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Abstract

In this paper, we investigate relations between constraint qualifications in
quasiconvex programming. At first, we show a necessary and sufficient con-
dition for the Q-CCCQ, and investigate some sufficient conditions for the
Q-CCCQ. Also, we consider a relation between the Q-CCCQ and the Q-
BCQ and we compare the Q-BCQ with some constraint qualifications.
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1. Introduction

In mathematical programming, some optimality conditions were investi-
gated. Also, constraint qualifications for these optimality conditions were
studied, for example, linear independent constraint qualification (LICQ),
Slater constraint qualification and Guignard constraint qualification. In con-
vex programming, the following optimality condition is well known: let I be
an arbitrary set, f and gi be convex function, A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0}
and x0 ∈ A, then the following equivalence relation holds

x0 is a minimizer of f in A ⇐⇒ ∃λ ∈ R(I)
+ s.t. 0 ∈ ∂f(x0) +

∑
i∈I

λi∂gi(x0),

where R(I)
+ = {λ ∈ RI | ∀i ∈ I, λi ≥ 0, {i ∈ I | λi ̸= 0} : finite}. In [6], the

basic constraint qualification (the BCQ) was investigated as the weakest con-
straint qualification for the above optimality condition. Also, in [3], Farkas
Minkowski (FM) was investigated as the weakest constraint qualification for
Lagrange duality.
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In quasiconvex programming, we investigated the closed cone constraint
qualification for quasiconvex programming (the Q-CCCQ) [8] and the basic
constraint qualification for quasiconvex programming (the Q-BCQ) [9] as a
similar constraint qualification of FM and the BCQ. Actually, the Q-CCCQ
and the Q-BCQ are the weakest constraint qualification for a certain duality
and an optimality condition, respectively. In the research of constraint qual-
ifications, discoveries of such constraint qualifications are very important.

However, in practice, it is difficult to check whether the Q-CCCQ and
the Q-BCQ hold or not. Hence, some plain constraint qualifications is very
important after all. For example, in convex programming, the Slater condi-
tion is a plain and sufficient constraint qualification for FM and the BCQ.
However, in quasiconvex programming, the Slater condition is not a sufficient
condition for the Q-CCCQ and the Q-BCQ. Hence, in this paper, we inves-
tigate some relations between constraint qualifications in quasiconvex pro-
gramming, especially, we consider an equivalent condition of the Q-CCCQ
and some sufficient or necessary conditions of the Q-CCCQ. Also, we inves-
tigate the Q-BCQ and some constraint qualifications.

The remainder of the present paper is organized as follows. In Section
2, we introduce some notation and preliminaries. In Section 3, we introduce
an equivalent condition and some sufficient condition of the Q-CCCQ. In
Section 4, we introduce a necessary condition for the Q-CCCQ. Finally, in
Section 5, we compare the Q-BCQ with some constraint qualifications.

2. Preliminaries

Let X be a locally convex Hausdorff topological vector space. In addition,
let X∗ be the continuous dual space of X, and let ⟨x∗, x⟩ denote the value
of a functional x∗ ∈ X∗ at x ∈ X. Given a set A∗ ⊂ X∗, we denote the w∗-
closure, the convex hull, the boundary, and the conical hull generated by A∗,
by clA∗, coA∗, ∂A∗, and coneA∗, respectively. The normal cone of A ⊂ X
at z0 ∈ A is denoted by NA(z0) = {x∗ ∈ X∗ | ∀y ∈ A, ⟨x∗, y − z0⟩ ≤ 0}.
The indicator function δA and the support function σA of A are respectively
defined by

δA(x) :=

{
0 x ∈ A,
∞ otherwise,

and
σA(x∗) := sup

x∈A
⟨x∗, x⟩ for each x∗ ∈ X∗.
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Throughout the present paper, let f be a function from X to R, where
R = [−∞,∞]. Here, f is said to be proper if for all x ∈ X, f(x) > −∞
and there exists x0 ∈ X such that f(x0) ∈ R. We denote the domain of f
by domf , that is, domf = {x ∈ X | f(x) < ∞}. The epigraph of f , epif ,
is defined as epif = {(x, r) ∈ X × R | x ∈ domf, f(x) ≤ r}, and f is said
to be convex if epif is convex. In addition, the Fenchel conjugate of f , f ∗ :
X∗ → R, is defined as f ∗(u) = supx∈domf{⟨u, x⟩ − f(x)}. Remember that f
is said to be quasiconvex if for all x1, x2 ∈ X and α ∈ (0, 1),

f((1 − α)x1 + αx2) ≤ max{f(x1), f(x2)}.

