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Abstract A necessary and sufficient condition is established for the equilibrium of the
damped superlinear oscillator

x′′+a(t)φq(x
′)+ω2x= 0

to be globally asymptotically stable. The obtained criterion is judged by whether the integral
of a particular solution of the first-order nonlinear differential equation

u′+ωq−2a(t)φq(u)+1= 0

is divergent or convergent. Since this nonlinear differential equation cannot be solved in gen-
eral, it can be said that the presented result is expressed by an implicit condition. Explicit
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the damped superlinear oscillator to be globally attractive. Moreover, it is proved that a cer-
tain growth condition ofa(t) guarantees the global asymptotic stability for the equilibrium
of the damped superlinear oscillator.
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1 Introduction

The damped linear oscillator
x′′+a(t)x′+ω2x= 0 (L)

is one of the most famous models which describe a number of physical phenomena. Here,
the prime denotesd/dt, the spring constantω is positive, the damping coefficienta(t) is
continuous and nonnegative fort ≥ 0. This model has been researched from many angles in
a wide range of fields which covers pure science, applied science, and technology. Needless
to say, in this model, the damping force is assumed to be proportional to the velocity in this
model. However, in specific types of phenomena, this assumption is not necessarily suitable.
For example, in fluid mechanics, it is well known that the air resistance is approximately
proportional to the square of the velocity. A model of viscosity in which the damping force
is proportional to the square of the velocity is calledNewtonian damping.

When a small fishing vessel is on still water, the extinction of free rolling motion is
caused by wave and vortex that occur because of the rolling of the vessel. The damping
forces are called wave resistance and eddy-making resistance, respectively. Besides, it is
thought that resistance of the friction works in the rolling motion of the vessel. The wave
resistance is said to be proportional to the angular velocity. On the other hand, the eddy-
making resistance and the frictional resistance are said to be proportional to the square of the
angular velocity. Hence, the damping term is regarded as a function of the angular velocity.
In the latter half of the 19th century, the expressions of such a function were first given
by William Froude who was an English engineer and by Louis-Émile Bertin who was a
French naval engineer. Afterwards, by experiments, a lot of engineers examined causes that
influence the extinction of free rolling motion (for example, see [4, 5, 7, 10, 12, 19, 24, 30]).
Because analysis is difficult, in most cases, damping coefficients of the function is assumed
to be constants.

Since Eq. (L) is very simple, it may be difficult to apply it to a specific model such as
Newtonian damping. We intend to establish an attenuation criterion which is applicable even
to physical models with Newtonian damping. For this purpose, we consider the second-order
differential equation

x′′+a(t)φq(x
′)+ω2x= 0, (E)

and present a necessary and sufficient condition for the equilibrium of (E) to be globally
asymptotically stable. In Eq. (E), the damping coefficienta(t) is continuous and nonnegative
for t ≥ 0 and the functionφq(z) is defined by

φq(z) = |z|q−2z, z∈ R

with q≥ 2. It is clear that the only equilibrium of (E) is the origin(x,x′) = (0,0). Eq. (E)
naturally contains Eq. (L) as the special case in whichq= 2. Sinceq≥ 2, we call Eq. (E) a
damped superlinear oscillator.

Let x(t) = (x(t),x′(t)) andx0 ∈R2, and let∥ ·∥ be any suitable norm. We denote the so-
lution of (E) through(t0,x0) by x(t; t0,x0). The global existence and uniqueness of solutions
of (E) are guaranteed for the initial value problem.

The equilibrium is said to bestable if, for any ε > 0 and anyt0 ≥ 0, there exists a
δ (ε, t0) > 0 such that∥x0∥ < δ implies∥x(t; t0,x0)∥ < ε for all t ≥ t0. The equilibrium is
said to beattractiveif, for any t0 ≥ 0, there exists aδ0(t0)> 0 such that∥x0∥ < δ0 implies
∥x(t; t0,x0)∥→ 0 ast →∞. The equilibrium is said to beglobally attractiveif, for any t0 ≥ 0,
any η > 0, and anyx0 ∈ R2, there is aT(t0,η ,x0) > 0 such that∥x(t; t0,x0)∥ < η for all
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t ≥ t0 +T(t0,η ,x0). The equilibrium isasymptotically stableif it is stable and attractive.
The equilibrium isglobally asymptotically stableif it is stable and globally attractive. With
respect to the various definitions of stability, the reader may refer to the books [2, 6, 8, 9, 13,
14, 23, 27, 31] for example.

Stability and attractivity are local properties of the equilibrium. In general, the equi-
librium is not always globally attractive (resp., globally asymptotically stable) even if it is
locally attractive (resp., locally asymptotically stable). However, it is correct in the linear
differential equations such as Eq. (L). The research of the (global) asymptotic stability is
one of the qualitative theoretical main themes of the differential equation. A large num-
ber of papers has been devoted to find sufficient conditions and/or necessary conditions for
the asymptotic stability of (L) and more general equations (for example, see [1, 3, 11, 15–
18, 20, 22, 25, 26, 28, 29]). The historical development of this research is concisely summa-
rized in Sugie [29, Section 1]. Among them, we should mention specially the following
result given by Hatvani and Totik [18, Theorem 3.1].

Theorem A Suppose that there exists aγ0 with 0< γ0 < π/ω such that

liminf
t→∞

∫ t+γ0

t
a(s)ds> 0. (1.1)

Then the equilibrium of(L) is asymptotically stable if and only if∫ ∞

0

∫ t
0 eA(s)ds

eA(t)
dt = ∞, (1.2)

where

A(t) =
∫ t

0
a(s)ds.

The criterion (1.2) is the so-called growth condition ona(t). This condition was first
presented by Smith [28, Theorems 1 and 2] under the assumption that the lower bound of
a(t) was positive. Clearly, this assumption is stronger than condition (1.1). Even if intervals
wherea(t) becomes zero are infinitely many, condition (1.1) may be satisfied if the lengths
of intervals are less thanπ/ω. Hence, Theorem A is a natural generalization of Smith’s
result.

Let us look at condition (1.2) from another viewpoint. We consider the scalar differential
equation

u′+a(t)u+1= 0. (1.3)

Then, the solutionu(t) of (1.3) satisfying the initial conditionu(0) = 0 is given by

u(t) =−
∫ t

0 eA(s)ds

eA(t)
.

Hence, condition (1.2) coincides with∫ ∞

0
u(t)dt =−∞.

In other word, whether the integral ofu(t) is divergent or convergent determines the asymp-
totic stability for Eq. (L). Since Eq. (1.3) bears a close relation with the damped linear oscil-
lator (L), we call it acharacteristic equation. We will extend Theorem A from the viewpoint
of characteristic equations.
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Our main theorem is as follows:

Theorem 1.1 Under the assumption(1.1),the equilibrium of(E) is globally asymptotically
stable if and only if ∫ ∞

0
u(t)dt =−∞,

where u(t) is the solution of

u′+ωq−2a(t)φq(u)+1= 0

satisfying u(0) = 0.

