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Abstract

In this paper, we consider optimality conditions and a constraint qualification
for quasiconvex programming. To the purpose, we introduce a generator and
a new subdifferential for quasiconvex functions by using Penot and Volle’s
theorem.
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1. Introduction

We consider the following minimization programming problem:{
minimize f(x),
subject to gi(x) ≤ 0, ∀i ∈ I,

where I is an arbitrary set, f and g are extended real-valued functions from
locally convex Hausdorff topological vector space X. When f and gi are
convex and x0 ∈ A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0}, the following equivalence
relation holds under some constraint qualifications:

f(x0) = inf
x∈A

f(x) ⇐⇒ ∃λ ∈ R(I)
+ s.t. 0 ∈ ∂f(x0) +

∑
i∈I

λi∂gi(x0),

where R(I)
+ = {λ ∈ RI | ∀i ∈ I, λi ≥ 0, {i ∈ I | λi ̸= 0} : finite}. The research

of constraint qualifications for this optimality condition have been studied
by many researchers. Recently, the basic constraint qualification (the BCQ)
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was proposed by Li, Ng and Pong [6]. The BCQ is said to be the weakest
constraint qualification for this optimality condition because the BCQ and
this optimality condition are equivalent.

The purpose of this paper is to generalize the result of [6] for quasiconvex
programming. In quasiconvex optimization, Penot and Volle [8] reported
an interesting result whereby a lower semi-continuous quasiconvex function
consists of a supremum of some family of lower semi-continuous quasiaffine
functions. This result is fundamental and useful for our purpose.

In the present paper, we consider optimality conditions and the basic
constraint qualification for quasiconvex programming. By using Penot and
Volle’s theorem, we introduce a notion called “generator” and a new subd-
ifferential for quasiconvex functions, and investigate generalized results re-
ported in previous studies.

The remainder of the present paper is organized as follows. In Section
2, we introduce Penot and Volle’s theorem, and introduce a notion “genera-
tor” for quasiconvex functions. In Section 3, we define a new subdifferential
for quasiconvex functions and investigate an optimality condition for quasi-
convex programming with a set constraint by using the subdifferential. In
Section 4, we define a new constraint qualification called the basic constraint
qualification for quasiconvex programming (the Q-BCQ), and consider an op-
timality condition for quasiconvex programming with inequality constraints.
Also, we prove that the Q-BCQ is the weakest constraint qualification for
this optimality condition. Finally, in Section 5, we emphasize the usefulness
of our results in this paper.

2. Preliminaries

Let X be a locally convex Hausdorff topological vector space. In addition,
let X∗ be the continuous dual space of X, and let ⟨x∗, x⟩ denote the value
of a functional x∗ ∈ X∗ at x ∈ X. Given a set Y ⊂ X∗, we denote the
weak∗-closure, the interior, the convex hull, and the conical hull generated
by Y , by clY , intY , coY , and coneY , respectively. For convex subset A of
X, the tangent cone and the normal cone of A at z0 ∈ A is denoted by
TA(z0) = cl ∪λ>0

A−z0

λ
, and NA(z0) = {x∗ ∈ X∗ | ∀y ∈ A, ⟨x∗, y − z0⟩ ≤ 0}.

The indicator function δA and the support function σA of A are respectively
defined by

δA(x) =

{
0 x ∈ A,
∞ otherwise,
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and
σA(x∗) = sup

x∈A
⟨x∗, x⟩ for each x∗ ∈ X∗.

Throughout the present paper, let f be a function from X to R, where
R = [−∞,∞]. Here, f is said to be proper if for all x ∈ X, f(x) > −∞ and
there exists x0 ∈ X such that f(x0) ∈ R. We denote the domain of f by
domf , that is, domf = {x ∈ X | f(x) < +∞}. The epigraph of f , epif , is
defined as epif = {(x, r) ∈ X × R | f(x) ≤ r}, and f is said to be convex
if epif is convex. In addition, the Fenchel conjugate of f , f∗ : X∗ → R, is
defined as f∗(v) = sup{⟨v, x⟩ − f(x) | x ∈ domf}. Remember that f is said
to be quasiconvex if for all x, y ∈ X and α ∈ (0, 1),

f((1 − α)x + αy) ≤ max{f(x), f(y)}.