Define level sets of f with respect to a binary relation ⋄ on R as

L(f, ⋄, α) = {x ∈ X | f(x) ⋄ α}

for any α ∈ R. Then, f is quasiconvex if and only if for any α ∈ R, L(f,≤, α)
is a convex set, or equivalently, for any α ∈ R, L(f,<, α) is a convex set.
Any convex function is quasiconvex, but the opposite is not true.

It is well known that a proper lsc convex function consists of a supremum
of some family of affine functions. In the case of quasiconvex functions, a
similar result was also proved by Penot and Volle [7]. First, we introduce a
notion of quasiaffine. A function f is said to be quasiaffine if quasiconvex
and quasiconcave. It is important that f is lsc quasiaffine if and only if
there exists k ∈ Q and w ∈ X∗ such that f = k ◦ w, where Q = {h :
R → R | h is lsc and non-decreasing}. By using a notion of quasiaffine,
Penot and Volle proved that f is lsc quasiconvex if and only if there exists
{(ki, wi) | i ∈ I} ⊂ Q×X∗ such that f = supi∈I ki ◦wi. This result indicates
that an lsc quasiconvex function f consists of a supremum of some family of
lsc quasiaffine functions. Based on this result, in [8], we define a notion of
generator for quasiconvex functions, that is, G = {(ki, wi) | i ∈ I} ⊂ Q×X∗

is said to be a generator of f if f = supi∈I ki ◦ wi. Because Penot and
Volle’s result, all lsc quasiconvex functions have at least one generator. Also,
when f is a proper lsc convex function, Bf = {(kv, v) | v ∈ domf ∗, kv(t) =
t − f ∗(v), ∀t ∈ R} ⊂ Q × X∗ is a generator of f . Actually, for all x ∈ X,

f(x) = f ∗∗(x) = sup{⟨v, x⟩ − f ∗(v) | v ∈ domf∗} = sup
v∈domf∗

kv(⟨v, x⟩).

We call the generator Bf “the basic generator” of a convex function f . The
basic generator is very important to the comparison of convex and quasicon-
vex programming.
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Moreover, we introduce a generalized notion of inverse function of h ∈ Q.
The following function h−1 is said to be the hypo-epi-inverse of h:

h−1(a) = inf{b ∈ R | a < h(b)} = sup{b ∈ R | h(b) ≤ a}.

It is known that if h has an inverse function, then the inverse and the hypo-
epi-inverse of h are the same, in detail see [7]. In the present paper, we
denote the hypo-epi-inverse of h by h−1.

In mathematical programming, research on constraint qualification is very
important. In convex programming, the closed cone constraint qualification
(the CCCQ) has been investigated extensively, see [2, 3, 5]. Also, in [8], we
investigated the closed cone constraint qualification for quasiconvex program-
ming (the Q-CCCQ). In this paper, we redefine the Q-CCCQ for infinitely
constraints quasiconvex programming.

Definition 1. [8] Let {gi | i ∈ I} be a family of lsc quasiconvex functions
from X to R, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q × X∗ be a generator of gi for
each i ∈ I, and T = {t = (i, j) | i ∈ I, j ∈ Ji}. Assume that A = {x ∈
X | ∀i ∈ I, gi(x) ≤ 0} is non-empty set. Then, the quasiconvex inequality
system {gi(x) ≤ 0 | i ∈ I} satisfies the closed cone constraint qualification
for quasiconvex programming (the Q-CCCQ) w.r.t. {(kt, wt) | t ∈ T} if

cone co
∪
t∈T

{(wt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ} + {0} × [0,∞)

is w∗-closed.

Also, {gi(x) ≤ 0 | i ∈ I} satisfies the Q-CCCQ if and only if the alternative
form of Q-CCCQ,

epiδ∗A ⊂ cone co
∪
t∈T

{(wt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ} + {0} × [0,∞)

holds. The Q-CCCQ is the weakest constraint qualification for the following
duality. Recall Γ0(X), the set of all proper lsc convex functions.

