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SOLUTIONS TO NONLINEAR SCHRÖDINGER EQUATIONS
FOR SPECIAL INITIAL DATA

TAKESHI WADA

Abstract. This article concerns the solvability of the nonlinear Schrödinger

equation with gauge invariant power nonlinear term in one space dimension.

The well-posedness of this equation is known only for Hs with s ≥ 0. Under
some assumptions on the nonlinearity, this paper shows that this equation is

uniquely solvable for special but typical initial data, namely the linear com-

binations of δ(x) and p. v.(1/x), which belong to H−1/2−0. The proof in this
article allows L2-perturbations on the initial data.

1. Introduction

In this article we consider nonlinear Schrödinger equations with a gauge invariant
nonlinear term

i∂tu+
1
2
∂2
xu = f(u), (1.1)

where u : Rt × Rx → C, f(u) = |u|p−1u, p > 1. The discussion in this paper is
irrelevant to the sign of the nonlinear term, so we only treat the defocusing case.
For 1 < p < 5, the well-posedness in L2 of the Cauchy problem for (1.1) was
proved in [2]. However there are few results on the solvability of (1.1) for initial
data in negative order Sobolev spaces. Although Kenig-Ponce-Vega [1] treated the
case where f(u) = u2, ū2 or |u|2 and proved the well-posedness in negative order
Sobolev spaces, their result does not cover the nonlinear term that we treat in
this paper. On the other hand Kita [3, 4] solved (1.1) with u(0) = δ(x) + L2-
perturbation for 1 < p < 3 by using the fact that there exists an exact solution if
u(0) = δ(x). Namely u(t) = (2πit)−1/2 exp{ix2/2t− (2πt)α/(1−α)} satisfies (1.1),
where α = (p− 1)/2.

In this article we consider the case where

u(0) =
√

2πi λδ(x)−
√

2
πi
µp. v.

1
x

+ v0. (1.2)

Here λ, µ ∈ C, v0 ∈ L2, and p. v. means Cauchy’s principle value. Unlike the
case u(0) = δ(x), exact solutions for (1.1)-(1.2) are not known. This makes the
problem more difficult. We introduce a first approximation of the solution to (1.1)
and determine the difference of the solution itself and the first approximation by
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the contraction mapping principle. (Theorems 3.1 and 4.1) We have to assume
1 < p < 5/2 if λ = 0 and assume 1 < p < 7/3 for general case. Finally we remark
on uniqueness of solutions. (Theorem 5.1)

Notation. Throughout this paper we put α = (p− 1)/2. L = i∂t + ∂2
x/2. U(t) =

exp(it∂2
x/2) is the free propagator. Lr denote usual Lebesgue spaces for the space

variable. For T > 0, LqTL
r is the abbreviation of Lq(0, T ;Lr). XT = L∞T L

2∩L4
TL
∞

and YT = L1
TL

2 + L
4/3
T L1.

2. Preliminaries

Lemma 2.1 (Strichartz). For any φ ∈ L2 and for any F ∈ YT , the following
inequalities hold valid:

‖U(t)φ‖XT ≤ C‖φ‖2,

‖
∫ t

0

U(t− τ)F (τ)dτ‖XT ≤ C‖F‖YT .

The constants C are independent of T, φ and F .

For a proof of the above lemma, see [5, 6]. Before proceeding to the nonlinear
problem, we consider the linear Cauchy problem.

Lemma 2.2. Let λ, µ ∈ C and let uL be the solution of

i∂tuL +
1
2
∂2
xuL = 0 (2.1)

with

uL(0) =
√

2πiλδ(x)−
√

2
πi
µp. v.

1
x
. (2.2)

Then

uL = U(t)uL(0) =
eix

2/2t

√
t
g(x/
√
t).

Here

g(a) = λ+

√
i

2π
µ
[ ∫ a

−∞
e
−iη2

2 dη −
∫ ∞
a

e
−iη2

2 dη
]
.

We remark that using integration by parts, we can easily show that

g(a) = λ± µ+O(1/a) as a→ ±∞.

Proof of Lemma 2.2. This is done by a direct calculation. It is well-known that

FuL(0) =
√

2πi(λ+ µ sign ξ),

where F is the Fourier transform. Therefore

uL(t) =

√
i

2π

∫ ∞
−∞

eixξ−itξ
2/2(λ+ µ sign ξ)dξ (2.3)

=

√
i

2π
eix

2/2t

∫ ∞
−∞

e−it(ξ−x/t)
2/2(λ+ µ sign ξ)dξ. (2.4)

Changing the variable as −
√
t(ξ − x/t) = η, we obtain the result. �
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3. Case λ = 0

In this section we consider the case

u(0) = −
√

2
πi
µp. v.

1
x

+ v0 (3.1)

with v0 ∈ L2. In this case we put A(t) = exp(−i|µ|p−1t1−α/(1 − α)) and put
v = u−AuL where u satisfies (1.1) and uL is defined as in Lemma 2.2 with λ = 0.
Then v satisfies

Lv = R+N (3.2)

with v(0) = v0, where

R = t−α(−|µ|p−1 + |g(x/
√
t)|p−1)AuL, N = f(AuL + v)− f(AuL).