Define level sets of f with respect to a binary relation ⋄ on R as

L(f, ⋄, α) = {x ∈ X | f(x) ⋄ α}

for any α ∈ R. Then, f is quasiconvex if and only if for any α ∈ R, L(f,≤, α)
is a convex set, or equivalently, for any α ∈ R, L(f,<, α) is a convex set.
Any convex function is quasiconvex, but the opposite is not true.

It is well known that a proper lsc convex function consists of a supremum
of some family of affine functions. In the case of quasiconvex functions, a
similar result was also proved by Penot and Volle [8]. First, we introduce
a notion of quasiaffine function. A function f is said to be quasiaffine if
quasiconvex and quasiconcave. It is worth noting that f is lsc quasiaffine
if and only if there exists k ∈ Q and w ∈ X∗ such that f = k ◦ w, where
Q = {h : R → R | h is lsc and non-decreasing}. By using a notion of
quasiaffine function, Penot and Volle proved that f is lsc quasiconvex if and
only if there exists {(ki, wi) | i ∈ I} ⊂ Q × X∗ such that f = supi∈I ki ◦ wi.
This result indicates that a lsc quasiconvex function f consists of a supremum
of some family of lsc quasiaffine functions. Based on this result, in [11], we
define a notion of generator for quasiconvex functions, that is, G = {(ki, wi) |
i ∈ I} ⊂ Q × X∗ is said to be a generator of f if f = supi∈I ki ◦ wi.
Because Penot and Volle’s result, all lsc quasiconvex functions have at least
one generator. Also, when f is a proper lsc convex function, Bf = {(kv, v) |
v ∈ domf∗, kv(t) = t−f ∗(v), ∀t ∈ R} ⊂ Q×X∗ is a generator of f . Actually,
for all x ∈ X,

f(x) = f ∗∗(x) = sup{⟨v, x⟩ − f ∗(v) | v ∈ domf∗} = sup
v∈domf∗

kv(⟨v, x⟩).
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We call the generator Bf “the basic generator” of convex function f . The
basic generator is very important with respect to the comparison of convex
and quasiconvex programming.

Moreover, we introduce a generalized notion of inverse function of h ∈ Q.
The following function h−1 is said to be the hypo-epi-inverse of h:

h−1(a) = inf{b ∈ R | a < h(b)} = sup{b ∈ R | h(b) ≤ a}.

If h has an inverse function, then the inverse and the hypo-epi-inverse of h
are the same, in detail see [8]. In the present paper, we denote the hypo-epi-
inverse of h by h−1. Also, we denote the lower left-hand Dini derivative of
h ∈ Q at t by D−h(t), that is D−h(t) = lim infε→0−

h(t+ε)−h(t)
ε

. A function
h is said to be lower left-hand Dini differentiable if D−h(t) is finite for all
t ∈ R.

3. Subdifferential and an optimality condition

In this section, we introduce a new subdifferential for quasiconvex func-
tion, and by using this subdifferential, we investigate an optimality condition
for quasiconvex programming with a set constraint.

At first, we introduce the new subdifferential for quasiconvex functions.

Definition 1. Let f be a lsc quasiconvex function with a generator G =
{(ks, ws) | s ∈ S} ⊂ Q × X∗, and assume that ks is lower left-hand Dini
differentiable for all s ∈ S. Then, we define the subdifferential of f at x0

with respect to G as follows:

∂Gf(x0) = clco{D−ks(⟨ws, x0⟩)ws | s ∈ S(x0)},

where S(x0) = {s ∈ S | f(x0) = ks ◦ ws(x0)}.

This subdifferential is a generalized notion of the subdifferential for convex
functions. Actually, if f is a convex function with the basic generator Bf ,
then

∂Bf
f(x0) = clco{D−kv(⟨v, x0⟩)v | v ∈ domf ∗, f(x0) = kv(⟨v, x0⟩)}

= clco{v | v ∈ domf ∗, f(x0) = ⟨v, x0⟩ − f∗(v)}
= ∂f(x0).
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Also, if f is Gâteaux differentiable at x0, ks are differentiable at ⟨ws, x0⟩
for all s ∈ S(x0), and S(x0) ̸= ∅, then we can check ∂Gf(x0) = {f ′(x0)}.
Actually, for all s ∈ S(x0) and d ∈ X,

⟨f ′(x0), d⟩ = lim
t→0

f(x0 + td) − f(x0)

t

≥ lim
t→0

ks ◦ ws(x0 + td) − ks ◦ ws(x0)

t
= ⟨k′

s(⟨ws, x0⟩), d⟩ .