Theorem 1. [8] Let {gi | i ∈ I} be a family of lsc quasiconvex functions
from X to R, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q × X∗ be a generator of gi for
each i ∈ I, and T = {t = (i, j) | i ∈ I, j ∈ Ji}. Assume that A = {x ∈
X | ∀i ∈ I, gi(x) ≤ 0} is non-empty set. Then, the following statements are
equivalent:
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(i) {gi(x) ≤ 0 | i ∈ I} satisfies the Q-CCCQ w.r.t. {(kt, wt) | t ∈ T},

(ii) for all f ∈ Γ0(X) with epif∗ + epiδ∗A is w∗-closed,

inf
x∈A

f(x) = max
λ∈R(I)

+

inf
x∈X

{
f(x) +

∑
i∈I

λi(wi − k−1
i (0))

}
.

We introduce the following constraint qualification in [9].

Definition 2. [9] Let {gi | i ∈ I} be a family of lsc quasiconvex functions
from X to R, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q×X∗ be a generator of gi for each
i ∈ I, T = {t = (i, j) | i ∈ I, j ∈ Ji}, T (x) = {t ∈ T | kt(⟨wt, x⟩) = 0,
k−1

t (0) = ⟨wt, x⟩}, and A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0}.
The family {gi | i ∈ I} is said to satisfy the basic constraint qualification

for quasiconvex programming (the Q-BCQ) with respect to {(kt, wt) | t ∈ T}
at x ∈ A if

NA(x) = coneco
∪

t∈T (x)

{wt}.

Also, the Q-BCQ is equivalent to the following inclusion

NA(x) ⊂ coneco
∪

t∈T (x)

{wt}.

The Q-BCQ is the weakest constraint qualification for the following op-
timality condition. Let QF (X) be the set of all quasiconvex functions which
have a finite and lower left-hand Dini differentiable generator, that is,

QF (X) =

{
sup
s∈S

ks ◦ ws

∣∣∣ {(ks, ws) | s ∈ S} ⊂ Q × X∗, S : finite,
∀s ∈ S, ks : continuous and lower left-hand Dini diff.

}
.

Theorem 2. [9] Let {gi | i ∈ I} be a family of lsc quasiconvex functions
from X to R, {(k(i,j), w(i,j)) | j ∈ Ji} ⊂ Q×X∗ be a generator of gi for each
i ∈ I, T = {t = (i, j) | i ∈ I, j ∈ Ji}, T (x) = {t ∈ T | kt(⟨wt, x⟩) = 0,
k−1

t (0) = ⟨wt, x⟩}, A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0} and x0 ∈ A. Then, the
following statements (i), (ii) and (iii) are equivalent:

(i) {gi | i ∈ I} satisfies the Q-BCQ w.r.t. {(kt, wt) | t ∈ T} at x0,
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(ii) for each f ∈ Γ0(X) with domf ∩A ̸= ∅ and epif ∗ + epiδ∗A is w∗-closed,

x0 is a minimizer of f in A if and only if there exists λ ∈ R(T )
+ such

that λt = 0 for all t ∈ T \ T (x0), and

0 ∈ ∂f(x0) +
∑
t∈T

λtwt,

(iii) for all f ∈ QF (X) with a generator G = {(ks, ws) | s ∈ S}, if x0 is a

local minimizer of f in A, then, there exists λ ∈ R(T )
+ such that λt = 0

for all t ∈ T \ T (x0), and

0 ∈ ∂Gf(x0) +
∑
t∈T

λtwt,

where ∂Gf(x0) = {D−ks(⟨ws, x0⟩)ws | f(x0) = ks ◦ ws(x0)}.

3. Equivalent condition and Sufficient conditions of the Q-CCCQ

In convex programming, the Slater condition is one of the well known
constraint qualification as a sufficient condition for FM and the BCQ. How-
ever, the Slater condition is not a sufficient condition for Q-CCCQ, see the
following Example.