By Duhamel’s principle, we convert this equation to the integral form

v(t) = U(t)v0 − i
∫ t

0

U(t− τ){R(τ) +N(τ)}dτ. (3.3)

Theorem 3.1. Let 1 < p < 5/2 and let v0 ∈ L2. Then there exists 0 < T ≤ 1 such
that (3.3) has a unique solution in XT .

Proof. For simplicity we only prove a priori estimates; precise proof is done by the
contraction mapping principle. We apply Lemma 2.1 to the right-hand side of (3.3)
and obtain

‖v‖XT ≤ C‖v0‖2 + C‖R‖YT + C‖N‖YT . (3.4)

By the remark to Lemma 2.2 we have

‖R‖2 ≤ Ct−α−1/2‖µ− g(x/
√
t)‖2 ≤ Ct−α−1/2‖〈x/

√
t〉−1‖2 ≤ Ct−α−1/4. (3.5)

Therefore ‖R‖YT ≤ ‖R;L1
TL

2‖ ≤ CT−α+3/4. We proceed to the estimate of the
second term in the right-hand side of (3.4). We can easily show that

|N | ≤ Ct−α|v|+ C|v|p.

Therefore
‖N‖YT ≤ C‖t−α|v|;L1

TL
2‖+ ‖|v|p;Lq

′
0
T L

r′0‖

with r0 = p + 1 and q0 = 4(p − 1)/(p + 1) since Lq
′
0
T L

r′0 ↪→ YT . Applying Hölder’s
inequality for the time variable we obtain

‖N‖YT ≤ CT 1−α‖v;L∞T L
2‖+ CT 1−α/2‖v;Lq0T L

r0‖p

≤ CT 1−α‖v‖XT + CT 1−α/2‖v‖pXT .

Therefore, we have proved that

‖v‖XT ≤ C‖v0‖2 + CT 1−α‖v‖XT + CT 1−α/2‖v‖pXT .

If v1 and v2 are solutions to (3.3), we similarly obtain

‖v1 − v2‖XT ≤ C(T 1−α + T 1−α/2
2∑
j=1

‖vj‖p−1
XT

)‖v1 − v2‖XT .

By these estimates, we can apply the contraction mapping principle. �
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4. General case

We first remark that if |λ+µ| = |λ−µ|, λ+µ = 0 or λ−µ = 0, then we can prove
analogous results to Theorem 3.1 by the same method. However in general case
the method in the previous section does not work. Therefore we consider another
first approximation AuL of the solution as follows. Let ρ ∈ C2(R) be a real-valued
function satisfying ρ(a) = |λ± µ|p−1 for ±a ≥ 1. We put

A(t, x) = exp
[
− i
∫ t

0

τ−αρ(x/τβ)dτ
]
,

v = u−AuL,

where β > 0 is suitably chosen, u is a solution to (1.1) with (1.2), and uL is defined
as in Lemma 2.2. Then v satisfies

Lv =
4∑
j=1

Rj +N,

where

R1 =
1
2

[ ∫ t

0

τ−α−βρ′(x/τβ)dτ
]2
AuL, R2 =

i

2

∫ t

0

τ−α−2βρ′′(x/τβ)dτAuL,

R3 = i

∫ t

0

τ−α−βρ′(x/τβ)dτA∂xuL, R4 = t−α[|g(x/
√
t)|p−1 − ρ(x/tβ)]AuL

Similarly as in the previous section, we convert this equation to the integral form

v(t) = U(t)v0 − i
∫ t

0

U(t− τ){
4∑
j=1

Rj(τ) +N(τ)}dτ. (4.1)

We look for the solution to (4.1) by the contraction mapping principle.

Theorem 4.1. Let 1 < p < 7/3 and let (p − 2)+ < β < (3 − p)/2. Then there
exists 0 < T ≤ 1 such that (4.1) has a unique solution in XT .

Proof. We only show a priori estimates. By Lemma 2.1,

‖v‖XT ≤ C‖v0‖2 + C

4∑
j=1

‖Rj‖YT + C‖N‖YT

≤ C‖v0‖2 + C‖R1;L4/3
T L1‖+ C‖R2;L4/3

T L1‖
+ C‖R3;L1

TL
2‖+ C‖R4;L1

TL
2‖+ C‖N‖YT .

We estimate the right-hand side term by term.

‖R1‖1 ≤ Ct−1/2
[ ∫ t

0

τ−α−β‖ρ′(x/τβ)‖2dτ
]2

= Ct−1/2
(∫ t

0

τ−α−β/2dτ
)2

= Ct3/2−2α−β

if α + β/2 < 1, and hence ‖R1;L4/3
T L1‖ ≤ CT 9/4−2α−β under this condition.