2 Characteristic equation

Consider the scalar characteristic equation

u′+ωq−2a(t)φq(u)+1= 0, (2.1)

whereω > 0 andq≥ 2, anda(t) is continuous and nonnegative fort ≥ 0. As well as Eq. (E),
the global existence and uniqueness of solutions of (2.1) are guaranteed for the initial value
problem. LetT be a nonnegative number. We denote the solution of (2.1) through(T,0) by
u(t;T). Then,

u(t;T)< 0 for t > T.

In fact, sinceu(T;T) = 0 andu′(T;T) =−1, we see thatu(t;T)< 0 in a right-hand neigh-
borhood ofT. Suppose that there exists at1 > T such thatu(t1;T) = 0 and

u(t;T)< 0 for T < t < t1.

Then,u′(t1;T) = −1. Hence, there exists a smallδ > 0 such thatu′(t;T) < 0 for t ∈ [t1−
δ , t1]. From this inequality it follows thatu(t1−δ ;T)> u(t1;T) = 0, which contradicts the
definition oft1.

In the special case in whichq= 2, Eq. (2.1) coincides with Eq. (1.3). The solutionu(t;T)
of (1.3) satisfying the initial conditionu(T;T) = 0 is given by

u(t;T) =−
∫ t

T
e−
∫ t
sa(u)duds

for t ≥ T ≥ 0. Let us compare solutionsu(t;0) andu(t;T) of (1.3). For the sake of conve-
nience, let

ψ(t,s) = e−
∫ t
sa(u)du > 0.

Then,ψ(t, t)≡ 1 andψ(t,0) = e−
∫ t
0a(s)ds is decreasing fort ≥ 0 and tends to zero ast → ∞.

It is clear that
∂
∂s

ψ(t,s) = a(s)ψ(t,s)≥ 0

for 0≤ s≤ t, and therefore, ∫ T

0
ψ(t,s)ds≤

∫ 2T

T
ψ(t,s)ds.
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Hence, we obtain∫ ∞

T

∫ t

T
ψ(t,s)dsdt≤

∫ ∞

0

∫ t

0
ψ(t,s)dsdt

=
∫ 2T

0

∫ t

0
ψ(t,s)dsdt+

∫ ∞

2T

∫ T

0
ψ(t,s)dsdt

+
∫ ∞

2T

∫ 2T

T
ψ(t,s)dsdt+

∫ ∞

2T

∫ t

2T
ψ(t,s)dsdt

<
∫ 2T

0

∫ t

0
ψ(t,s)dsdt+2

∫ ∞

2T

∫ 2T

T
ψ(t,s)dsdt+2

∫ ∞

2T

∫ t

2T
ψ(t,s)dsdt

=
∫ 2T

0

∫ t

0
ψ(t,s)dsdt−2

∫ 2T

T

∫ t

T
ψ(t,s)dsdt+2

∫ ∞

T

∫ t

T
ψ(t,s)dsdt.

Since ∫ 2T

0

∫ t

0
ψ(t,s)dsdt−2

∫ 2T

T

∫ t

T
ψ(t,s)dsdt

is bounded for eachT ≥ 0, we conclude that∫ ∞

0
u(t;0)dt =−∞

if and only if ∫ ∞

T
u(t;T)dt =−∞.

If q> 2, then we cannot know a concrete expression ofu(t;T) any longer. In general,
however, the integral from 0 to∞ of u(t;0) has the following equivalence relation, which
plays a key role in this paper.

Lemma 2.1 For any T≥ 0, ∫ ∞

T
u(t;T)dt =−∞

if and only if ∫ ∞

0
u(t;0)dt =−∞.

Proof Let us fixT arbitrarily and compare two solutionsu(t;0) andu(t;T) of (2.1). Since
u(T;0) < 0= u(T;T), it follows thatu(t;0) < u(t;T) < 0 in a right-hand neighborhood of
T. Hence,

u′(t;0) =−1−ωq−2a(t)φq(u(t;0))

>−1−ωq−2a(t)φq(u(t;T)) = u′(t;T)

as long asu(t;0)< u(t;T)< 0.
If u(t∗;0) = u(t∗;T) for somet∗ > T, then

u′(t∗;0) =−1−ωq−2a(t∗)φq(u(t
∗;0))

=−1−ωq−2a(t∗)φq(u(t
∗;T)) = u′(t∗;T).

Hence, from the uniqueness of solutions of (2.1) for the initial value problem, it turns out
that

u(t;0) = u(t;T) for t ≥ t∗,
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and therefore, ∫ ∞

0
u(t;0)dt =

∫ t∗

0
u(t;0)dt+

∫ ∞

t∗
u(t;0)dt

=
∫ t∗

0
u(t;0)dt+

∫ ∞

t∗
u(t;T)dt

=
∫ t∗

0
u(t;0)dt−

∫ t∗

T
u(t;T)dt+

∫ ∞

T
u(t;T)dt,

as required.
If such at∗ does not exist, then

u(t;0)< u(t;T)< 0 for t > T.

Let t1 > T be given. We choose aρ so that

0< ρ <
u(t1;T)
u(t1;0)

.

Then,ρ < 1. Define
η(t) = ρ u(t;0)

for t ≥ 0. Then,

η ′(t) = ρ u′(t;0) =−ρ −ρ ωq−2a(t)φq(u(t;0))

=−ρ − ρ
φq(ρ)

ωq−2a(t)φq(η(t))

for t ≥ 0. Since 0< ρ < 1 andq≥ 2, we see that

ρ
φq(ρ)

=

(
1
ρ

)q−2

≥ 1.

Noticing thatη(t)≤ 0 for t ≥ 0, we obtain

η ′(t)>−1−ωq−2a(t)φq(η(t))

for t ≥ 0. From the definition ofρ it follows that

0> η(t1) = ρ u(t1;0)> u(t1;T).

Suppose that there exists at2 > t1 such thatη(t2) = u(t2;T) and η(t) > u(t;T) for
t1 ≤ t < t2. Then,

η ′(t2)>−1−ωq−2a(t2)φq(η(t2))

=−1−ωq−2a(t2)φq(u(t2;T)) = u′(t2;T).

Hence,η ′(t)> u′(t;T) in a left-hand neighborhood oft2; namely, there exists a smallδ > 0
such that

η ′(t)> u′(t;T) for t2−δ ≤ t ≤ t2.

Integrating both sides of this inequality fromt2−δ to t2 and using thatη(t2) = u(t2;T), we
obtain

η(t2−δ )< u(t2−δ ;T),
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which is a contradiction. Thus, we see that

0> η(t)> u(t;T) for t ≥ t1.