Example 1. Let X = R2, I = (0, 1], wi = (−i, i − 1), ki be a function as
follows:

ki(t) =

{
it t > 0,
−1 t ≤ 0,

and g = supi∈I ki◦wi. Then, A = {x ∈ X | g(x) ≤ 0} = R2
+, and f(1, 1) < 0,

that is, the Slater condition holds. However, it is clear that {g(x) ≤ 0} is not
satisfies the Q-CCCQ w.r.t. {(ki, wi) | i ∈ I}. Also, even if G = {(k, w) |
k ∈ Q,w ∈ R2, k ◦ w ≤ g}, it is the biggest generator of f , then g does not
satisfy the Q-CCCQ w.r.t. G. Indeed, epiσA = {(x, α) | x ∈ −R2

+, α ≥ 0},
and ((0,−1), 0) /∈ cone co {(w, δ) | k−1(0) ≤ δ, k ◦ w ≤ f} + {0} × [0,∞)
since if w = (0,−1) and k ◦ w ≤ f , then k ≤ 0, that is k−1(0) = ∞.

Hence, in this section, we consider an equivalent condition and some
sufficient conditions of the Q-CCCQ. From now on we consider the problem
with only one constraint function, and we fix the generator of a constraint

6



function as follows: G = {(k, w) | k ∈ Q,w ∈ X∗, k ◦ w ≤ f} that is, G
is the set of all lsc quasiaffine functions which is smaller than f . Since this
G is uniquely defined to f , we can consider the Q-CCCQ without taking
care with how to take a generator. Also, in convex programming, the basic
generator is the set of all affine functions which is smaller than f , hence the
above generator G is a natural notion.

At first, we show the following lemma which concerns non-decreasing
functions.

Lemma 1. Let k be a function from R to R, and clk be the lsc hull of h,
that is, epiclk = clepik. Then, the following (i) and (ii) hold:

(i) If k is non-decreasing, then, clk ∈ Q,

(ii) If k is non-decreasing, then k−1(0) = (clk)−1(0).

proof. We prove the statement (i). We only show that clk is non-decreasing.
If there exist t1 and t2 such that t1 < t2 and clk(t1) > clk(t2). Then, for all
t ∈ [t1,∞), clk(t2) < clk(t1) ≤ k(t1) ≤ k(t). Thus, (t2, clk(t2)) /∈ clepik, this
is a contradiction.

Next, we prove the statement (ii). Since k ≥ clk, k−1(0) ≤ (clk)−1(0).
If k−1(0) < (clk)−1(0), then, there exists t0 ∈ R such that k−1(0) < t0 and
clk(t0) ≤ 0. Also there exists t′ ∈ R such that k−1(0) < t′ < t0. Then, for all
t ∈ [t′,∞), clk(t0) ≤ 0 < k(t′) ≤ k(t). Thus, (t0, clk(t0)) /∈ clepik, this is a
contradiction.

By using Lemma 1, we rewrite the Q-CCCQ.

Lemma 2. Let f be a lsc quasiconvex function. Then,

(i) K = {(w, δ) | ∃k ∈ Q s.t. k ◦ w ≤ f, k−1(0) ≤ δ} is a convex cone,

(ii) {f(x) ≤ 0} satisfies the Q-CCCQ if and only if K is w∗-closed.

proof. We prove the statement (i). Put k as follows:

k(t) :=

{
−∞ t ≤ 0,
∞ otherwise,

then, k ∈ Q, k−1(0) = 0 and k ◦ 0 ≤ f , hence (0, 0) ∈ K. Let (w, δ) ∈ K
and λ > 0, then there exists k ∈ Q such that k ◦w ≤ f and k−1(0) ≤ δ. Put
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kλ(t) = k( t
λ
), we can check that kλ ∈ Q, kλ ◦λw ≤ f and k−1

λ (0) ≤ λδ, hence
K is a cone.

