Trace identity for parabolic elements of $S L(2, \mathbb{C})$, II

Dedicated to Professor Hiroshige Shiga on the occassion of his sixtieth birthday

By

Toshihiro NAKANISHI*

Abstract

Let \mathcal{P} be the set of all parabolic elements in $S L(2, \mathbb{C})$ with trace -2 . If P_{1} and P_{2} in \mathcal{P} do not commute, then the complex lambda length between P_{1} and P_{2} is the trace of a matrix $Q \in S L(2, \mathbb{C})$ satisfying $Q^{2}=-P_{1} P_{2}$, which is determined uniquely up to sign. For each n-gon $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ in \mathcal{P} consider the tuples $\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$ with $Q_{i}^{2}=-P_{i} P_{i+1}$ with $P_{n+1}=P_{1}$. The tuples are classified into tuples of $(-)$-system and tuples of $(+)$-system. Suppose that $\left(P_{1}, \ldots, P_{n}\right)$ is divided into subpolygons $\left(P_{1}, P_{2}, \ldots, P_{m}\right)$ and ($P_{1}, P_{m}, P_{m+1}, \ldots, P_{n}$), and R_{m} and $S_{m} \in S L(2, \mathbb{C})$ with $R_{m}^{2}=-P_{m} P_{1}, S_{m}^{2}=-P_{1} P_{m}$ and $\operatorname{tr} R_{m}=\operatorname{tr} S_{m}$ are given. We show that if $\left(Q_{1}, \ldots, Q_{m-1}, R_{m}\right)$ and ($S_{m}, Q_{m}, \ldots, Q_{n}$) are (- -systems, then $\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$ is also a (- -system.

§ 1. Introduction and the main result

This paper is a continuation of [4] which established the "ideal Ptolemy identity" for complex λ-lengths introduced in [2] and [3] following Penner's paper [5]. We define

$$
\mathcal{P}=\{P \in S L(2, \mathbb{C}): P \text { is parabolic with } \operatorname{tr} P=-2\}
$$

Note that \mathcal{P} is the conjugacy class of

$$
\left(\begin{array}{rr}
-1 & -1 \tag{1.1}\\
0 & -1
\end{array}\right)
$$

2000 Mathematics Subject Classification(s): 30F35, 32G15
Key Words: Trace identities, Parabolic transformations
This work was supported by JSPS KAKENHI Grant Number 22540191
*Department of Mathematics, Shimane University, Matsue 606-8502, Japan.
e-mail: tosihiro@riko.shimane-u.ac.jp
and hence two matrices in \mathcal{P} are conjugate to each other in $S L(2, \mathbb{C})$. If two elements P_{1} and $P_{2} \in \mathcal{P}$ do not commute, then there exists a square root Q of $-P_{1} P_{2}$, that is, a matrix in $S L(2, \mathbb{C})$ such that

$$
\begin{equation*}
Q^{2}=-P_{1} P_{2} . \tag{1.2}
\end{equation*}
$$

Q is determined up to sign, satisfies $\operatorname{tr}\left(P_{1} P_{2}\right)=2-(\operatorname{tr} Q)^{2}$ and also

$$
\begin{equation*}
P_{2}=Q^{-1} P_{1} Q, \text { and } Q^{-1} P_{1} \text { and } Q^{-1} P_{2} \text { are elliptic of order } 2 . \tag{1.3}
\end{equation*}
$$

(Here the order of an elliptic A in $S L(2, \mathbb{C})$ means the order of the Möbius transformation $A(z)$.) In order to see this, it suffices to consider the normalized pair

$$
P_{1}=\left(\begin{array}{cc}
-1 & -1 \\
0 & -1
\end{array}\right), P_{2}=\left(\begin{array}{cc}
-1 & 0 \\
\lambda & -1
\end{array}\right)
$$

with $\lambda \neq 0$. Then Q must be of the form

$$
Q= \pm\left(\begin{array}{cc}
\sqrt{\lambda} & -1 / \sqrt{\lambda} \\
\sqrt{\lambda} & 0
\end{array}\right) .
$$

With this we can verify (1.3) and also

$$
\begin{equation*}
\operatorname{tr} Q \neq 0 . \tag{1.4}
\end{equation*}
$$

In what follows the diagram

$$
\begin{equation*}
P_{1} \xrightarrow{Q} P_{2} \tag{1.5}
\end{equation*}
$$

means that P_{1} and $P_{2} \in \mathcal{P}$ do not commute and $Q^{2}=-P_{1} P_{2}$.
Definition 1.1. A cycle $\left(P_{1}, P_{2}, \ldots, P_{n}\right), P_{n+1}=P_{1}$, of elements in \mathcal{P} is called an n-gon if P_{i} and P_{j} do not commute for $i \neq j$. If, in particular, $n=3$ or 4 , then it is called a triangle or quadrangle, respectively. Two n-gons $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ and $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ are congruent if there exists $T \in S L(2, \mathbb{C})$ such that $R_{j}=T^{-1} P_{j} T$ for $j=1, \ldots, n$.