Similarly, we can prove that ⟨f ′(x0),−d⟩ ≥ ⟨k′
s(⟨ws, x0⟩)ws,−d⟩, that is,

f ′(x0) = k′
s(⟨ws, x0⟩)ws.

Next, we show a necessary condition for a minimizer of a certain quasi-
convex function in a closed convex set.

Theorem 1. Let A be a closed convex subset of X, f be a lsc quasiconvex
function with a generator G = {(ks, ws) | s ∈ S} ⊂ Q × X∗. Assume that
ks is lower left-hand Dini differentiable for all s ∈ S and at least one of the
following holds:

(i) S is finite and ks is continuous for all s ∈ S,

(ii) X is a Banach space, S is a compact topological space, s 7→ ws is
continuous on S to (X∗, ∥ · ∥), (s, t) 7→ ks(t) is usc on S × R, and
(s, t) 7→ D−ks(t) is continuous on S × R.

If x0 is a local minimizer of f in A then,

0 ∈ ∂Gf(x0) + NA(x0).

proof. At first, we show that ∂Gf(x0) is w∗-compact. It is clear when the
condition (i) holds. If the condition (ii) holds, then S(x0) is compact because
S(x0) = {s ∈ S | f(x0) ≤ ks ◦ws(x0)} and s 7→ ks ◦ws(x0) is usc on S. Thus,
{D−ks(⟨ws, x0⟩)ws | s ∈ S(x0)} is bounded since s 7→ ws is continuous on S
and (s, t) 7→ D−ks(t) is continuous on S ×R. Hence, ∂Gf(x0) is w∗-compact
by the Banach-Alaoglu theorem.

Now we assume that 0 /∈ ∂Gf(x0) + NA(x0). Since ∂Gf(x0) + NA(x0) is
w∗-closed, we can find d0 ∈ X \ {0} satisfying

⟨y∗, d0⟩ < 0 ≤ ⟨−x∗, d0⟩ ,
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for all y∗ ∈ ∂Gf(x0) and x∗ ∈ NA(x0). If s ∈ S(x0), then D−ks(⟨ws, x0⟩) > 0
and ⟨ws, d0⟩ < 0 since D−ks(⟨ws, x0⟩)ws ∈ ∂Gf(x0) and ks is non-decreasing.
From this, we have sups∈S(x0) ⟨ws, d0⟩ < 0 and d 7→ sups∈S(x0) ⟨ws, d⟩ is usc.
Indeed, it is clear when the condition (i) holds. If the condition (ii) holds,
we can check them since S(x0) is compact and s 7→ ws is continuous on S.

Therefore, there exists Ud0 a neighborhood of d0 such that ⟨ws, d⟩ < 0 for
all s ∈ S(x0) and d ∈ Ud0 . Since x0 is a local minimizer of f in A, there
exists Ux0 a neighborhood of x0 such that for all x ∈ Ux0 ∩ A, f(x0) ≤ f(x).

Also d0 ∈ TA(x0) = cl∪λ>0
A−x0

λ
because ⟨x∗, d0⟩ ≤ 0 for all x∗ ∈ NA(x0).

Then there exist d1 ∈ Ud0 , λ0 > 0 and x1 ∈ A such that d1 = x1−x0

λ0
. Put

xn = (1 − 1
n
)x0 + 1

n
x1 = x0 + λ0

n
d1, then xn ∈ A ∩ Ux0 for large enough n,

therefore f(x0) ≤ f(xn).
If the condition (i) holds, since S is finite, we can find s0 ∈ S and a

subsequence {xni
} of {xn} such that s0 ∈ S(xni

) for all i ∈ N, and we have
s0 ∈ S(x0) because f and ks0 ◦ ws0 are continuous. For large enough i ∈ N,
ks0 ◦ ws0(xni

) = f(xni
) ≥ f(x0) = ks0 ◦ ws0(x0), and then,

ks0(⟨ws0 , x0⟩ + λ0

ni
⟨ws0 , d1⟩) − ks0(⟨ws0 , x0⟩)