Similarly ‖R2;L4/3L1‖ ≤ CT 5/4−α−β if α+ β < 1. By the estimate

|R3| ≤ C
∫ t

0

τ−α−β |ρ′(x/τβ)|dτ(|x|/t3/2 + 1/t),
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we obtain
‖R3‖2 ≤ Ct−1/2−α+β/2 + Ct−α−β/2

if α− β/2 < 1 and α+ β/2 < 1. Therefore

‖R3;L1
TL

2‖ ≤ CT 1/2−α+β/2 + CT 1−α−β/2

if α− β/2 < 1/2 and α+ β/2 < 1.
The estimate of R4 is done as follows. We can easily show that

|R4| ≤

{
Ct−α−1/2, |x/

√
t| ≤ 1 or |x/tβ | ≤ 1,

Ct−α/|x|, |x/
√
t| ≥ 1 and |x/tβ | ≥ 1.

We first consider the case where β ≥ 1/2. Then |x/tβ | ≥ 1 follows from |x/
√
t| ≥ 1

since we may assume 0 < t < T < 1. So we divide the spatial real-axis into
the parts |x/

√
t| ≤ 1 and |x/

√
t| ≥ 1 and we denote the corresponding parts

of R4 by R4,< and R4,>. By the estimate above we have ‖R4,<‖2 ≤ Ct−α−1/4

and hence ‖R4,<;L1
TL

2‖ ≤ CT−α+3/4 if α < 3/4. We can similarly estimate
R4,> and we obtain ‖R4;L1

TL
2‖ ≤ CT−α+3/4 if α < 3/4. If β < 1/2 we divide

the spatial real-axis into the parts |x/tβ | ≤ 1 and |x/tβ | ≥ 1 and estimate R4

similarly. Then we obtain ‖R4,<;L1
TL

2‖ ≤ CT−α−β/2+1/2 if α − β/2 < 1/2 and
‖R4,>;L1

TL
2‖ ≤ CT−α−β/2+1 if α + β/2 < 1. On the other hand, the estimate of

N is same as in the previous section. Collecting all the estimates above, we can
conclude that

‖v‖XT ≤ C‖v0‖2 + CT ε + CT 1−α‖v‖XT + CT 1−α/2‖v‖pXT (4.2)

with some ε > 0, under the conditions that

α+ β < 1 and α− β/2 < 1/2,

which is possible if 0 < α < 2/3 and (2α − 1)+ < β < 1 − α, or equivalently the
assumption for p and β. The estimate for the difference of two solutions is the same
as in the previous section. �

5. A remark on the uniqueness

In the previous two sections we discuss the unique existence of the integral
equations (3.3) or (4.1). However the uniqueness of the solution to (1.1) with (3.1)
or (1.2) may fail because different first approximations derive another solutions.
In this section we consider this problem. Let ρ̃ ∈ C2(R) be a different real-valued
function from ρ in the previous section but let ρ̃ satisfy ρ̃(a) = |λ±µ|p−1 for ±a ≥ 1.
Let β̃ > 0, and we put

Ã(t, x) = exp
[
− i
∫ t

0

τ−αρ̃(x/τ β̃)dτ
]
,

ṽ = u− ÃuL.

As in the previous section, we convert this equation with ṽ(0) = v0 into integral
form and solve this integral equation by the contraction mapping principle. We
want to prove that v+AuL = ṽ+ ÃuL, where v and A are the ones in the previous
section. To this end it is sufficient to show the following.

Theorem 5.1. Let 1 < p < 5/2, β > (p−2)+ and let β̃ satisfy the same condition.
Then AuL − ÃuL ∈ XT .
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Proof. By the estimate

|AuL − ÃuL| ≤ Ct−1/2

∫ t

0

τ−α|ρ(x/τβ)− ρ̃(x/τ β̃)|dτ, (5.1)

we can easily show that ‖AuL− ÃuL;L4
TL
∞‖ ≤ CT 3/4−α if α < 3/4. On the other

hand, the right-hand side of (5.1) does not exceed

Ct−1/2

∫ t

0

τ−α|ρ(x/τβ)−|g(x/
√
τ)|p−1|dτ+Ct−1/2

∫ t

0

τ−α|ρ̃(x/τ β̃)−|g(x/
√
τ)|dτ,

where g is defined in Lemma 2.2, it suffices to show that the first integral in the
above quantity belongs to XT . Since

|ρ(x/τβ)− |g(x/
√
τ)|p−1| ≤

{
C, |x/

√
τ | ≤ 1 or |x/τβ | ≤ 1,

C
√
τ/|x|, |x/

√
τ | ≥ 1 and |x/τβ | ≥ 1,

we obtain

‖t−1/2

∫ t

0

τ−α|ρ(x/τβ)−|g(x/
√
τ)|p−1|dτ ;L∞T L

2‖ ≤ CT−α+β/2+1/2 +CT−α−β/2+1

if α < 3/4 and β > (2α− 1)+. Thus we have proved the theorem. �
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