Let $\left(P_{1}, \ldots, P_{n}\right)$ be an n-gon in \mathcal{P}. Then there exists a square root Q_{i} of $-P_{i} P_{i+1}$ for $i=1,2, \ldots, n$. Since from (1.3)

$$
P_{2}=Q_{1}^{-1} P_{1} Q_{1}, P_{3}=Q_{2}^{-1} P_{2} Q_{2}, \ldots, P_{1}=Q_{n}^{-1} P_{n} Q_{n},
$$

$Q_{1} Q_{2} \cdots Q_{n}$ commutes with P_{1} and hence $\operatorname{tr} Q_{1} Q_{2} \cdots Q_{n}$ is either -2 or +2 .
Definition 1.2. $\quad\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$ is called a (-)-system if $\operatorname{tr} Q_{1} Q_{2} \cdots Q_{n}=-2$ and a $(+)$-system if $\operatorname{tr} Q_{1} Q_{2} \cdots Q_{n}=+2$.

Let $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be an n-gon and Q_{j} be such that $P_{j} \xrightarrow{Q_{j}} P_{j+1}$ for $j=1, \ldots, n$. If $2<m<n$, then the "diagonal" $P_{1} P_{m}$ divides the n-gon into an m-gon ($P_{1}, P_{2}, \ldots, P_{m}$) and an $(n-m+1)$-gon $\left(P_{1}, P_{m}, P_{m+1}, \ldots, P_{n}\right)$. Choose R_{m} and $S_{m} \in S L(2, \mathbb{C})$ such that

$$
P_{m} \xrightarrow{R_{m}} P_{1}, \quad P_{1} \xrightarrow{S_{m}} P_{m},
$$

and that $\operatorname{tr} R_{m}=\operatorname{tr} S_{m}$. So $S_{m}=P_{1} R_{m} P_{1}^{-1}$. The main objective of this paper is to prove

Theorem 1.1. If two among $\left(Q_{1}, Q_{2}, \ldots, Q_{m-1}, R_{m}\right),\left(S_{m}, Q_{m}, Q_{m+1}, \ldots, Q_{n}\right)$ and $\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$ are (-)-systems, then so is the rest.

In [4] we showed this theorem for $n=4$ and $m=3$. In this case, if both of $\left(Q_{1}, Q_{2}, R_{3}\right)$ and ($\left.S_{3}, Q_{3}, Q_{4}\right)$ are (-)-systems, then $\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}\right)$ is also a (-)system. We choose R_{2} and S_{2} so that

$$
P_{2} \xrightarrow{R_{2}} P_{4}, \quad P_{4} \xrightarrow{S_{2}} P_{2},
$$

and that $\operatorname{tr} R_{2}=\operatorname{tr} S_{2}$. See Figure 1. If $\left(Q_{1}, R_{2}, Q_{4}\right)$ is a $(-)$-system, then from Theorem 1.1, $\left(Q_{2}, Q_{3}, S_{2}\right)$ is also a $(-)$-system. In this situation the following "ideal Ptolemy identity" holds ([4, Theorem 0.1])

$$
\begin{equation*}
\operatorname{tr} R_{2} \operatorname{tr} R_{3}=\operatorname{tr} Q_{1} \operatorname{tr} Q_{3}+\operatorname{tr} Q_{2} \operatorname{tr} Q_{4} \tag{1.6}
\end{equation*}
$$

Figure 1. A decomposition of a quadrangle into triangles

Theorem 1.1 follows immediately from
Lemma 1.1. With the notation as above the following identity holds:

$$
\begin{equation*}
\left(\operatorname{tr} Q_{1} Q_{2} \cdots Q_{m-1} R_{m}\right)\left(\operatorname{tr} S_{m} Q_{m} \cdots Q_{n}\right)=-2 \operatorname{tr} Q_{1} Q_{2} \cdots Q_{n} \tag{1.7}
\end{equation*}
$$

We prove (1.7) in Section 3.