λ0

ni
⟨ws0 , d1⟩

≤ 0,

since d1 ∈ Ud0 . Therefore D−ks0(⟨ws0 , x0⟩) ≤ 0, it is contradiction.
If the condition (ii) holds, all S(xn) are not empty because S is compact

and s 7→ ks◦ws(xn) is usc on S. Let {sn} be a sequence satisfying sn ∈ S(xn)
for all n ∈ N. Then there exists a subsequence {sni

} of {sn} such that {sni
}

converges to some s0 ∈ S. Therefore

f(x0) ≤ lim inf
i→∞

f(xni
)

≤ lim sup
i→∞

ksni
◦ wsni

(xni
)

≤ ks0 ◦ ws0(x0)

≤ f(x0),

that is, s0 ∈ S(x0). Then, for sufficiently large i ∈ N, ksni
◦ wsni

(xni
) =

f(xni
) ≥ f(x0) ≥ ksni

◦ wsni
(x0) and

⟨
wsni

, d1

⟩
< 0, because s0 ∈ S(x0),

d1 ∈ Ud0 and {wsni
} converges ws0 . From this and ksni

is non-decreasing,

ksni
is constant on interval [

⟨
wsni

, x0

⟩
+ λ0

ni

⟨
wsni

, d1

⟩
,
⟨
wsni

, x0

⟩
] and hence

we have D−ksni
(
⟨
wsni

, x0

⟩
) = 0. Finally we obtain D−ks0(⟨ws0 , x0⟩) = 0, but

this is a contradiction.
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On the other hand, in separable Banach space, a similar result was intro-
duced when S is compact, fs are locally Lipschitz, f = sups∈S fs, and some
assumption hold in [9]. If condition (ii) holds and ks are differentiable, then
ks ◦ws are locally Lipschitz. However, in Theorem 1, we assume that X is a
usual Banach space and ks are only lower left-hand Dini differentiable, thus,
Theorem 1 is not a direct consequence of the result in [9]. Also, if f is a
proper lsc convex function with basic generator Bf and domf∗ is compact,
then condition (ii) holds. For this reason, it seems that condition (ii) is not
so strong for quasiconvex programming.

4. The basic constraint qualification

In this Section, we define a new constraint qualification and consider
an optimality condition for quasiconvex programming with inequality con-
straints, and we prove that the new constraint qualification is the weakest
constraint qualification for the optimality condition.

We introduce the following new constraint qualification.

Definition 2. Let {gi | i ∈ I} be a family of lsc quasiconvex functions from
X to R, for each i ∈ I, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q × X∗ be a generator
of gi, T = {t = (i, j) | i ∈ I, j ∈ Ji}, T (x) = {t ∈ T | kt(⟨wt, x⟩) = 0,
k−1

t (0) = ⟨wt, x⟩}, and A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0}.
The family {gi | i ∈ I} is said to satisfy the basic constraint qualification

for quasiconvex programming (the Q-BCQ) with respect to {(kt, wt) | t ∈ T}
at x ∈ A if

NA(x) = coneco
∪

t∈T (x)

{wt}.

We can check that one inclusion always holds. Indeed, for each t ∈ T (x) and
y ∈ A, ⟨wt, y⟩ ≤ ⟨wt, x⟩ because ⟨wt, x⟩ = k−1

t (0). Furthermore, NA(x) is
a convex cone, this shows that NA(x) ⊃ coneco

∪
t∈T (x){wt}. Therefore, the

Q-BCQ is equivalent to the following inclusion

NA(x) ⊂ coneco
∪

t∈T (x)

{wt}.

In the following theorem, we show an optimality condition for quasiconvex
programming and the Q-BCQ is the weakest constraint qualification for this
optimality condition. Recall Γ0(X), the set of all proper lsc convex functions.
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Let QF (X) be the set of all quasiconvex functions which have a finite and
lower left-hand Dini differentiable generator, that is,

QF (X) =

{
sup
s∈S

ks ◦ ws

∣∣∣ {(ks, ws) | s ∈ S} ⊂ Q × X∗, S : finite,
∀s ∈ S, ks : continuous and lower left-hand Dini diff.

}
.