From this estimation, we obtain

∫ ∞

T
u(t;T)dt =

∫ t1

T
u(t;T)dt+

∫ ∞

t1
u(t;T)dt

≤
∫ t1

T
u(t;T)dt+

∫ ∞

t1
η(t)dt

=
∫ t1

T
u(t;T)dt+ρ

∫ ∞

t1
u(t;0)dt

=
∫ t1

T
u(t;T)dt−ρ

∫ t1

0
u(t;0)dt+ρ

∫ ∞

0
u(t;0)dt.

On the other hand, sinceu(t;0)< u(t;T)< 0 for t > T, it follows that

∫ ∞

0
u(t;0)dt <

∫ ∞

T
u(t;T)dt < 0.

We therefore conclude that convergence and divergence of the integrals ofu(t;0) andu(t;T)
happen simultaneously. ⊓⊔

We next consider a more general scalar differential equation

u′ = f (t,u), (2.2)

where f (t,u) is continuous on[0,∞)×R and satisfies locally a Lipschitz condition with
respect tou. For Eq. (2.2), the following results are well known (for example, see [31, p. 5]).

Lemma 2.2 Let u(t) be a solution of(2.2) on an interval[a,b]. Suppose thatη(t) is con-
tinuous on[a,b] and satisfies the inequality

η ′(t)≥ f (t,η(t)) for a< t < b.

If η(a)≥ u(a), thenη(t)≥ u(t) for a≤ t ≤ b.

Lemma 2.3 Let u(t) be a solution of(2.2) on an interval[a,b]. Suppose thatη(t) is con-
tinuous on[a,b] and satisfies the inequality

η ′(t)≤ f (t,η(t)) for a< t < b.

If η(a)≤ u(a), thenη(t)≤ u(t) for a≤ t ≤ b.
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3 Necessary and sufficient conditions for global asymptotic stability

By puttingy= x′/ω as a new variable, Eq. (E) becomes the planar system

x′ = ωy,

y′ =−ωx−ωq−2a(t)φq(y).
(3.1)

The wholex-y plane is divided into four quadrants. As is customary,

Q1 =
{
(x,y) : x> 0 and y≥ 0

}
,

Q2 =
{
(x,y) : x≤ 0 and y> 0

}
,

Q3 =
{
(x,y) : x< 0 and y≤ 0

}
,

Q4 =
{
(x,y) : x≥ 0 and y< 0

}
.

We call the projection of a positive semitrajectory of (3.1) onto thex-y plane apositive orbit
and we denote byΓ +(t0,x0) the positive orbit of (3.1) starting from a pointx0 = (x0,y0) ∈
R2 at a timet0 ≥ 0.

The total energy

V(x,y) =
1
2

(
x2+y2)

is the most suitable as a Lyapunov function for system (3.1). DifferentiateV(x,y) along any
solution of (3.1) to obtain

V̇(3.1)(t,x,y) = xx′+yy′ =−ωq−2a(t)|y|q ≤ 0

on [0,∞)×R2. SinceV(x,y) is positive definite anḋV(3.1)(t,x,y) is nonpositive, by a basic
Lyapunov’s direct method, we obtain the following result.

Proposition 3.1 The equilibrium of(E) is stable.

Now, let us move on to the next subject; namely, the global attractivity. To begin with,
we present necessary conditions for the equilibrium of (E) to be attractive.

Theorem 3.2 If the equilibrium of(E) is attractive, then∫ ∞

0
u(t)dt =−∞, (3.2)

where u(t) is the solution of(2.1)satisfying u(0) = 0.

Proof. Let L = max{1, ω}. By way of contradiction, suppose that (3.2) does not holds.
Then, we can choose aT > 0 so large that∫ ∞

T
u(t)dt >− 1

2ωL
.

As shown in the proof of Lemma 2.1, we see that

u(t) = u(t;0)≤ u(t;T)< 0
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for t > T. Hence, we have ∫ ∞

T
u(t;T)dt >− 1

2ωL
. (3.3)

Consider the positive orbitΓ +(T,(1,0)). From the vector field of (3.1), it turns out that
Γ +(T,(1,0)) goes intoQ4 afterwards. Let(x(t),y(t)) be the solution of (3.1) corresponding
to Γ +(T,(1,0)). Then,x(T) = 1 andy(T) = 0. If

x(t)>
1
2

for t ≥ T, (3.4)

then the solution(x(t),y(t)) does not approach the origin; namely, the equilibrium of (E) is
not attractive. This completes the proof. Hereafter, we will show that (3.4) holds. Suppose
that there exists aT1 > T such thatx(T1) = 1/2 and 1/2< x(t)≤ 1 for T ≤ t < T1. Then,

y(t)< 0 for T < t ≤ T1.

Let η(t) = y(t)/L < 0. Then, from the second equation of (3.1) it follows that

η ′(t) =− ω
L

x(t)− ωq−2

L
a(t)φq(y(t))

≥−1−ωq−2 φq(L)

L
a(t)φq(η(t))≥−1−ωq−2a(t)φq(η(t))

for T ≤ t ≤ T1. Let f (t,u) =−1−ωq−2a(t)φq(u). Then,η ′(t)≥ f (t,η(t)) for T ≤ t ≤ T1.
We compareη(t) with the solutionu(t;T) of (2.1) satisfyingu(T;T) = 0. Sinceη(T) =
y(T)/L = 0, by Lemma 2.2, we see that

Lu(t;T)≤ Lη(t) = y(t)≤ 0

for T ≤ t ≤ T1. Hence, we have

x′(t)≥ ωLu(t;T) for T ≤ t ≤ T1.

Integrating both sides of this inequality fromT to T1, we obtain

x(T1)≥ x(T)+ωL
∫ T1

T
u(t;T)dt > 1+ωL

∫ ∞

T
u(t;T)dt >

1
2

by (3.3). This contradicts the assumption thatx(T1) = 1/2.
We have thus proved the theorem. ⊓⊔

We next transform system (3.1) to polar coordinates by

x= r cosθ and y= r sinθ

to find
r ′ =−ωq−2a(t)φq(r)|sinθ |q,

θ ′ =−ω −ωq−2a(t)rq−2φq(sinθ)cosθ .
(3.5)

Consider the positive orbitΓ +(t0,x0) starting from a pointx0 ∈ Q1∪Q3 at a timet0 ≥ 0.
Let (r(t),θ(t)) be the solution of (3.5) corresponding to this positive orbit. Since

r2θ ′ =−ω
(
x2+y2)−ωq−2a(t)xy|y|q−2 ≤ 0
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if (x,y) ∈ Q1∪Q3, we see thatΓ +(t0,x0) moves clockwise around the origin as long as it is
in Q1∪Q3. Then, since

sinθ(t)cosθ(t)≥ 0 for t ≥ t0,

it follows that

θ ′(t) =−ω −ωq−2a(t)(r(t))q−2φq(sinθ(t))cosθ(t)

=−ω −a(t)(ω r(t)|sinθ(t)|)q−2 sinθ(t)cosθ(t)≤−ω

for t ≥ t0. Hence, we obtain
θ(t)≤ θ(t0)−ω(t − t0),

which tends to−∞ ast → ∞. This is a contradiction. Thus, we have the following result.