Remark 1.1. Let \bar{S} be an oriented closed surface of genus g and $P=\left\{x_{1}, \ldots, x_{n}\right\}$ a non-empty set of distinct points on \bar{S}. Let $S=\bar{S}-P$. We assume that $2 g-2+n>0$. Let $\mathcal{R}(S)$ denote the space of all conjugacy classes of faithful representations $\rho: \pi_{1}(S) \rightarrow$ $S L(2, \mathbb{C})$ such that if δ is the homotopy class of a loop which goes around a puncture x_{j} once, then $\rho(\delta) \in \mathcal{P}$. Let $\Delta=\left\{c_{1}, c_{2}, \ldots, c_{d}\right\}$, where $d=6 g-6+3 n$, be an arbitrary ideal triangulation of S (see [5]). Let $c=c_{i} \in \Delta$ and suppose that x_{j} and x_{k} are the end points of c. Choose a point y of c. We define δ_{1} to be the loop which goes from y to x_{j} along c and turns around x_{j} in the positive direction and goes back to y along c. We define δ_{2} in the same way for x_{k}. Choose an arc δ_{0} from the base point of $\pi_{1}(S)$ to y. Let $[\rho] \in \mathcal{R}(S)$. Then homotopy classes of $\delta_{0} \delta_{1} \delta_{0}^{-1}$ and $\delta_{0} \delta_{2} \delta_{0}^{-1}$ determine two elements $P_{1}=\rho\left(\delta_{0} \delta_{1} \delta_{0}^{-1}\right)$ and $P_{2}=\rho\left(\delta_{0} \delta_{2} \delta_{0}^{-1}\right)$ in \mathcal{P}. Since ρ is faithful, P_{1} and P_{2} do not commute. Choose Q_{i} so that $P_{1} \xrightarrow{Q_{i}} P_{2}$. The value

$$
\lambda_{i}=\lambda\left(c_{i}, \rho\right)=\operatorname{tr} Q_{i}
$$

depends only on the class [ρ] and the homotopy class of c_{i}. This value λ_{i} is called in [2] and [3] the complex λ-length of c_{i} associated to $[\rho]$. The positive branch of λ_{i} restricted to the Fuchsian representation space of $\pi_{1}(S)$ coincides with the λ-length (for a special choice of horocycles around punctures) introduced by Penner [5].

Since λ_{i} is determined up to sign, the tuple $\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ defines a map $\underline{\Lambda}_{\Delta}: \mathcal{R}(S) \rightarrow$ $(\mathbb{C} /\{ \pm 1\})^{d}$. If it is restricted to, for example, the subspace $\mathcal{Q} \mathcal{F}$ of quasifuchsian representations, which is simply connected, the map $\underline{\Lambda}_{\Delta}$ can be lifted to a holomorphic injection Λ_{Δ} of $\mathcal{Q} \mathcal{F}$ into \mathbb{C}^{d}, and it is possible to choose a lift Λ_{Δ} so that $\lambda_{1}, \ldots, \lambda_{d}$ satisfy the condition that $\left(Q_{i}, Q_{j}, Q_{k}\right)$ are $(-)$-systems for all triangles $\left(c_{i}, c_{j}, c_{k}\right)$ in Δ, see [3] for details. By using (1.6) we can show just as in [5] that, for two ideal triangulations Δ_{1} and Δ_{2}, the coordinate change between $\Lambda_{\Delta_{1}}(\mathcal{Q F})$ and $\Lambda_{\Delta_{2}}(\mathcal{Q F})$ is a rational transformation. Thus the faithful representation of the mapping class group of S by a group of rational transformations for its action on the decorated Teichmüller space ([5]) is naturally extended to its action on $\mathcal{Q F}$.

§ 2. Trace identities

We shall use repeatedly the following basic trace identities which hold for matrices in $S L(2, \mathbb{C})$ (see $[1,3.4])$:

$$
\begin{gather*}
\operatorname{tr} Y^{-1} X Y=\operatorname{tr} X \tag{2.1}\\
\operatorname{tr} X Y+\operatorname{tr} X Y^{-1}=\operatorname{tr} X \operatorname{tr} Y \tag{2.2}
\end{gather*}
$$

From (2.1), $\operatorname{tr} X_{1} X_{2} \cdots X_{n}=\operatorname{tr} X_{\sigma(1)} X_{\sigma(2)} \cdots X_{\sigma(n)}$ for any cyclic permutation σ on $\{1,2, \ldots, n\}$. So (2.2) yields

$$
\begin{equation*}
\operatorname{tr} X Y Z=\operatorname{tr} Y \operatorname{tr} X Z-\operatorname{tr} X Y^{-1} Z \tag{2.3}
\end{equation*}
$$

for X, Y and $Z \in S L(2, \mathbb{C})$. The following trace identities are proved in [2, Proposition 1.1] and [4, Lemma 1.3], respectively.

Lemma 2.1. If A, B, C and $D \in S L(2, \mathbb{C})$ are such that $\operatorname{tr} A B C D=-2$, then

$$
\begin{align*}
& (\operatorname{tr} A B+\operatorname{tr} C D)(\operatorname{tr} B C+\operatorname{tr} A D) \\
& =(\operatorname{tr} A+\operatorname{tr} B C D)(\operatorname{tr} C+\operatorname{tr} A B D)+(\operatorname{tr} B+\operatorname{tr} A C D)(\operatorname{tr} D+\operatorname{tr} A B C) \tag{2.4}
\end{align*}
$$