Theorem 2. Let {gi | i ∈ I} be a family of lsc quasiconvex functions from
X to R, for each i ∈ I, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q × X∗ be a generator
of gi, T = {t = (i, j) | i ∈ I, j ∈ Ji}, T (x) = {t ∈ T | kt(⟨wt, x⟩) = 0,
k−1

t (0) = ⟨wt, x⟩}, A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0} and x0 ∈ A. Then, the
following statements (i), (ii), (iii) and (iv) are equivalent:

(i) {gi(x) ≤ 0 | i ∈ I} satisfies the Q-BCQ w.r.t. {(kt, wt) | t ∈ T} at x0,

(ii) for each v ∈ X∗, x0 is a minimizer of v in A if and only if there exists

λ ∈ R(T )
+ such that λt = 0 for all t ∈ T \ T (x0), the complementarity

condition, and

−v =
∑
t∈T

λtwt,

(iii) for each f ∈ Γ0(X) with domf ∩A ̸= ∅ and epif ∗ + epiδ∗A is w∗-closed,

x0 is a minimizer of f in A if and only if there exists λ ∈ R(T )
+ such

that λt = 0 for all t ∈ T \ T (x0), and

0 ∈ ∂f(x0) +
∑
t∈T

λtwt,

(iv) for all f ∈ QF (X) with a generator G, if x0 is a local minimizer of f

in A, then, there exists λ ∈ R(T )
+ such that λt = 0 for all t ∈ T \ T (x0),

and
0 ∈ ∂Gf(x0) +

∑
t∈T

λtwt.

proof. We now first prove (i) implies (iii). By the assumption of f , the
subdifferential sum formula holds, that is,

∂(f + δA)(x0) = ∂f(x0) + ∂δA(x0).

Because ∂δA(x0) = NA(x0) and condition (i) holds,

x0 minimizes f on A ⇐⇒ 0 ∈ ∂f(x0) + coneco
∪

t∈T (x0)

{wt},
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this shows that (iii) holds.
Next, it is clear that (iii) implies (ii) and (iv) implies (ii).
We now prove that (ii) implies (i). We want to show that if x∗ ∈

NA(x0) then x∗ ∈ coneco
∪

t∈T (x0){wt}. Let x∗ ∈ NA(x0). Because x∗ ∈
NA(x0), δ∗A(x∗) = ⟨x∗, x0⟩. Therefore, x0 minimizes −x∗ on A. Then by

using condition (ii), there exists λ ∈ R(T )
+ such that x∗ =

∑
t∈T λtwt ∈

coneco
∪

t∈T (x0){wt}.
Finally, by using Theorem 1, we can prove (i) implies (iv). This completes

the proof.

In Theorem 2, QF (X) corresponds to the condition (i) of Theorem 1. In
the following theorem, we define QC(X) which corresponds to the condition
(ii) of Theorem 1 as follows,

QC(X) =

sup
s∈S

ks ◦ ws

∣∣∣∣ {(ks, ws) | s ∈ S} ⊂ Q × X∗, S : compact,
s 7→ ws : continuous, (s, t) 7→ ks(t) : usc,
D−ks(t) ∈ R and (s, t) 7→ D−ks(t) : continuous.

 .

Theorem 3. Let {gi | i ∈ I} be a family of lsc quasiconvex functions from
X to R, for each i ∈ I, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q × X∗ be a generator
of gi, T = {t = (i, j) | i ∈ I, j ∈ Ji}, T (x) = {t ∈ T | kt(⟨wt, x⟩) = 0,
k−1

t (0) = ⟨wt, x⟩}, A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0} and x0 ∈ A. Assume
that X is a Banach space, then the following statements (v) is equivalent to
the statements (i), (ii), (iii) and (iv) in Theorem 2.

(v) for all f ∈ QC(X) with a generator G = {(ks, ws) | s ∈ S} ⊂ Q × X∗,

if x0 is a local minimizer of f in A, then, there exists λ ∈ R(T )
+ such

that λt = 0 for all t ∈ T \ T (x0), and

0 ∈ ∂Gf(x0) +
∑
t∈T

λtwt.

proof. By using Theorem 1, we can prove (i) implies (v). Also, it is clear
that (v) implies (ii).

