− g−1
wj

(0))

 .

Let j ∈ {1, . . . ,m}, W j
+ = {i : (wj)i > 0} and W j

− = {i : (wj)i < 0}. By
Theorem 4.1, g−1

wj
(0) =

∑
i∈W j

+
(wj)ibi +

∑
i∈W j

−
(wj)iai. Since g−1

wj
(0) ∈ R,

W j
+ ⊂ I+ and W j

− ⊂ I−. Let v̄, w̄ ∈ Rn with v̄t =
∑m

j=1

∑
t∈W j

+
λ̄j(wj)t for

each t ∈
∪m

j=1 W
j
+, v̄t = 0 for each t /∈

∪m
j=1 W

j
+, w̄t =

∑m
j=1

∑
t∈W j

−
λ̄j |(wj)t|

for each i ∈
∪m

j=1 W
j
− and w̄t = 0 for each i /∈

∪m
j=1 W

j
−. Then,

inf
x∈Rn

f(x) +
m∑
j=1

λ̄j(wj(x)− g−1
wj

(0))


= inf

x∈Rn

f(x) +
m∑
j=1

λ̄j

∑
i∈W j

+

(wj)i(xi − bi) +
∑

i∈W j
−

(wj)i(xi − ai)




= inf
x∈Rn

f(x) +

m∑
j=1

∑
i∈W j

+

λ̄j(wj)i(xi − bi) +

m∑
j=1

∑
i∈W j

−

λ̄j |(wj)i|(−xi + ai)


= inf

x∈Rn

{
f(x) +

⟨
v̄, x− b̄

⟩
− ⟨w̄, x− ā⟩

}
,

Let i ∈ I. If i ∈
∪m

j=1 W
j
+, then bi ∈ R. Hence, if bi /∈ R, then i /∈

∪m
j=1 W

j
+,

that is, v̄i = 0. Similarly, we can prove that ai /∈ R implies w̄i = 0. This
completes the proof. ⊓⊔
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By Theorem 4.2, we show the following necessary and sufficient optimality
condition.

Theorem 4.3 Let f be a real-valued convex function f on Rn, gi a real-
valued convex function on R for each i ∈ {1, . . . , n}, g(x) =

∑n
i=1 gi(xi), and

L(gi,≤, inft∈R gi(t)) = {t ∈ R : ai ≤ t ≤ bi} for each i ∈ I. Assume that (A)
is satisfied.

Then, x̄ ∈ A is a global minimizer of f in A if and only if there exist v,
w ∈ Rn

+ such that bi > x̄i implies vi = 0, ai < x̄i implies wi = 0, and

w − v ∈ ∂f(x̄).

Proof Let b̄, ā ∈ Rn such that b̄i = bi for each i ∈ I+, and āi = ai for each
i ∈ I−. Assume that x̄ ∈ A is a global minimizer of f in A. By Theorem 4.2,
there exist v, w ∈ Rn

+ such that vi = 0 for each i /∈ I+, wi = 0 for each i /∈ I−,
and

inf
x∈A

f(x) = inf
x∈Rn

{
f(x) +

⟨
v, x− b̄

⟩
− ⟨w, x− ā⟩

}
.

Since ai ≤ x̄i ≤ bi for each i ∈ I,

f(x̄) = inf
x∈Rn

{
f(x) +

⟨
v, x− b̄

⟩
− ⟨w, x− ā⟩

}
≤ f(x̄) +

⟨
v, x̄− b̄

⟩
− ⟨w, x̄− ā⟩

≤ f(x̄).

This shows that
⟨
v, x̄− b̄

⟩
= ⟨w, x̄− ā⟩ = 0 and x̄ is a global minimizer of

f +
⟨
v, · − b̄

⟩
− ⟨w, · − ā⟩ in Rn. Therefore,

0 ∈ ∂(f +
⟨
v, · − b̄

⟩
− ⟨w, · − ā⟩)(x̄) = ∂f(x̄) + v − w,

that is, w − v ∈ ∂f(x̄). Since bi /∈ R implies vi = 0,⟨
v, x̄− b̄

⟩
=
∑
i∈I+

vi(x̄i − b̄i).

For each i ∈ I+, vi(x̄i − b̄i) = 0 since x̄i ≤ bi = b̄i and
⟨
v, x̄− b̄

⟩
= 0. Now we

assume that bi > x̄i. If bi /∈ R, then vi = 0. If bi ∈ R, then b̄i = bi > x̄i. This
implies that vi = 0. Similarly, we can prove that ai < x̄i implies wi = 0.

Conversely, assume that there exist v, w ∈ Rn
+ such that bi > x̄i implies

vi = 0, ai < x̄i implies wi = 0, and w − v ∈ ∂f(x̄). Then, we can check easily
that x̄ is a global minimizer of f +

⟨
v, · − b̄

⟩
− ⟨w, · − ā⟩ in Rn. Furthermore,⟨

v, x̄− b̄
⟩
= ⟨w, x̄− ā⟩ = 0. Actually, if bi /∈ R, then bi = ∞ > x̄i. This implies

vi = 0. If bi ∈ R, then b̄i = bi ≥ x̄i. This shows that vi(b̄i − x̄i) = 0 since
“bi > x̄i implies vi = 0”. Similarly, we can prove that wi(x̄i − āi) = 0 for each
i ∈ {1, . . . , n}. Hence

⟨
v, x̄− b̄

⟩
= ⟨w, x̄− ā⟩ = 0.
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Therefore,

inf
x∈A

f(x) ≥ inf
x∈Rn

{
f(x) +

⟨
v, x− b̄

⟩
− ⟨w, x− ā⟩

}
= f(x̄) +

⟨
v, x̄− b̄

⟩
− ⟨w, x̄− ā⟩

= f(x̄)

≥ inf
x∈A

f(x)

since
⟨
v, x− b̄

⟩
− ⟨w, x− ā⟩ ≤ 0 for each x ∈ A. This completes the proof. ⊓⊔

We can also prove Theorem 4.3 using the optimality condition in terms of
the subdifferential and the normal cone to the feasible set A. In this paper, we
show Theorem 4.3 as an application of Theorem 4.2.