Lemma 2.2. Let $X, Y_{1}, \ldots, Y_{n+1} \in S L(2, \mathbb{C})$, where $n \geq 1$. If $\operatorname{tr} Y_{1}=\cdots=\operatorname{tr} Y_{n+1}$, then

$$
\begin{align*}
& \sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n}} \operatorname{tr} X Y_{1}^{\epsilon_{1}} Y_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots Y_{n}^{\epsilon_{n-1}+\epsilon_{n}} Y_{n+1}^{\epsilon_{n}+1} \\
= & \sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n}} \operatorname{tr} X Y_{1}^{\epsilon_{1}+1} Y_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots Y_{n}^{\epsilon_{n-1}+\epsilon_{n}} Y_{n+1}^{\epsilon_{n}} . \tag{2.5}
\end{align*}
$$

Lemma 2.3. Let $X \in S L(2, \mathbb{C})$ and $P_{1}, \ldots, P_{n} \in \mathcal{P}$ with $n \geq 2$. Then

$$
\begin{align*}
& \sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}} \operatorname{tr} X P_{1}^{\epsilon_{1}} P_{2}^{\epsilon_{2}} \cdots P_{n}^{\epsilon_{n}} \\
= & \sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n-1}+1} \operatorname{tr} X P_{1}^{1+\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}+\epsilon_{n}} . \tag{2.6}
\end{align*}
$$

Proof. If $n=2$, then by using (2.3) and $\operatorname{tr} P_{1}=\operatorname{tr} P_{2}=-2$, we can deform the right had side of (2.6) to the left hand side as follows:

$$
\begin{aligned}
& \quad \sum_{\epsilon_{1}, \epsilon_{2} \in\{0,1\}}(-1)^{\epsilon_{1}+1} \operatorname{tr} X P_{1}^{1+\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}}=-\operatorname{tr} X P_{1}+\operatorname{tr} X P_{1}^{2} P_{2}-\operatorname{tr} X P_{1} P_{2}+\operatorname{tr} X P_{1}^{2} P_{2}^{2} \\
& = \\
& = \\
& =-\operatorname{tr} X P_{1}+\left(-2 \operatorname{tr} X P_{1}-\operatorname{tr} X P_{2}-3 \operatorname{tr} X P_{1} P_{2}\right. \\
& \left.\quad \quad+\left(-2\left(-2 \operatorname{tr} X P_{2}\right)-\operatorname{tr} X P_{1} P_{2} P_{2}-\operatorname{tr} X P_{2}\right)+2 \operatorname{tr} X P_{1}+\operatorname{tr} X P_{1}^{2} P_{2}-\operatorname{tr} X P_{1}^{2}\right) \\
& = \\
& \\
& \quad \operatorname{tr} X+\operatorname{tr} X P_{1}+\operatorname{tr} X P_{2}+\operatorname{tr} X P_{1} P_{2} .
\end{aligned}
$$

We prove (2.6) for $n>2$ by induction. We divide the sum in the right hand side into the sum for $\epsilon_{1}=0$ and that for $\epsilon_{1}=1$. Then it equals

$$
\begin{aligned}
& \sum_{\epsilon_{2}, \ldots, \epsilon_{n} \in\{0,1\}}(-1)^{\epsilon_{2}+\cdots+\epsilon_{n-1}+1} \operatorname{tr} X P_{1} P_{2}^{-1} P_{2}^{1+\epsilon_{2}} P_{3}^{\epsilon_{2}+\epsilon_{3}} \cdots P_{n}^{\epsilon_{n-1}+\epsilon_{n}} \\
& -\sum_{\epsilon_{2}, \ldots, \epsilon_{n} \in\{0,1\}}(-1)^{\epsilon_{2}+\cdots+\epsilon_{n-1}+1} \operatorname{tr} X P_{1}^{2} P_{2}^{1+\epsilon_{2}} P_{3}^{\epsilon_{2}+\epsilon_{3}} \cdots P_{n}^{\epsilon_{n-1}+\epsilon_{n}} .
\end{aligned}
$$

We assume that (2.6) holds for $n-1$ and we apply it to P_{2}, \ldots, P_{n} and X replaced by $X P_{1} P_{2}^{-1}$ and $X P_{1}^{2}$. Then the last term equals

$$
\begin{equation*}
\sum_{\epsilon_{2}, \ldots, \epsilon_{n} \in\{0,1\}} \operatorname{tr} X P_{1} P_{2}^{-1} P_{2}^{\epsilon_{2}} \cdots P_{n}^{\epsilon_{n}}-\sum_{\epsilon_{2}, \ldots, \epsilon_{n} \in\{0,1\}} \operatorname{tr} X P_{1}^{2} P_{2}^{\epsilon_{2}} \cdots P_{n}^{\epsilon_{n}} \tag{2.7}
\end{equation*}
$$