Lemma 3.3 There is no positive orbit of(3.1) which continues staying in Q1 ∪Q3 ulti-
mately.

Judging from Lemma 3.3, system (3.1) has three types of positive orbits. Positive orbits
of the first type keep rotating around the origin. Those of the second type remain inQ4

(resp.,Q2) and approach the origin throughQ4 (resp.,Q2). Those of the third type stay in
Q4 (resp.,Q2) and tend to an interior point inQ4 (resp.,Q2).

We are now ready to prove ‘if’-part of the main theorem; namely, Theorem 1.1.

Theorem 3.4 Assume(1.1)and (3.2).Then the equilibrium of(E) is globally attractive.

Proof. Recall that Eq. (E) is equivalent to system (3.1). Letx(t) be any solution of (E) with
the initial timet0 ≥ 0 and let(x(t),y(t)) be the solution of (3.1) corresponding tox(t). Define

v(t) =V(x(t),y(t))

for t ≥ t0. To prove the theorem, it is enough to show that

v(t)→ 0 as t → ∞.

Sincev′(t)= V̇(3.1)(t,x(t),y(t))=−ωq−2a(t)|y(t)|q ≤ 0 for t ≥ t0, v(t) has the limiting value
v0 ≥ 0. If v0 = 0, then the proof is complete. We will show that the case ofv0 > 0 does not
happen provided (1.1) and (3.2) hold.

Suppose thatv0 is positive. Then the closed curve given byV(x,y) = v0 is the circum-
ference of a circle whose center is at the origin and whose radius is

√
2v0. Hence, this curve

crosses with thex-axis only at two points(
√

2v0,0) and(−
√

2v0,0). Let x0 = (x(t0),y(t0))
and consider the positive orbitΓ +(t0,x0).

As already mentioned, ifΓ +(t0,x0) does not rotate around the origin, then it remains in
Q2 or Q4 ultimately; that is, there exist a pointx1 ∈ Q4 (resp.,Q2) and a timeT ≥ t0 so that
Γ +(t0,x0) passes throughx1 at T and remains inQ4 (resp.,Q2) afterwards. We consider
only the case in whichΓ +(t0,x0) remains inQ4 ultimately, because the other case is carried
out in the same way.

Since(x(t),y(t)) ∈ Q4 for t ≥ T, we see thatx′(t) = ωy(t) < 0 for t ≥ T. Hence, there
exists anα ≥ 0 such thatx(t)→ α ast → ∞, and therefore, it follows that

1
2

y2(t)→ v0−
1
2

α2 as t → ∞.
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Of course,v0 ≥ α2/2. If v0 > α2/2, then we can choose aT1 ≥ T so large that

y2(t)> v0−
1
2

α2 > 0 for t ≥ T1.

Hence, we have

v′(t) =−ωq−2a(t)|y(t)|q ≤−ωq−2(v0−α2/2
)q/2

a(t)

for t ≥ T1. Integrating this inequality fromT1 to t, we obtain

v0−v(T1)< v(t)−v(T1)≤−ωq−2(v0−α2/2
)q/2

∫ t

T1

a(s)ds,

which tends to−∞. This is a contradiction. Thus, we see thatα =
√

2v0. We therefore con-
clude thatΓ +(t0,x0) approaches the point(

√
2v0,0) which is an intersection of the closed

curveV(x,y) = v0 and thex-axis.
Let ε0 = min{1, ω

√
2v0}. Then, taking into account thatφq(ε0)≤ ε0, and√

2v0 < x(t)≤ x(T) and y(t)< 0

for t ≥ T, we can estimate that(
y(t)
ε0

)′
=− ωx(t)

ε0
−

ωq−2a(t)φq(y(t))

ε0

<− ω
√

2v0

ε0
−

ωq−2a(t)φq(y(t))

φq(ε0)
≤−1−ωq−2a(t)φq

(
y(t)
ε0

)
for t ≥ T. Let η(t) = y(t)/ε0 for t ≥ t0 and let f (t,u) =−1−ωq−2a(t)φq(u). Then,η ′(t)≤
f (t,η(t)) for t ≥ T. We compareη(t) with the solutionu(t;T) of (2.1) satisfyingu(T;T) =
0. Sinceη(T) = y(T)/ε0 < 0, by Lemma 2.3, we see that

y(t)
ε0

= η(t)≤ u(t;T)≤ 0

for t ≥ T. Hence, we have

x′(t)≤ ω ε0 u(t;T) for t ≥ T.

Integrate both sides of this inequality fromT to t to obtain√
2v0−x(T)< x(t)−x(T)≤ ω ε0

∫ t

T
u(s;T)ds.

By (3.2) and Lemma 2.1, however,∫ t

T
u(s;T)ds→−∞ as t → ∞.

This is a contradiction. Thus,Γ +(t0,x0) have to keep rotating around the origin.
Let ε be so small that

0< ε <
π −ωγ0

2
, (3.6)

where γ0 is the number given in (1.1). Consider the straight linesy = (tanε)x and y =
(tan(π − ε))x. SinceΓ +(t0,x0) continues going around the origin, it naturally crosses the
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lines and they-axis infinitely many times. Let(r(t),θ(t)) be the solution of (3.5) corre-
sponding toΓ +(t0,x0). Then, we can find four divergent sequences{τn}, {tn}, {σn} and
{sn} with t0 ≤ τn < tn < σn < sn such thatθ(τn) = 3π/2, θ(tn) = π − ε, θ(σn) = π/2 and
θ(sn) = ε. AlthoughΓ +(t0,x0) moves clockwise around the origin when it passes through
(Q1∪Q3), the behavior ofΓ +(t0,x0) is not so simple when it is in(Q2∪Q4). Since

θ ′(t) =−ω −a(t)(ω r(t)|sinθ(t)|)q−2 sinθ(t)cosθ(t),

Γ +(t0,x0) does not always move clockwise in(Q2 ∪Q4); namely, it might advance tem-
porarily anti-clockwise. In such a case, we should select the supremum of allt ∈ (τn,σn) for
which θ(t)≥ π − ε as the pointtn. Then, we have

ε < θ(t)< π − ε for tn < t < sn.