Let (w1, δ1), (w2, δ2) ∈ K, then there exist k1 and k2 ∈ Q such that
k1 ◦ w1 ≤ f , k−1

1 (0) ≤ δ1, k2 ◦ w2 ≤ f and k−1
2 (0) ≤ δ2. Put k̄ as follows:

k̄(t) :=

{
−∞ t ≤ k−1

1 (0) + k−1
2 (0),

inf{f(x) | t ≤ ⟨w1 + w2, x⟩} otherwise,

then it is clear that k̄ is non-decreasing. Also, k̄−1(0) = k−1
1 (0) + k−1

2 (0).
Actually, for all t > k−1

1 (0) + k−1
2 (0), there exists ε > 0 such that t >

k−1
1 (0) + k−1

2 (0) + 2ε. Then, for all x ∈ X with ⟨w1 + w2, x⟩ ≥ t, ⟨w1, x⟩ >
k−1

1 (0) + ε or ⟨w2, x⟩ > k−1
2 (0) + ε. If ⟨w1, x⟩ > k−1

1 (0) + ε, then f(x) ≥
k1 ◦ w1(x) ≥ k1(k

−1
1 (0) + ε) ≥ min{k1(k

−1
1 (0) + ε), k2(k

−1
2 (0) + ε)}. It is

similar that if ⟨w2, x⟩ > k−1
2 (0)+ε, f(x) ≥ min{k1(k

−1
1 (0)+ε), k2(k

−1
2 (0)+ε)}.

Hence, k̄(t) = inf{f(x) | t ≤ ⟨w1 + w2, x⟩} ≥ min{k1(k
−1
1 (0)+ε), k2(k

−1
2 (0)+

ε)} > 0, that is, k̄−1(0) = k−1
1 (0) + k−1

2 (0). By using Lemma 1, clk̄ ∈
Q and (clk̄)−1(0) = k̄−1(0) = k−1

1 (0) + k−1
2 (0). Also, clk̄(⟨w1 + w2, x⟩) ≤

k̄(⟨w1 + w2, x⟩) ≤ f(x), therefore K is convex.
The statement (ii) is clear because of the definition of the Q-CCCQ and

the statement (i).

Next, we show a sufficient and necessary condition of the Q-CCCQ. This
condition is very important when we consider some sufficient conditions for
the Q-CCCQ.

Theorem 3. The following (i) and (ii) are equivalent,

(i) {f(x) ≤ 0} satisfies the Q-CCCQ,

(ii) for all v ∈ X∗ \ {0} and t > σA(v), inf{f(x) | ⟨v, x⟩ ≥ t} > 0.

proof. Assume that {f(x) ≤ 0} satisfies the Q-CCCQ. Then, for all v ∈
domσA \ {0}, (v, σA(v)) ∈ epiσA. Because of the alternative form of the
Q-CCCQ, epiσA = K, and there exists k ∈ Q such that k ◦ v ≤ f and
k−1(0) ≤ σA(v). Also, we can check easily that for all t ∈ R, inf{f(x) |
⟨v, x⟩ ≥ t} ≥ k(t). Hence, for all t > σA(v), inf{f(x) | ⟨v, x⟩ ≥ t} ≥ k(t) > 0.

Next, we want to prove that if (ii) holds, then K is w∗-closed. Let
{(wα, δα) | α ∈ D} ⊂ K be a net which converges to (w0, δ0) in w∗-topology.
Then, for each α ∈ D, there exists kα ∈ Q such that kα◦wα ≤ f and k−1

α (0) ≤

8



δα. Beause of the alternative form of the Q-CCCQ, (wα, k−1
α (0)) ∈ epiσA, that

is, σA(wα) ≤ k−1
α (0) ≤ δα. Since σA is w∗-lsc, σA(w0) ≤ lim infα σA(wα) ≤

lim infα δα = δ0. Put k0 as follows:

k0(t) =

{
inf{f(x) | ⟨w0, x⟩ ≥ t} t > σA(w0),
−∞ otherwise,

It is clear that k0 is non-decreasing and k0◦w0 ≤ f . Since (ii) holds, k−1
0 (0) =

σA(w0). By using Lemma 1, clk0 ∈ Q and clk−1
0 (0) = k−1

0 (0) = σA(w0). Also,
we can check clk0◦w0 ≤ k0◦w0 ≤ f and clk−1

0 (0) ≤ δ0, that is, K is w∗-closed.

By using Theorem 3, we show some sufficient conditions for the Q-CCCQ.
At first we show the following result in finite dimensional Euclidean space.