Let $Y=P_{2}^{\epsilon_{2}} P_{3}^{\epsilon_{3}} \cdots P_{n}^{\epsilon_{n}}$. From (2.3) $\operatorname{tr} X P_{1} P_{2}^{-1} Y=-\operatorname{tr} X P_{1} P_{2} Y-2 \operatorname{tr} X P_{1} Y$ and $\operatorname{tr} X P_{1}^{2} Y=-2 \operatorname{tr} X P_{1} Y-\operatorname{tr} X Y$. Then we have with $Z=P_{3}^{\epsilon_{3}} \cdots P_{n}^{\epsilon}$

$$
\begin{aligned}
& \sum_{\epsilon_{2} \in\{0,1\}} \operatorname{tr} X P_{1} P_{2}^{-1}\left(P_{2}^{\epsilon_{2}} Z\right)-\sum_{\epsilon_{2} \in\{0,1\}} \operatorname{tr} X P_{1}^{2}\left(P_{2}^{\epsilon_{2}} Z\right) \\
& =-\sum_{\epsilon_{2} \in\{0,1\}} \operatorname{tr} X P_{1} P_{2} P_{2}^{\epsilon_{2}} Z+\sum_{\epsilon_{2} \in\{0,1\}} \operatorname{tr} X P_{2}^{\epsilon_{2}} Z \\
& =-\operatorname{tr} X P_{1} P_{2} Z-\operatorname{tr} X P_{1} P_{2}^{2} Z+\operatorname{tr} X Z+\operatorname{tr} X P_{2} Z \\
& =-\operatorname{tr} X P_{1} P_{2} Z-\left(-2 \operatorname{tr} X P_{1} P_{2} Z-\operatorname{tr} X P_{1} Z\right)+\operatorname{tr} X Z+\operatorname{tr} X P_{2} Z \\
& =\operatorname{tr} X Z+\operatorname{tr} X P_{1} Z+\operatorname{tr} X P_{2} Z+\operatorname{tr} X P_{1} P_{2} Z .
\end{aligned}
$$

Summing the last term over $\epsilon_{3}, \ldots, \epsilon_{n}$, we obtain the left hand side of (2.6). Thus (2.6) holds for all n.

Lemma 2.4. Let $P_{1}, P_{2} \in \mathcal{P}$ and $X, Y \in S L(2, \mathbb{C})$. Then
(2.8) $\sum_{\epsilon_{1}, \epsilon_{2} \in\{0,1\}} \operatorname{tr} P_{2}^{\epsilon_{1}} P_{1}^{\epsilon_{2}} Y \cdot \sum_{\epsilon_{3}, \epsilon_{4} \in\{0,1\}} \operatorname{tr} P_{1}^{\epsilon_{3}} P_{2}^{\epsilon_{4}} X=\left(\operatorname{tr} P_{1} P_{2}-2\right) \sum_{\epsilon_{1}, \epsilon_{2} \in\{0,1\}} \operatorname{tr} P_{1}^{\epsilon_{1}} Y P_{2}^{\epsilon_{2}} X$.

Proof. We can substitute $A=P_{1}, B=P_{1}^{-1} X P_{1}, C=P_{1}^{-1} X^{-1} Y^{-1}$ and $D=Y P_{2}$ into (2.4), because $\operatorname{tr} A B C D=\operatorname{tr} P_{2}=-2$. We have

$$
\begin{aligned}
& \operatorname{tr} A+\operatorname{tr} B C D=\operatorname{tr} P_{1}+\operatorname{tr} P_{1}^{-1} P_{2} \\
& \quad=\operatorname{tr} P_{1}+\left(-2 \operatorname{tr} P_{1}-\operatorname{tr} P_{1} P_{2}\right)=-\operatorname{tr} P_{1}-\operatorname{tr} P_{1} P_{2}
\end{aligned}
$$

Likewise we obtain

$$
\begin{aligned}
& \operatorname{tr} A+\operatorname{tr} B C D=2-\operatorname{tr} P_{1} P_{2}, \quad \operatorname{tr} B+\operatorname{tr} A C D=-\operatorname{tr} X-\operatorname{tr} X P_{2}, \\
& \operatorname{tr} C+\operatorname{tr} A B D=\operatorname{tr} X P_{1} Y+\operatorname{tr} X P_{1} Y P_{2}, \operatorname{tr} D+\operatorname{tr} A B C=\operatorname{tr} Y+\operatorname{tr} Y P_{2}, \\
& \operatorname{tr} A B+\operatorname{tr} C D=-\operatorname{tr} X P_{1}-\operatorname{tr} X P_{1} P_{2}, \quad \operatorname{tr} B C+\operatorname{tr} A D=\operatorname{tr} P_{1} Y+\operatorname{tr} P_{1} Y P_{2} .
\end{aligned}
$$