Recall that the closed curveV(x,y) = v0 is the circumference of a circle with radius√
2v0, andΓ +(t0,x0) does not enter in the circle. The curve intersects with the half-line

θ = ε at only one point. Leth(ε) be they-coordinate of the intersection. Then, it turns out
thaty(t) = r(t)sinθ(t)> h for tn ≤ t ≤ sn. Hence,

v′(t) =−ωq−2a(t)|y(t)|q <−ωq−2hqa(t) (3.7)

for tn ≤ t ≤ sn. Needless to say,v′(t)≤ 0 otherwise.
Suppose that there exists anN ∈ N such thatsn − tn ≥ γ0 for n ≥ N. Then, it follows

from (3.7) that

v(sn)−v(tn)<−ωq−2hq
∫ sn

tn
a(t)dt ≤−ωq−2hq

∫ tn+γ0

tn
a(t)dt

for n≥ N. Sincev(tn+1)−v(sn)≤ 0 for n∈ N, we obtain

v(tn+1)−v(tn)<−ωq−2hq
∫ tn+γ0

tn
a(t)dt for n≥ N,

and therfore,

v0−v(tN)≤ v(tn+1)−v(tN)<−ωq−2hq
n

∑
i=N

∫ ti+γ0

ti
a(t)dt.

However, from (1.1) it turns out that

∞

∑
n=N

∫ tn+γ0

tn
a(t)dt = ∞.

This is a contradiction. Thus, there exists a sequence{nk} with nk ∈N andnk → ∞ ask→ ∞
such that

snk − tnk < γ0. (3.8)

Sincer ′(t) = −ωq−2a(t)φq(r(t))|sinθ(t)|q ≤ 0 for t ≥ t0, we see thatr(t) ≤ r(t0) for
t ≥ t0. Hence,

θ ′(t)≥−ω −a(t)(ω r(t)|sinθ(t)|)q−2|sinθ(t)||cosθ(t)|
≥ −ω − (ω r(t0))

q−2a(t)
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for t ≥ t0. From (3.8) it follows that

ε − (π − ε) = θ(snk)−θ(tnk)

≥−ω(snk − tnk)− (ω r(t0))
q−2
∫ snk

tnk

a(t)dt

>−ωγ0− (ω r(t0))
q−2
∫ snk

tnk

a(t)dt

for eachk∈ N; namely,

(ω r(t0))
q−2
∫ snk

tnk

a(t)dt > π −ωγ0−2ε for k∈ N.

Using this estimation and (3.7), we obtain

v(snk)−v(tnk)<−ωq−2hq
∫ snk

tnk

a(t)dt <− hq

r(t0)q−2 (π −ωγ0−2ε)

for k∈ N. Sincev(tnk+1)−v(snk)≤ 0 for k∈ N, we see that

v(tnk+1)−v(tnk)<− hq

r(t0)q−2 (π −ωγ0−2ε) for k∈ N.

Taking (3.6) into consideration, we can conclude that

v0−v(t0)≤
∞

∑
k=1

(
v(tnk+1)−v(tnk)

)
=−∞,

which is a contradiction.
The proof of the theorem is now complete. ⊓⊔

Combining Theorems 3.2 and 3.4 with Proposition 3.1, we can conclude that Theo-
rem 1.1 holds.

4 Explicit conditions

As shown in Section 1, in the special case in whichq= 2, we can seek the solutionu(t) of
(2.1) satisfyingu(0) = 0 concretely. In general, however, it is difficult to confirm whether
condition (3.2) is satisfied or not. For this reason, it is safe to say that Theorem 1.1 will
give an implicit necessary and sufficient condition for global asymptotic stability. Hereafter,
we will give some explicit sufficient conditions for the equilibrium of (E) to be globally
attractive.

To state our results, we define the inverse function ofφq as follows. Letq∗ be the conju-
gate number ofq; namely,

1
q
+

1
q∗

= 1,

thenq∗ is also greater than 1. Let

w= φq(z) =

 zq−1 if z≥ 0

−(−z)q−1 if z< 0.
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Then,z≥ 0 if and only ifw≥ 0, andz= φq∗(w). In fact, since

z=

 w1/(q−1) if w≥ 0

−(−w)1/(q−1) if w< 0,

it follows from (q−1)(q∗−1) = 1 thatw1/(q−1) = wq∗−1 = |w|q∗−2w= φq∗(w) if w≥ 0 and
−(−w)1/(q−1) =−(−w)q∗−1 = (−w)q∗−2w= |w|q∗−2w= φq∗(w) if w< 0.

Corollary 4.1 Suppose that assumption(1.1) holds. Suppose also that there exist a differ-
entiable function b(t) and a T> 0 such that

b(t)> 0 and a(t)≤ b(t)

for t ≥ T. If , in addition, b(t) is nondecreasing for t≥ T and∫ ∞

T
φq∗

(
1

b(t)

)
dt = ∞,

then the equilibrium of(E) is globally attractive.

Proof. Define

g(t) =−φq∗

(
1

ωq−2b(t)

)
for t ≥ T. Then, it is clear thatg(t)< 0 and

ωq−2b(t)φq(g(t)) =−1 for t ≥ T.

From the assumption ofb(t) it follows thatg(t) is negative, differentiable and nondecreasing
for t ≥ T.

Consider the solutionu(t;T) of (2.1) satisfyingu(T;T) = 0. Sinceu′(T;T) = −1, we
can find aδ > 0 such that

u(t;T)< 0 for T < t < T +δ .

Taking into account thatg(T)< 0= u(T;T), we see that

g(t∗)≤ u(t∗;T)< 0

for somet∗ ∈ (T,T +δ ).
Let us compareu(t;T) with η(t) = λ g(t), where

λ =
u(t∗;T)
g(t∗)

.

Note thatη(t)< 0 for t ≥ T and

η(t∗) = λ g(t∗) = u(t∗;T).

Since 0< λ ≤ 1, we have

ωq−2b(t)φq(η(t)) = φq(λ )ωq−2b(t)φq(g(t)) =−φq(λ )≥−1
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for t ≥ T. Let f (t,u) =−1−ωq−2a(t)φq(u). Then,

η ′(t) = λ g′(t)≥ 0≥−1−ωq−2b(t)φq(η(t))

≥−1−ωq−2a(t)φq(η(t)) = f (t,η(t))

for t ≥ T. Hence, by Lemma 2.2,

η(t)≥ u(t;T) for t ≥ t∗.

Integrating both sides of this inequality fromt∗ to t, we obtain∫ t

t∗
η(s)ds≥

∫ t

t∗
u(s;T)ds for t ≥ t∗.

Hence, it follows that∫ ∞

T
u(t;T)dt =

∫ t∗

T
u(t;T)dt+

∫ ∞

t∗
u(t;T)dt

≤
∫ t∗

T
u(t;T)dt+

∫ ∞

t∗
η(t)dt

=
∫ t∗

T
u(t;T)dt−

∫ t∗

T
η(t)dt+

∫ ∞

T
η(t)dt

=
∫ t∗

T

(
u(t;T)−η(t)

)
dt+λ

∫ ∞

T
g(t)dt

=
∫ t∗

T

(
u(t;T)−η(t)

)
dt− λ

ω2−q∗

∫ ∞

T
φq∗

(
1

b(t)

)
dt =−∞,

and therefore, by Theorem 3.4 and Lemma 2.1, we conclude that the equilibrium of (E) is
globally attractive. ⊓⊔

In Corollary 4.1, we assumed the existence of an upper nondecreasing functionb(t)
for the damping coefficienta(t). The nondecreaseness ofb(t) is not always necessary for
the equilibrium of (E) to be globally attractive. The following result shows that another
condition onb(t) can substitute for the nondecreaseness.