Corollary 1. Let X = Rn and A be compact, then {f(x) ≤ 0} satisfies the
Q-CCCQ.

proof. Because of Theorem 3, we only prove that for all v ∈ X∗ \ {0} and
t > σA(v), inf{f(x) | ⟨v, x⟩ ≥ t} > 0. Assume that there exist v0 ∈ X∗ \ {0}
and t0 > σA(v0) such that inf{f(x) | ⟨v0, x⟩ ≥ t0} ≤ 0. If inf{f(x) | ⟨v0, x⟩ ≥
t0} < 0, then there exists x0 ∈ Rn such that ⟨v0, x0⟩ ≥ t0 > σA(v0) and
f(x) < 0. This is a contradiction since x ∈ A.

We assume that inf{f(x) | ⟨v0, x⟩ ≥ t0} = 0. Since A is compact, there
exists x0 ∈ A such that ⟨v0, x0⟩ = supx∈A ⟨v0, x⟩ = σA(v0). Also, M ≥ 0 such
that A ⊂ {x ∈ Rn | ∥x0−x∥ ≤ M −1}. Because inf{f(x) | ⟨v0, x⟩ ≥ t0} = 0,
there exists {xk} ⊂ Rn such that ⟨v0, xk⟩ ≥ t0 and f(xk) ≤ 1

k
. If {xk}

is bounded, there exist {xki
} ⊂ {xk} such that xki

converges to some x̄.
Then, ⟨v0, x̄⟩ ≥ t0 and f(x̄) ≤ lim inf f(xki

) ≤ 0, that is, x̄ ∈ A. This is a
contradiction. If {xk} is not bounded, for large enough k ∈ N, xk /∈ {x ∈
Rn | ∥x0 − x∥ ≤ M}. Put yk = M

∥xk−x0∥(xk − x0) + x0, then ∥x0 − yk∥ = M

and yk ∈ [x0, xk]. Since f is quasiconvex, f(yk) ≤ max{f(x0), f(xk)} = 1
k
.

Because {yk} ⊂ {x ∈ Rn | ∥x0 − x∥ ≤ M}, there exist {yki
} ⊂ {yk} and

y0 ∈ Rn such that yki
converges to y0. However, ∥x0 − y0∥ = M and f(y0) ≤

lim inf f(yki
) ≤ 0, this is a contradiction.

Next, we show a sufficient condition for the Q-CCCQ in Hilbert space by
using the Gâteaux differential.

Corollary 2. Let X be a Hilbert space, f be a Gâteaux differentiable qua-
sionvex function, infx∈∂A ∥f ′(x)∥ > 0 and f ′(·) is uniformly continuous on
∂A, then {f(x) ≤ 0} satisfies the Q-CCCQ.
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proof. Assume that there exist v0 ∈ X \ {0} and t0 > σA(v0) such that
inf{f(x) | ⟨v0, x⟩ ≥ t} ≤ 0. If inf{f(x) | ⟨v0, x⟩ ≥ t} < 0, there exists
x0 ∈ X such that f(x0) < 0 and ⟨v0, x⟩ > σA(v0), this is a contradiction.
If inf{f(x) | ⟨v0, x⟩ ≥ t} = 0, there exists {xk} ⊂ X such that for all
k ∈ N, ⟨v0, xk⟩ ≥ t and 0 < f(xk) ≤ 1

k
. Since X is a Hilbert space and

A is a closed convex set, there exists the metric projection of xk onto A,
denoted by PA(xk) ∈ ∂A. Because of the continuity of f , we can check that
f(PA(xk)) = 0. Since ⟨v0, xk⟩ ≥ t > σA(v0) and PA(xk) ∈ A, there exists
M > 0 such that ∥xk−PA(xk)∥ ≥ M for all k ∈ N. Since PA(xk) is the metric
projection and f is differentiable quasiconvex, there exists λk > 0 such that
λkf

′(PA(xk)) = xk − PA(xk) for all k ∈ N. Put ε = 1
2
infx∈∂A ∥f ′(x)∥ > 0,

then there exists δ > 0 such that for all x ∈ ∂A and y ∈ X with ∥x− y∥ < δ,
∥f ′(x) − f ′(y)∥ < ε because of the uniformly continuity of the Gâteaux
differenrial of f . Then, for all k ∈ N and y ∈ X with ∥PA(xk) − y∥ < δ,

f ′
(

y,
xk − PA(xk)