Therefore (2.4) in this case equals

$$
\begin{align*}
& \left(\operatorname{tr} X P_{1}+\operatorname{tr} X P_{1} P_{2}\right)\left(\operatorname{tr} P_{1} Y+\operatorname{tr} P_{1} Y P_{2}\right) \\
& =\left(\operatorname{tr} P_{1} P_{2}-2\right)\left(\operatorname{tr} X P_{1} Y+\operatorname{tr} X P_{1} Y P_{2}\right)+\left(\operatorname{tr} X+\operatorname{tr} X P_{2}\right)\left(\operatorname{tr} Y+\operatorname{tr} Y P_{2}\right) \tag{2.9}
\end{align*}
$$

Substituting $P_{1}^{-1} Y$ to Y in this equation, we obtain

$$
\begin{align*}
& \left(\operatorname{tr} X P_{1}+\operatorname{tr} X P_{1} P_{2}\right)\left(\operatorname{tr} Y+\operatorname{tr} Y P_{2}\right) \\
& =\left(\operatorname{tr} P_{1} P_{2}-2\right)\left(\operatorname{tr} X Y+\operatorname{tr} X Y P_{2}\right)+\left(\operatorname{tr} X+\operatorname{tr} X P_{2}\right)\left(\operatorname{tr} P_{1}^{-1} Y+\operatorname{tr} P_{1}^{-1} Y P_{2}\right) . \\
& =\left(\operatorname{tr} P_{1} P_{2}-2\right)\left(\operatorname{tr} X Y+\operatorname{tr} X Y P_{2}\right) \\
& \quad \quad+\left(\operatorname{tr} X+\operatorname{tr} X P_{2}\right)\left(-2 \operatorname{tr} Y-\operatorname{tr} P_{1} Y-2 \operatorname{tr} Y P_{2}-\operatorname{tr} P_{1} Y P_{2}\right) . \tag{2.10}
\end{align*}
$$

By adding (2.9) and (2.10) we obtain (2.8).

§ 3. Proof of the main theorem

Let $\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ be an n-gon in \mathcal{P}, where $n \geq 4$, and $Q_{i} \in S L(2, \mathbb{C})$ be such that $P_{i} \xrightarrow{Q_{i}} P_{i+1}$ for $i=1,2, \ldots, n$.

Lemma 3.1.

$$
\begin{equation*}
\operatorname{tr} Q_{1} \operatorname{tr} Q_{2} \cdots \operatorname{tr} Q_{n} \operatorname{tr} Q_{1} \cdots Q_{n}=\sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}} 2 \operatorname{tr} P_{1}^{\epsilon_{1}} P_{2}^{\epsilon_{2}} \cdots P_{n}^{\epsilon_{n}} . \tag{3.1}
\end{equation*}
$$

Proof. By (2.2) we have with $X_{n-1}=Q_{1} \cdots Q_{n-1}$

$$
\operatorname{tr} Q_{n} \operatorname{tr} Q_{1} \cdots Q_{n}=\operatorname{tr} X_{n-1} Q_{n}^{2}+\operatorname{tr} X_{n-1} Q_{n} Q_{n}^{-1}=\operatorname{tr} X_{n-1} Q_{n}^{2}+\operatorname{tr} X_{n-1}
$$

and then with $X_{n-2}=Q_{1} \cdots Q_{n-2}$

$$
\begin{aligned}
& \operatorname{tr} Q_{n-1} \operatorname{tr} Q_{n} \operatorname{tr} Q_{1} \cdots Q_{n} \\
& =\left(\operatorname{tr} Q_{n}^{2} X_{n-2} Q_{n-1}^{2}+\operatorname{tr} Q_{n}^{2} X_{n-2}\right)+\left(\operatorname{tr} X_{n-2} Q_{n-1}^{2}+\operatorname{tr} X_{n-2}\right) \\
& =\sum_{\epsilon_{n-1}, \epsilon_{n} \in\{0,1\}} \operatorname{tr} X_{n-2} Q_{n-1}^{2 \epsilon_{n-1}} Q_{n}^{2 \epsilon_{n}} . .
\end{aligned}
$$

By proceeding in this manner we have

$$
\operatorname{tr} Q_{1} \operatorname{tr} Q_{2} \cdots \operatorname{tr} Q_{n} \operatorname{tr} Q_{1} \cdots Q_{n}=\sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}} \operatorname{tr} Q_{1}^{2 \epsilon_{1}} Q_{2}^{2 \epsilon_{2}} \cdots Q_{n}^{2 \epsilon_{n}}
$$

Thus

$$
\begin{aligned}
& \operatorname{tr} Q_{1} \operatorname{tr} Q_{2} \cdots \operatorname{tr} Q_{n} \operatorname{tr} Q_{1} \cdots Q_{n} \\
& =\sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}} \operatorname{tr}\left(-P_{1} P_{2}\right)^{\epsilon_{1}}\left(-P_{2} P_{3}\right)^{\epsilon_{2}} \cdots\left(-P_{n} P_{1}\right)^{\epsilon_{n}} \\
& =\sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}}(-1)^{\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n}} \operatorname{tr} P_{1}^{\epsilon_{n}+\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}+\epsilon_{n}}
\end{aligned}
$$