Lastly in this section, we investigate a relation between Q-BCQ and a pre-
vious result. In [6], the basic constraint qualification for convex programming
was provided. Let {gi | i ∈ I} be a family of proper lsc convex function from

9



X to R, then, the family {gi | i ∈ I} is said to satisfy the basic constraint
qualification (the BCQ) at x ∈ A if

NA(x) = coneco
∪

i∈I(x)

∂gi(x),

where A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0} and I(x) = {i ∈ I | gi(x) = 0}.
If {gi | i ∈ I} is a family of proper lsc convex function with the basic

generator, T = {(i, v) | i ∈ I, v ∈ domg∗
i }, then, for all x ∈ A, we can check∪

(i,v)∈T (x)

{v} =
∪

i∈I(x)

∂gi(x),

that is, the BCQ and the Q-BCQ w.r.t. the basic generator are equivalent.
Furthermore, we can prove the following theorem in [6] by using Theo-

rem 2.

Corollary 1. [6] {gi | i ∈ I} be a family of proper lsc convex functions from
X to R, Assume that A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0} ̸= ∅ and x0 ∈ A.
Then, the following statements are equivalent:

(i) {gi(x) ≤ 0 | i ∈ I} satisfies the BCQ at x0,

(ii) for all v ∈ X∗, x0 is a minimizer of v in A if and only if there exists

λ ∈ R(I(x0))
+ such that

−v ∈
∑

i∈I(x0)

λi∂gi(x0),

(iii) for all f ∈ Γ0(X) with domf ∩ A ̸= ∅ and epif ∗ + epiδ∗A is w∗-closed,

x0 is a minimizer of f in A if and only if there exists λ ∈ R(I(x0))
+ such

that
0 ∈ ∂f(x0) +

∑
i∈I(x0)

λi∂gi(x0).

Also, we can prove that the conditions (i), (ii) and (iii) in Theorem 2 are
equivalent by using Corollary 1. Let {gi | i ∈ I} be a family of lsc quasiconvex
functions from X to R, for each i ∈ I, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q × X∗

be a generator of gi, and T = {t = (i, j) | i ∈ I, j ∈ Ji}. Then, A =
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{x ∈ X | ∀t ∈ T, wt(x) − k−1
t (0) ≤ 0} and ∂(wt − k−1

t (0)) = {wt} for
all t ∈ T . Since wt − k−1

t (0) is a continuous linear function, we can prove
a equivalence relation of the conditions (i), (ii) and (iii) in Theorem 2 by
using Corollary 1. Hence, we can see that (i), (ii) and (iii) of Theorem 2 and
Corollary 1 are equivalent. However, (iv) of Theorem 2 and (v) of Theorem 3
are new results which concern quasiconvex programming and we can consider
problems whose objective function is quasiconvex by using Theorem 2 and
3.

5. Usefulness of our results

In this section, we emphasize the usefulness of optimality conditions and
Q-BCQ by some examples. At first, we show the following quasiconvex pro-
gramming problem that Theorem 2 is used effectively.

Example 1. Let X = R2, I = {1, 2}, g1(x) = −(x1−2)3, g2(x) = −(x2−1)5

and f(x) =
√

|x1 − 1| + |x2 − 1|, then, f , g1 and g2 are continuous quasicon-
vex, and A = {x ∈ R2 | x1 ≥ 2, x2 ≥ 1}. Also, G1 = {(k1, (−1, 0)) | k(a) =
(a+2)3} is a generator of g1, G2 = {(k2, (0,−1)) | k2(a) = (a+1)5} is a gen-
erator of g2 and G0 = {(h1, (1, 1)), (h2, (−1, 1)), (h3, (−1,−1)), (h4, (1,−1))}
is a generator of f , where h1 be a function from R to R as follows:

h1(a) =

{√
a − 2 a ≥ 2,

0 otherwise.

and h2(a) = h4(a) = h1(a + 2), h3(a) = h1(a + 4) for all a ∈ R. We
can check easily that the Q-BCQ w.r.t. G1 ∪ G2 is satisfied at each point
of A. We observe whether there exist x ∈ A and λ ∈ R2

+ satisfying 0 ∈
∂G0f(x) + λ1(−1, 0) + λ2(0,−1) and the complementarity condition or not.
If x ∈ intA, then, ∂G0f(x) = { 1