∥xk − PA(xk)∥

)
= f ′

(
y,

λkf
′(PA(xk))

∥xk − PA(xk)∥

)
=

⟨
f ′(y),

λkf
′(PA(xk))

∥xk − PA(xk)∥

⟩
=

λk

∥xk − PA(xk)∥
⟨f ′(y), f ′(PA(xk))⟩

≥ λk

∥xk − PA(xk)∥
(∥f ′(PA(xk))∥ − ε)∥f ′(PA(xk))∥

≥ λk∥f ′(PA(xk))∥
∥xk − PA(xk)∥

ε

= ε.

Put M̄ = min{δ,M} > 0, then f(xk) ≥ εM̄ for all k ∈ N since f is quasicon-
vex and directional derivative is positive. This is a contradiction since f(xk)
converges to 0.

4. Necessary condition of the Q-CCCQ

In this section, we investigate a necessary condition of the Q-CCCQ.
Indeed, the Q-BCQ is a necessary condition of the Q-CCCQ. In convex pro-
gramming, the BCQ is a necesarry condition of FM, hence we show a similar
result in the following theorem.
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Theorem 4. Assume that A = {x ∈ X | ∀i ∈ I, gi(x) ≤ 0} is nonempty. If
the family {gi | i ∈ I} satisfies the Q-CCCQ w.r.t. {(kt, wt) | t ∈ T}, then it
satisfies the Q-BCQ w.r.t. {(kt, wt) | t ∈ T} at for all x ∈ A. The converse
implication also holds if domδ∗A ⊂

∪
x∈A NA(x).

proof. Assume that the family {gi | i ∈ I} satisfies the Q-CCCQ w.r.t.
{(kt, wt) | t ∈ T} and x ∈ A. It is clear that NA(x) ⊃ coneco

∪
t∈T (x){wt},

hence we only prove the inverse inclusion. If x ∈ intS, then NA(x) = {0},
and this completes the proof. So we want to show that if x ∈ A \ intA
and x∗ ∈ NA(x) \ {0} then x∗ ∈ coneco

∪
t∈T (x){wt}. Because x∗ ∈ NA(x),

δ∗A(x∗) = ⟨x∗, x⟩. By using the assumption, the Q-CCCQ, there exists λ ∈
R(T )

+ , δ ∈ R(T ), and r ≥ 0 such that δt = 0 for all t ∈ T with λt = 0,
δt ≥ k−1

t (0) for all t ∈ T with λt ̸= 0, and

(x∗, ⟨x∗, x⟩) =
∑
t∈T

λt(wt, δt) + (0, r).

Because δ∗A(x∗) = ⟨x∗, x⟩, we can prove that for all t ∈ T with λt ̸= 0,
δt = k−1

t (0) and r = 0, that is,

(x∗, ⟨x∗, x⟩) =
∑
t∈T

λt(wt, k
−1
t (0)).

Since x ∈ A, 0 ≥ gi(x) ≥ kt(⟨wt, x⟩) for all t ∈ T , this implies that
k−1

t (0) ≥ ⟨wt, x⟩. Then, for all t ∈ T with λt ̸= 0, k−1
t (0) = ⟨wt, x⟩, be-

cause
∑

t∈T λt ⟨wt, x⟩ = ⟨x∗, x⟩ =
∑

t∈T λtk
−1
t (0). Therefore, for all t ∈ T

with λt ̸= 0, t ∈ T (x) that is, x∗ ∈ coneco
∪

t∈T (x){wt}.
Conversely, assume that domδ∗A ⊂

∪
x∈A NA(x). We need to show only

the alternative form of the Q-CCCQ,

epiδ∗A ⊂ cone co
∪
t∈T

{(wt, δ) ∈ X∗ × R | k−1
t (0) ≤ δ} + {0} × [0,∞)

holds. Let (y∗, α) ∈ epiδ∗A \ {0}. Since y∗ ∈ domδ∗A ⊂
∪

x∈A NA(x), there
exists x0 ∈ A such that y∗ ∈ NA(x0). The definition of the Q-BCQ implies

that there exists λ ∈ R(T (x0))
+ such that y∗ =

∑
t∈T (x0) λtwt. By the definition

of T (x0), kt(⟨wt, x0⟩) = 0 and k−1
t (0) = ⟨wt, x0⟩ for each t ∈ T (x0). Also,

α ≥ ⟨y∗, x0⟩ =
∑

t∈T (x0)