Corollary 4.2 Suppose that assumption(1.1) holds. Suppose also that there exist a differ-
entiable function b(t) and positive numbersβ and T such that

b(t)≥ β and a(t)≤ b(t)

for t ≥ T. If , in addition,

lim
t→∞

b′(t)
b(t)

= 0 and
∫ ∞

T
φq∗

(
1

b(t)

)
dt = ∞,

then the equilibrium of(E) is globally attractive.

Proof. As in the proof of Corollary 4.1, we define

g(t) =−φq∗

(
1

ωq−2b(t)

)
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for t ≥ T. Then, it is easy to verify that

−φq∗

(
1

ωq−2β

)
≤ g(t)< 0, ωq−2b(t)φq(g(t)) =−1

and

g′(t) = (q∗−1)

(
1

ωq−2b(t)

)q∗−2 b′(t)
ωq−2b2(t)

=−(q∗−1)g(t)
b′(t)
b(t)

for t ≥ T. Sinceg(t) is bounded andb′(t)/b(t) tends to 0 ast → ∞, we see that

|g′(t)| → 0 as t → ∞.

Hence, we can chooseT1 ≥ T so that

g′(t)>−1 for t ≥ T1.

Consider the solutionu(t;T1) of (2.1) satisfyingu(T1;T1) = 0. Sinceu′(T1;T1) = −1,
we can find aδ > 0 such that

u(t;T1)< 0 for T1 < t < T1+δ .

From the inequalityg(T1)< 0= 2u(T1;T1) it follows that

g(t∗)≤ 2u(t∗;T1)< 0

for somet∗ ∈ (T1,T1+δ ).
Let

µ =
u(t∗;T1)

g(t∗)
and η(t) = µg(t).

Then, 0< φq(µ)< µ ≤ 1/2, η(t)< 0 and

ωq−2b(t)φq(η(t)) = φq(µ)ωq−2b(t)φq(g(t)) =−φq(µ)≥− 1
2

for t ≥ T. Hence, we obtain

η ′(t) = µ g′(t)>−µ ≥− 1
2
≥−1−ωq−2b(t)φq(η(t))

≥−1−ωq−2a(t)φq(η(t)) = f (t,η(t))

for t ≥ T1, where f (t,u) =−1−ωq−2a(t)φq(u). Since

η(t∗) = µ g(t∗) = u(t∗;T1),

it follows from Lemma 2.2 that

η(t)≥ u(t;T1) for t ≥ t∗.

By means of the same argument as in the proof of Corollary 4.1, we can estimate that∫ ∞

T1

u(t;T1)dt =−∞.

Hence, by Theorem 3.4 and Lemma 2.1, we see that the equilibrium of (E) is globally
attractive. ⊓⊔
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Karsai and Graef [21, Corollary 2.4] have given a sufficient condition for the equilibrium
of the damped nonlinear oscillator

x′′+a(t)φq(x
′)+ f (x) = 0 (4.1)

to be globally attractive. Here,f (x) is continuous and satisfied the signum condition that

x f(x)> 0 if x ̸= 0. (4.2)

Their result is as follows.

Theorem B Suppose that f(x) is nondecreasing and

0< a0 < a(t)≤ a(t)< a(t) (4.3)

for t ≥ 0. Suppose also that

lim
t→∞

a′(t)
a(t)

= 0, (4.4)

and eithera(t)/(a(t))(q−2)/(q−1) is nondecreasing or

lim
t→∞

(a(t)/(a(t))(q−2)/(q−1))′

a(t)/(a(t))(q−2)/(q−1)
= 0. (4.5)

If ∫ ∞

0

(a(t))(q−2)/(q−1)

a(t)
dt = ∞, (4.6)

then the equilibrium of(4.1) is globally attractive.

Let us compare our results with Theorem B. The biggest difference between our results
and Theorem B is whether the lower bound is allowed to be zero. Theorem B can be applied
to only the case in whicha(t) is not less than a positive constant fort ≥ 0. Such a case is
often calledlarge damping. On the other hand, our results can be applied to not only the
case of large damping but also the case in which the set

{
t ≥ 0: a(t) = 0

}
is permitted to be

the union of infinitely many disjoint intervals whose length are less thanπ (see, condition
(1.1)).

In the case of large damping, it is easy to extend our results to be able to apply Eq. (4.1),
because strong assumptions, such as (4.2) and nondecreasing, are imposed onf (x).

Actually, condition (4.4) is unnecessary in Theorem B. To confirm this fact, let

b(t) = φq

(
a(t)

(a(t))(q−2)/(q−1)

)
for t ≥ 0. Then, (4.3) implies that

φq∗(b(t)) =
a(t)

(a(t))(q−2)/(q−1)
>

a(t)

(a(t))(q−2)/(q−1)

= (a(t))q∗−1 = φq∗(a(t));

namely,a(t)< b(t) for t ≥ 0. Hence,

b(t)> a0 and a(t)< b(t)
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for t ≥ 0. Since ∫ ∞

0
φq∗

(
1

b(t)

)
dt =

∫ ∞

0

(a(t))(q−2)/(q−1)

a(t)
dt,

(4.6) coincides with ∫ ∞

0
φq∗

(
1

b(t)

)
dt = ∞.

If a(t)/(a(t))(q−2)/(q−1) is nondecreasing, thenb(t) is also nondecreasing. Since

(φq∗(b(t)))′

φq∗(b(t))
= (q∗−1)

b′(t)
b(t)

,

if (4.5) holds, then

lim
t→∞

b′(t)
b(t)

= 0.

Thus, all the conditions of Corollaries 4.1 and 4.2 are satisfied, and therefore, Theorem B
follows from Corollaries 4.1 and 4.2 without assuming (4.4).

Corollary 4.1 yields the following simple result.

Corollary 4.3 Assume(1.1)holds. Suppose that there exist positive numbersσ and T such
that

0≤ a(t)≤ tσ for t ≥ T.

If σ ≤ q−1, then the equilibrium of(E) is globally attractive.

Proof. Let b(t) = tσ . Then, it is clear thatb(t) is positive and nondecreasing fort ≥ T. Let
T1 = max{1, T}. If σ ≤ q−1, then

φq∗

(
1

b(t)

)
=

(
1

b(t)

)q∗−1

=

(
1
t

)σ/(q−1)

≥ 1
t

for t ≥ T1. Hence,∫ ∞

T
φq∗

(
1

b(t)

)
dt ≥

∫ T1

T
φq∗

(
1

b(t)

)
dt+

∫ ∞

T1

1
t

dt = ∞.