2
√

x1+x2−2
(1, 1)} and gi(x) ̸= 0 (i ∈ I), this

implies λ = 0 if the complementarity condition holds. Hence, the optimality
condition is not satisfied. If x ∈ {y | y1 = 2, y2 > 1}, then, λ2 = 0 if
the complementarity condition holds. Also, ∂G0f(x) = { 1

2
√

x1+x2−2
(1, 1)},

that is, the optimality condition is not satisfied. If x ∈ {y | y1 > 2, y2 =

1}, then, ∂G0f(x) = clco
{

1
2
√

x1+x2−2
(1, 1), 1

2
√

x1−x2
(1,−1)

}
and λ1 = 0 if

the complementarity condition holds, that is, the optimality condition is not
satisfied. If x = (2, 1), then,

∂G0f(x) = clco{D−h1(⟨(1, 1), x0⟩)(1, 1), D−h4(⟨(1,−1), x0⟩)(1,−1)}
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= clco

{
1

2
(1, 1),

1

2
(1,−1)

}
=

{
v ∈ R2

∣∣∣ v1 =
1

2
, v2 ∈

[
−1

2
,
1

2

]}
.

Put λ =
(

1
2
, 1

2

)
, then, 0 ∈ ∂G0f(x) + λ1(−1, 0) + λ2(0,−1). Therefore, (2, 1)

satisfies the necessary condition for a local minimizer. In this case, the other
x ∈ A does not satisfy the optimality condition, hence (2, 1) is the global
minimizer of f in A.

As stated above, Q-BCQ is used effectively for quasiconvex programming.
At the same time, Q-BCQ and the notion of generator are useful for convex
programming. Now we show the following example.

Example 2. Let X = R2, I = {1}, g(x) = (x1 − x2)
2. Then, A = {y | y1 =

y2}, for all y ∈ A, NA(y) = {v | v1 + v2 = 0}, I(y) = I. Also, the BCQ is
not satisfied at any point y ∈ A because ∇g(y) = 0. However, we can choose
a suitable generator for satisfying the Q-BCQ. Let k be a function from R to
R as follows:

k(t) =

{
t2 t ≥ 0,
0 otherwise,

let J = {(k, (1,−1)), (k, (−1, 1))}. Then, J is a generator of g. Furthermore,
for all y ∈ A, k(⟨(1,−1), (y1, y2)⟩) = k(⟨(−1, 1), (y1, y2)⟩) = 0, and

NA(y) = {v | v1 + v2 = 0} = coneco
∪

{(1,−1), (−1, 1)}.

Therefore the Q-BCQ w.r.t. J at y is satisfied.
Let f(x) = (x1 − 5)2 +(x2 − 3)2, then, f is a continuous convex function.

Since Q-BCQ is satisfied, we can find a minimizer by using an optimality
condition in this paper. We observe whether there exist x ∈ A and λ ∈
R2

+ satisfying 0 ∈ ∂f(x) + λ1(1,−1) + λ2(−1, 1) and the complementarity
condition or not. We can check easily that ∂f(x) = {∇f(x)} = {(2(x1 −
5), 2(x2 − 3))}. If there exists λ satisfying the optimality condition, then,
we can calculate x = (4, 4). Put λ = (0, 2), then 0 ∈ ∂f(x) + λ1(1,−1) +
λ2(−1, 1). By using Theorem 2, (4, 4) is the global minimizer.

Also, as stated in the comments below Corollary 1, we rewrite the con-
straint as a convex one which satisfies the BCQ. Let g1(x) = ⟨(1,−1), x⟩ −
k−1(0) = ⟨(1,−1), x⟩, and g2(x) = ⟨(−1, 1), x⟩ − k−1(0) = ⟨(−1, 1), x⟩,

12



then we can check easily that A = {x ∈ R2 | gi(x) ≤ 0(i = 1, 2)}, and
{gi(x) ≤ 0 | i = 1, 2} satisfies the BCQ. By using Corollary 1, x ∈ A
is a minimizer of f in A if and only if there exists λ ∈ R2

+ such that
0 ∈ ∂f(x) +

∑
i=1,2 λi∂gi(x) = ∂f(x) + λ1(1,−1) + λ2(−1, 1). Hence, by

the similar way in the first half of this example, we can find the global mini-
mizer (4, 4).
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