λt ⟨wt, x0⟩ =
∑

t∈T (x0)

λtk
−1
t (0).
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Put r = α −
∑

t∈T (x0) λtk
−1
t (0) then r ≥ 0, and

(y∗, α) =
∑

t∈T (x0)

λt(wt, k
−1
t (0)) + (0, r),

that is, (y∗, α) ∈ cone co
∪

t∈T{(wt, δ) ∈ X∗×R | k−1
t (0) ≤ δ}+{0}× [0,∞).

This completes the proof.

Because of Theorem 4, the Q-CCCQ is a sufficient condition for the Q-
BCQ. Hence, some sufficient conditions for the Q-CCCQ in Section 3 are
also sufficient conditions for the Q-BCQ, and an optimality condition by
using subdifferential in [9] is valid for quaiconvex progrmming problem which
satisfies those sufficient conditions.

5. Comparisons of constraint qualifications

In this section, we investigate relations between some constraint qualifi-
cations for quasiconvex programming. We investigated the relations between
the Q-BCQ, the Q-BCQ relative to a closed convex set C, and the strong
conical hull intersection property (the strong CHIP).

Let C be a closed convex set in X. The family {gi | i ∈ I} is said to
satisfy the Q-BCQ w.r.t. {(kt, wt) | t ∈ T} relative to C at x ∈ C ∩ A if

NC∩A(x) = NC(x) + coneco
∪

t∈T (x)

{wt}.

Theorem 5. The family {gi | i ∈ I} satisfies the Q-BCQ w.r.t. {(kt, wt) |
t ∈ T} relative to C at x ∈ C ∩ A if and only if the family {δA, gi | i ∈ I}
satisfies the Q-BCQ w.r.t. {(kt, wt) | t ∈ T ′} at x, where T ′ = T ∪ {(i0, w) |
w ∈ domδ∗C}.

proof. Take i0 /∈ I and set gi0 = δC . Writing I ′ := I ∪ {i0}, the family
{δC , gi | i ∈ I} becomes {gi | i ∈ I ′} such that C ∩ A = {y ∈ X | ∀i ∈
I ′, gi(y) ≤ 0}. Also, {(kw, w) | w ∈ domδ∗C , ∀a ≤ δ∗C(w), kw(a) = 0,∀a >
δ∗C(w), kw(a) = ∞} is a generator of δC and T ′(x) = T (x) ∪ {(i0, w) | w ∈
domδ∗C , ⟨w, x⟩ = δ∗C(w)}, where for x ∈ C ∩ A. Then,

NC(x) + coneco
∪

t∈T (x)

{wt} = {w | (i0, w) ∈ T ′(x)} + coneco
∪

t∈T (x)

{wt}

= coneco
∪

t∈T ′(x)

{wt}.
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This completes the proof.

A family of closed convex sets {Ci | i ∈ I} is said to have the storong
conical hull intersection property (the storong CHIP) at x ∈ ∩i∈ICi if

N∩i∈ICi
(x) =

∑
i∈I

NCi
(x).

Theorem 6. Let x ∈ C∩A, and suppose that the family {gi | i ∈ I} satisfies
the Q-BCQ w.r.t. {(kt, wt) | t ∈ T} at x. Then {C,A} has the strong CHIP
at x if and only if the {gi | i ∈ I} satisfies the Q-BCQ w.r.t. {(kt, wt) | t ∈ T}
relative to C at x.

proof. Assume that {C, A} has the strong CHIP at x The definition of
{C, A} has the strong CHIP at x is that NC∩A(x) = NC(x) + NA(x). By the
assumption, NA(x) = coneco

∪
t∈T (x){wt}. Therefore, {gi | i ∈ I} satisfies

the Q-BCQ w.r.t. {(kt, wt) | t ∈ T} relative to C at x. The converse is
similar.

Theorem 4, 5, and 6 are similar results in [6] which is concerend with the
BCQ and the other constraint qualifications.
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