Thus, from Corollary 4.1, it turns out that the equilibrium of (E) is globally attractive. ⊓⊔

Remark 4.1Let b(t) = tσ . Then,

lim
t→∞

b′(t)
b(t)

= 0.

Hence, we can also lead Corollary 4.3 from Corollary 4.2.

Applying Corollary 2.5 of Karsai and Graef [21] to Eq. (E), we see that iftγ ≤ a(t)≤ tσ

with

0< γ ≤ σ and σ −1≤ γ
q−2
q−1

,

then the equilibrium is globally attractive. Sincea(t)≥ tγ for t ≥ 0, our assumption (1.1) is
naturally satisfied. Also, since 0< γ ≤ σ , we obtain

σ −1≤ γ
q−2
q−1

≤ σ
q−2
q−1

;
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namely,σ ≤ q−1. Thus, Corollary 4.3 essentially includes their result.
Next, we give some explicit necessary conditions for the equilibrium of (E) to be attrac-

tive. We judge that the equilibrium of (E) is not attractive by using a lower function instead
of the damping coefficienta(t).

Corollary 4.4 Suppose that there exist a differentiable function c(t) and positive numbers
β and T such that

β ≤ c(t)≤ a(t)

for t ≥ T. If

lim
t→∞

c′(t)
c(t)

= 0 and
∫ ∞

T
φq∗

(
1

c(t)

)
dt < ∞,

then the equilibrium of(E) is not attractive.

Proof. Let

g(t) =−φq∗

(
1

ωq−2c(t)

)
for t ≥ T. Then, we can easily verify thatg(t) is negative and bounded fort ≥ T, and it
satisfies

ωq−2c(t)φq(g(t)) =−1 and g′(t) =−(q∗−1)g(t)
c′(t)
c(t)

for t ≥ T. Sincec′(t)/c(t) tends to 0 ast → ∞, we see that

|g′(t)| → 0 as t → ∞,

and therefore, there exists aT1 ≥ T such that

g′(t)<
1
2

for t ≥ T1.

Consider the solutionu(t;T1) of (2.1) satisfyingu(T1;T1) = 0. As in the proof of Corol-
lary 4.2, taking into account thatu′(T1;T1) =−1, we can choose at∗ > T1 such that

g(t∗)≤ 1
2

u(t∗;T1)< 0.

Let η(t) = 2g(t). Then,η(t)< 0 and

ωq−2c(t)φq(η(t)) = φq(2)ωq−2c(t)φq(g(t)) =−φq(2)≤−2

for t ≥ T. Hence, we obtain

η ′(t) = 2g′(t)< 1≤−1−ωq−2c(t)φq(η(t))

≤−1−ωq−2a(t)φq(η(t))

for t ≥ T1. Let f (t,u) =−1−ωq−2a(t)φq(u). Then,η ′(t)< f (t,η(t)) for t ≥ T1. Since

η(t∗) = 2g(t∗)≤ u(t∗;T1),

it follows from Lemma 2.3 that

η(t)≤ u(t;T1) for t ≥ t∗.
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Integrate both sides of this inequality fromt∗ to t to obtain∫ t

t∗
η(s)ds≤

∫ t

t∗
u(s;T1)ds for t ≥ t∗.

From this inequality, we can estimate that

∫ ∞

T1

u(t;T1)dt =
∫ t∗

T1

u(t;T1)dt+
∫ ∞

t∗
u(t;T1)dt

≥
∫ t∗

T1

u(t;T1)dt+
∫ ∞

t∗
η(t)dt

=
∫ t∗

T1

(
u(t;T1)−η(t)

)
dt+

∫ ∞

T1

η(t)dt

=
∫ t∗

T1

(
u(t;T1)−η(t)

)
dt+2

∫ ∞

T1

g(t)dt

=
∫ t∗

T1

(
u(t;T1)−η(t)

)
dt−2

∫ T1

T
g(t)dt+2

∫ ∞

T
g(t)dt

=
∫ t∗

T1

u(t;T1)dt−
∫ t∗

T
η(t)dt− 2

ω2−q∗

∫ ∞

T
φq∗

(
1

c(t)

)
dt >−∞.

Hence, by Theorem 3.2 and Lemma 2.1, we conclude that the equilibrium of (E) is not
attractive. ⊓⊔

The following result is a direct consequence of Corollary 4.4.

Corollary 4.5 Suppose that there exist positive numbersγ and T such that

tγ ≤ a(t) for t ≥ T.

If γ > q−1, then the equilibrium of(E) is not attractive.

Proof. We may assume without loss of generality thatT > 1. Let c(t) = tγ andβ = Tγ .
Then, it is clear thatβ ≤ c(t)≤ a(t) for t ≥ T and

lim
t→∞

c′(t)
c(t)

= 0.

Sinceγ > q−1, we can choose anε0 > 0 so that

1+ ε0 ≤
γ

q−1
= γ (q∗−1).

Hence, we obtain

∫ ∞

T
φq∗

(
1

c(t)

)
dt =

∫ ∞

T

(
1
t

)γ (q∗−1)

dt ≤
∫ ∞

T

(
1
t

)1+ε0

dt < ∞,

and therefore, by Corollary 4.4, we see that the equilibrium of (E) is not attractive. ⊓⊔
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5 Growth condition on a(t)

Hatvani, Krisztin and Totik [17] have considered the damping linear oscillator (L) and
proved that under the assumption thatA(t) tends to∞ ast → ∞, the growth condition (1.2)
ona(t) is equivalent to

∞

∑
n=1

(
A−1(nc)−A−1((n−1)c)

)2
= ∞ (5.1)

for anyc> 0, where

A−1(s) = min
{

t ≥ 0: A(t)≥ s
}
.

It is clear that ifa(t) > 0 for t ≥ 0, thenA(t) is increasing fort ≥ 0, and therefore,A−1(s)
is the inverse function ofs= A(t). Using their ingenious idea and method, we see that the
discrete condition (5.1) is also equivalent to

∫ ∞

0

∫ t
0 ekA(s)ds

ekA(t)
dt = ∞ (5.2)

for anyk> 0. Consequently, we have the following result.

Lemma 5.1 Suppose that A(t) tends to∞ as t→ ∞. Then conditions(1.2) and (5.2) are
equivalent.

Combining Theorem 3.4 with Lemmas 2.1, 2.2, and 5.1, we obtain the following result.
Corollary 5.2 Assume(1.2) and suppose that there exist positive numbersβ and T such
that

a(t)≥ β for t ≥ T. (5.3)

Then the equilibrium of(E) is globally attractive.

Proof. Let γ0 > 0. From (5.3) it follows that

A(t + γ0)−A(t)≥ β γ0 > 0.