We divide the last sum into the sum for $\epsilon_{n}=0$ and the sum for $\epsilon_{n}=1$ and apply (2.5) to the second term by setting $X=P_{1}$ and $Y_{i}=P_{i}$ for $i=1, \ldots, n$. Then we obtain

$$
\begin{align*}
& \sum_{\epsilon_{1}, \ldots, \epsilon_{n-1} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n-1}} \operatorname{tr} P_{1}^{\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}} \\
& +\sum_{\epsilon_{1}, \ldots, \epsilon_{n-1} \in\{0,1\}}(-1)^{1+\epsilon_{1}+\cdots+\epsilon_{n-1}} \operatorname{tr} P_{1}^{1+\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}+1} \\
= & \sum_{\epsilon_{1}, \ldots, \epsilon_{n-1} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n-1}} \operatorname{tr} P_{1}^{\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}} \\
& +\sum_{\epsilon_{1}, \ldots, \epsilon_{n-1} \in\{0,1\}}(-1)^{1+\epsilon_{1}+\cdots+\epsilon_{n-1}} \operatorname{tr} P_{1}^{2+\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}} . \tag{3.2}
\end{align*}
$$

Let $Y=P_{2}^{\epsilon_{1}+\epsilon_{2}} \ldots P_{n}^{\epsilon_{n-1}}$. Then from (2.3)

$$
\operatorname{tr} P_{1}^{\epsilon_{1}} Y-\operatorname{tr} P_{1}^{2+\epsilon_{1}} Y=2 \operatorname{tr} P_{1}^{1+\epsilon_{1}} Y+2 \operatorname{tr} P_{1}^{\epsilon_{1}} Y
$$

Taking the sum over $\epsilon_{1}, \ldots, \epsilon_{n-1}$ we see that (3.2) equals

$$
\begin{aligned}
& \sum_{\epsilon_{1}, \ldots, \epsilon_{n-1} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n-1}} 2 \operatorname{tr} P_{1}^{1+\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}} \\
& +\sum_{\epsilon_{1}, \ldots, \epsilon_{n-1} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n-1}} 2 \operatorname{tr} P_{1}^{\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}} .
\end{aligned}
$$

We apply (2.5) to the first term in this expression, then it equals

$$
\begin{aligned}
& \sum_{\epsilon_{1}, \ldots, \epsilon_{n-1} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n-1}} 2 \operatorname{tr} P_{1}^{\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}+1} \\
& +\sum_{\epsilon_{1}, \ldots, \epsilon_{n-1} \in\{0,1\}}(-1)^{\epsilon_{1}+\cdots+\epsilon_{n-1}} 2 \operatorname{tr} P_{1}^{\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}} \\
= & \sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}}(-1)^{\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{n-1}} 2 \operatorname{tr} P_{1}^{\epsilon_{1}} P_{2}^{\epsilon_{1}+\epsilon_{2}} \cdots P_{n}^{\epsilon_{n-1}+\epsilon_{n}}
\end{aligned}
$$

Let $a_{(1,2, \ldots, n)}$ denote the last expression. Then by dividing the sum in it into the sum for $\epsilon_{1}=0$ and the sum for $\epsilon_{1}=1$,

$$
\begin{aligned}
a_{(1,2, \ldots, n)}= & \sum_{\epsilon_{2}, \ldots, \epsilon_{n} \in\{0,1\}}(-1)^{\epsilon_{2}+\cdots+\epsilon_{n-1}} 2 \operatorname{tr} P_{2}^{\epsilon_{2}} P_{3}^{\epsilon_{2}+\epsilon_{3}} \cdots P_{n}^{\epsilon_{n-1}+\epsilon_{n}} \\
& +\sum_{\epsilon_{2}, \ldots, \epsilon_{n} \in\{0,1\}}(-1)^{1+\epsilon_{2}+\cdots+\epsilon_{n-1}} 2 \operatorname{tr} P_{1} P_{2}^{1+\epsilon_{2}} P_{3}^{\epsilon_{2}+\epsilon_{3}} \cdots P_{n}^{\epsilon_{n-1}+\epsilon_{n}}
\end{aligned}
$$

From (2.6) follows

$$
\begin{equation*}
a_{(1,2, \ldots, n)}=a_{(2,3, \ldots, n)}+\sum_{\epsilon_{2}, \ldots, \epsilon_{n} \in\{0,1\}} 2 \operatorname{tr} P_{1} P_{2}^{\epsilon_{2}} P_{3}^{\epsilon_{3}} \cdots P_{n}^{\epsilon_{n}} \tag{3.3}
\end{equation*}
$$