If the Slater condition is satisfied, then we can solve the separable convex
programming problem by Lagrange duality. Even if the Slater condition is
not satisfied, we can solve the separable convex programming problem by the
necessary and sufficient optimality condition in Theorem 4.3. Finally, we show
the following example, which illustrate usefulness of our results.

Example 4.1 Let g1 be the following function on R:

g1(t) :=

 (t+ 1)2, t ≤ −1,
0, −1 ≤ t ≤ 1,
(t− 1)2, t ≥ 1.

Let g be the following function on R2: for each x = (x1, x2) ∈ R2,

g(x) = g1(x1) + g1(x2).

Clearly, g is separable convex, A = {x ∈ R2 : g(x) ≤ 0} = [−1, 1] × [−1, 1],
L(g1,≤, 0) = [a1, b1] = [−1, 1], and L(g,<, 0) is empty. Additionally, since

epi

(
inf

λ∈R+

(λg)
∗
)

= {(v1, v2, α) ∈ R3 : |v1|+ |v2| ≤ α},

and ∪
λ∈R+

epi (λg)
∗
= {(v1, v2, α) ∈ R3 : |v1|+ |v2| < α} ∪ {(0, 0, 0)},

the statement (i) of Theorem 2.1 is not satisfied.
On the other hand, {g(x) ≤ 0} satisfies the Q-CCCQ. We show that

K := cone conv
∪

(k,w)∈Gg

{(w, δ) ∈ R3 : k−1(0) ≤ δ}+ {0} × [0,∞[

= {(v1, v2, α) ∈ R3 : |v1|+ |v2| ≤ α}

Clearly, (w, k−1(0)) ∈ epiδ∗A = {(v1, v2, α) ∈ R3 : |v1| + |v2| ≤ α} for each
(k,w) ∈ Gg; in detail, see [10,13,15]. Since epiδ∗A is a closed convex cone,
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K ⊂ epiδ∗A. Conversely, let (v1, v2, α) ∈ R3 with |v1| + |v2| ≤ α. By Theo-
rem 4.1, g−1

(v1,v2)
(0) = |v1| + |v2| since A = [−1, 1] × [−1, 1]. Let clg(v1,v2) is

the lower semicontinuous hull of g(v1,v2). Then, (clg(v1,v2), (v1, v2)) ∈ Gg and

clg−1
(v1,v2)

(0) = g−1
(v1,v2)

(0); in detail, see [13,15]. Hence,

(v1, v2, α) =
(
v1, v2, clg

−1
(v1,v2)

(0)
)
+
(
0, 0, α− clg−1

(v1,v2)
(0)
)
∈ K.

This shows that K is closed, that is, {g(x) ≤ 0} satisfies the Q-CCCQ.

Let f be the following real-valued convex function on R2:

f(x) := (x1 − 2)2 + (x2 − 2)2.

Finally, we solve the following separable convex programming problem by The-
orem 4.2 and Theorem 4.3:

(P ) min f(x), s.t. x ∈ A = {x ∈ R2 : g(x) ≤ 0}.

Let b̄ := (1, 1), and ā := (−1,−1). By Theorem 4.2,

inf
x∈A

f(x) = max
v,w∈R2

+

inf
x∈R2

{
f(x) +

⟨
v, x− b̄

⟩
− ⟨w, x− ā⟩

}
.

Actually, by completing the square,

max
v,w∈R2

+

inf
x∈R2

{
f(x) +

⟨
v, x− b̄

⟩
− ⟨w, x− ā⟩

}
= max

v,w∈R2
+

{
−
(
v1 − w1 − 4

2

)2

−
(
v2 − w2 − 4

2

)2

+ 8− (v1 + v2 + w1 + w2)

}

= max
v,w∈R2

+

{
−1

4
(v1 − (2 + w1))

2 − 1

4
(v2 − (2 + w2))

2 − 2(w1 + w2) + 2

}
= 2

= inf
x∈A

f(x).

By Theorem 4.3, x̄ ∈ A is a global minimizer of f in A if and only if there
exist v, w ∈ Rn

+ such that 1 > x̄i implies vi = 0, −1 < x̄i implies wi = 0, and
w − v ∈ ∂f(x̄). For each x ∈ A, we can calculate that

∂f(x) ⊂ {z ∈ R2 : z1 < 0, z2 < 0}.

If x̄1 < 1 or x̄2 < 1, then v1v2 = 0. This shows that w1−v1 ≥ 0 or w2−v2 ≥ 0
since w ∈ R2

+. Hence, if x̄ is a global minimizer, then x̄ = (1, 1). Actually,

inf
x∈A

f(x) = 2 = f(1, 1).
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5 Conclusions

In this paper, we study duality theorems for separable convex programming
without any qualifications. At first, in Section 3, we prove that a separable
convex inequality system always satisfies Q-CCCQ by using a necessary and
sufficient condition for Q-CCCQ. We show a Lagrange-type duality theorem
for separable convex programming without any qualifications. If a convex in-
equality system satisfies the Slater condition, then we can solve a problem
by using Lagrange duality. In order to solve a separable convex programming
problem, whose constraints do not satisfy the Slater condition, we introduce
another duality theorem in terms of Lagrange-type duality in Section 4. In
addition, we introduce a necessary and sufficient optimality condition for sep-
arable convex programming. We show Example 4.1 which illustrate usefulness
of our results.
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