Hence, condition (1.1) holds.
Define

g(t) =−
ωq−2β

∫ t
0eωq−2A(s)ds

2eωq−2A(t)

for t ≥ 0. Then,

g′(t) =− ωq−2β
2

−ωq−2a(t)g(t)

for t ≥ 0. By (5.3), we have

A(t)−A(s)≥ β (t −s) for T ≤ s≤ t.
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Hence,

0> g(t) =−
ωq−2β

∫ T
0 eωq−2A(s)ds

2eωq−2A(t)
− ωq−2β

2

∫ t

T
e−ωq−2(A(t)−A(s))ds

≥−
ωq−2β

∫ T
0 eωq−2A(s)ds

2eωq−2A(t)
− ωq−2β

2

∫ t

T
e−ωq−2β (t−s)ds

=−
ωq−2β

∫ T
0 eωq−2A(s)ds

2eωq−2A(t)
− 1

2

(
1− eωq−2β T

eωq−2β t

)

≥−
ωq−2β

∫ T
0 eωq−2A(s)ds

2eωq−2A(t)
− 1

2

for t ≥ T. SinceA(t) diverges to∞ ast tends to∞, we can find aT1 > T so that

ωq−2β
∫ T

0 eωq−2A(s)ds

2eωq−2A(t)
<

1
2

for t ≥ T1.

We therefore conclude that

−1< g(t)< 0 for t ≥ T1.

Consider the solutionu(t;T1) of (2.1) satisfyingu(T1;T1) = 0. Sinceu′(T1;T1) = −1,
we can choose aδ > 0 such that

u(t;T1)< 0 for T1 < t < T1+δ .

Let ν = min{1, 2/(ωq−2β )}. From the inequalityg(T1)< 0= u(T1;T1)/ν, it turns out that

νg(t∗)≤ u(t∗;T1)< 0

for somet∗ ∈ (T1,T1+δ ).
Let

µ =
u(t∗;T1)

g(t∗)
and η(t) = µg(t).

Then, 0< µ ≤ ν and
−1<−ν < η(t)< 0 for t ≥ T1,

and therefore,

η ′(t) = µg′(t) =− ωq−2β µ
2

−ωq−2a(t)µg(t)

≥−1−ωq−2a(t)η(t)≥−1−ωq−2a(t)φq(η(t)) = f (t,η(t)),

where f (t,u) =−1−ωq−2a(t)φq(u). Since

η(t∗) = µg(t∗) = u(t∗;T1),

it follows from Lemma 2.2 that

η(t)≥ u(t;T1) for t ≥ t∗.
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Using Lemma 5.1, we see that (1.2) implies that∫ ∞

0
g(t)dt =−∞.

Hence, ∫ ∞

T1

u(t;T1)dt =
∫ t∗

T1

u(t;T1)dt+
∫ ∞

t∗
u(t;T1)dt

≤
∫ t∗

T1

u(t;T1)dt+
∫ ∞

t∗
η(t)dt

=
∫ t∗

T1

u(t;T1)dt+µ
∫ ∞

t∗
g(t)dt

=
∫ t∗

T1

u(t;T1)dt−µ
∫ t∗

0
g(t)dt+µ

∫ ∞

0
g(t)dt =−∞.

Thus, by means of Theorem 3.4 and Lemma 2.1, we conclude that the equilibrium of (E) is
globally attractive. ⊓⊔

Recall that the proof of Theorem 3.4 was divided into three steps as follows:

(i) For any solution(x(t),y(t)) of (3.1), the functionv(t)
def
=V(x(t),y(t)) is nonincreasing

for t ≥ 0. Hence,v(t) has the limiting valuev0 ≥ 0. If v0 is zero, then the proof is
complete. In the second and third steps, it is shown that the case ofv0 does not occur.
Afterwards, we assume thatv0 is positive.

(ii) If the positive orbit of (3.1) corresponding to(x(t),y(t)) does not rotate around the
origin, then it has to converge to a point on thex-axis. However, comparingy(t) with
a certain solution of (2.1) and using condition (3.2), we can conclude that the positive
orbit does not approach the point. This is a contradiction.

(iii) The positive orbit keeps rotating around the origin, Sincev0 is positive, the orbit does
not enter in the circle of radius

√
2v0. However, by using condition (1.1), we can show

that the orbit approaches the origin by a constant distance each time it passes through a
sector whose central angle is almostπ. Hence, the orbit arrives at the origin. This is a
contradiction.

Condition (3.2) was used only in the second step of the proof of Theorem 3.4. Making
use of the growth condition (1.2) instead of condition (3.2), we obtain the following result.

Corollary 5.3 Assume(1.1)and (1.2).Then the equilibrium of(E) is globally attractive.

Proof. As mentioned above, the proof is completed in the three steps. The first and third
steps are the same as those of Theorem 3.4. We will confirm only the second step by using
(1.2). Letx(t) be any solution of (E) with the initial timet0 ≥ 0 and let(x(t),y(t)) be the
solution of (3.1) corresponding tox(t). Suppose that(x(t),y(t)) stays inQ2 or Q4 ultimately.
We consider only the case in which(x(t),y(t)) is in Q4 ultimatey, because the other case is
carried out in the same manner.

As in the proof of Theorem 3.4, we can show that

(x(t),y(t))→ (
√

2v0,0) as t → ∞,
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wherev0 > 0 is the limiting value ofv(t) = (x2(t)+ y2(t))/2. Hence, there exists aT > 0
such that √

2v0 < x(t)≤ x(T) and −1< y(t)< 0

for t ≥ T. Sinceq≥ 2, we see that

0> φq(y(t)) = (−y(t))q−2y(t)> y(t),

and therefore,

y′(t) =−ωx(t)−ωq−2a(t)φq(y(t))<−ωx(t)−ωq−2a(t)y(t)

for t ≥ T. Hence, we get(
eωq−2A(t)y(t)

)′
<−ω

√
2v0 eωq−2A(t) for t ≥ T.

Integrating both sides of this inequality fromT to t, we obtain

eωq−2A(t)y(t)< eωq−2A(T)y(T)−ω
√

2v0

∫ t

T
eωq−2A(s)ds<−ω

√
2v0

∫ t

T
eωq−2A(s)ds;

namely,

x′(t) = ωy(t)<−ω2
√

2v0

∫ t

T

eωq−2A(s)

eωq−2A(t)
ds

for t ≥ T. From Lemma 5.1 and (1.2) it follows thatx(t) tends to−∞ ast → ∞. This is a
contradiction.

Thus, the theorem is proved. ⊓⊔

Acknowledgments This research was supported in part by a Grant-in-Aid for Scientific
Research, No. 22540190, from the Japan Society for the Promotion of Science (J. S.).

References

1. Artstein, Z., Infante, E.F.: On the asymptotic stability of oscillators with unbounded damping. Quart.
Appl. Math.34, 195–199 (1976/77)

2. Bacciotti, A., Rosier, L.: Liapunov functions and stability in control theory. Springer, Berlin (2005)
3. Ballieu, R.J., Peiffer, K.: Attractivity of the origin for the equation ¨x+ f (t, ẋ, ẍ)|ẋ|α ẋ+g(x) = 0. J. Math.
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