We have

$$
\begin{aligned}
a_{((n-1) n)} & =\sum_{\epsilon_{n-1}, \epsilon_{n} \in\{0,1\}}(-1)^{\epsilon_{n-1}} 2 \operatorname{tr} P_{n-1}^{\epsilon_{n-1}} P_{n}^{\epsilon_{n-1}+\epsilon_{n}} \\
& =2 \operatorname{tr} I+2 \operatorname{tr} P_{n}-2 \operatorname{tr} P_{n-1} P_{n}-2 \operatorname{tr} P_{n-1} P_{n}^{2} \\
& =2 \operatorname{tr} I+2 \operatorname{tr} P_{n}-2 \operatorname{tr} P_{n-1} P_{n}-2\left(-2 \operatorname{tr} P_{n-1} P_{n}-\operatorname{tr} P_{n-1}\right) \\
& =2 \operatorname{tr} I+2 \operatorname{tr} P_{n-1}+2 \operatorname{tr} P_{n}+2 \operatorname{tr} P_{n-1} P_{n},
\end{aligned}
$$

where I is the unit matrix. From this and (3.3) we can obtain (3.1) by induction on n.

Now we prove the identity (1.7) in Lemma 1.1 from which Theorem 1.1 is easily obtained. From (3.1) we see that

$$
\left(\operatorname{tr} Q_{1} \cdots \operatorname{tr} Q_{m-1} \operatorname{tr} R_{m}\right)\left(\operatorname{tr} Q_{1} \cdots Q_{m-1} R_{m}\right) \cdot\left(\operatorname{tr} S_{m} \operatorname{tr} Q_{m} \cdots \operatorname{tr} Q_{n}\right)\left(\operatorname{tr} S_{m} Q_{m} \cdots Q_{n}\right)
$$

equals

$$
\sum_{\eta_{m}, \eta_{1}, \epsilon_{2}, \ldots, \epsilon_{m-1} \in\{0,1\}} 2 \operatorname{tr} P_{m}^{\eta_{m}} P_{1}^{\eta_{1}} P_{2}^{\epsilon_{2}} \cdots P_{m-1}^{\epsilon_{m-1}} \cdot \sum_{\epsilon_{1}, \epsilon_{m}, \ldots, \epsilon_{n} \in\{0,1\}} 2 \operatorname{tr} P_{1}^{\epsilon_{1}} P_{m}^{\epsilon_{m}} P_{m+1}^{\epsilon_{m+1}} \cdots P_{n}^{\epsilon_{n}}
$$

By replacing P_{3}, X and Y in (2.8) by $P_{m}, P_{m+1}^{\epsilon_{m+1}} \cdots P_{n}^{\epsilon_{n}}$ and $P_{2}^{\epsilon_{2}} \cdots P_{m-1}^{\epsilon_{m-1}}$, respectively, we see that the last expression equals

$$
\begin{aligned}
& 4\left(\operatorname{tr} P_{1} P_{m}-2\right) \sum_{\epsilon_{1}, \ldots, \epsilon_{n} \in\{0,1\}} P_{1}^{\epsilon_{1}} P_{2}^{\epsilon_{2}} \cdots P_{n}^{\epsilon_{n}} \\
& =-2\left(\operatorname{tr} R_{m}\right)^{2} \operatorname{tr} Q_{1} \operatorname{tr} Q_{2} \cdots \operatorname{tr} Q_{n} \operatorname{tr} Q_{1} Q_{2} \cdots Q_{n} .
\end{aligned}
$$

Here we used $-\operatorname{tr} P_{1} P_{m}=\operatorname{tr} R_{m}^{2}=\left(\operatorname{tr} R_{m}\right)^{2}-2$ and (3.1). Since $\operatorname{tr} R_{m}=\operatorname{tr} S_{m}$ and none of $\operatorname{tr} R_{m}, \operatorname{tr} Q_{1}, \ldots, \operatorname{tr} Q_{n}$ are non-zero (see (1.4)), we obtain (1.7).

Acknowledgement. The author thanks Professor Michihiko Fujii for giving him an opportunity to give a talk at the workshop on "Analysis and Geometry of Discrete Groups and Hyperbolic Spaces" held at RIMS, Kyoto University in December 2011 and include this note to this volume. The author thanks the referee for his/her careful reading of the paper and many valuable comments.

References

[1] C. Maclachlan and A. W. Reid, The Arithmetic of hyperbolic 3-manifolds, Graduate Texts in Math., 219, Springer-Verlag, 2003.
[2] T. Nakanishi and M. Näätänen, Complexification of lambda length as parameter for $S L(2, \mathbb{C})$ representation space of punctured surface groups, J. London Math. Soc., 70 (2004), 383-404.
[3] T. Nakanishi and M. Näätänen, Complexification of lambda length as parameter for $S L(2, \mathbb{C})$ representation space of punctured surface groups II, Preprint.
[4] T. Nakanishi, A trace identity for parabolic elements of $S L(2, \mathbb{C})$, Kodai Math. J., 30 (2007) 1-18.
[5] R. C. Penner, The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., 113 (1987), 299-339.

