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Abstract

Let P be the set of all parabolic elements in SL(2, C) with trace −2. If P1 and P2 in P
do not commute, then the complex lambda length between P1 and P2 is the trace of a matrix

Q ∈ SL(2, C) satisfying Q2 = −P1P2, which is determined uniquely up to sign. For each n-gon

(P1, P2, ..., Pn) in P consider the tuples (Q1, Q2, ..., Qn) with Q2
i = −PiPi+1 with Pn+1 = P1.

The tuples are classified into tuples of (−)-system and tuples of (+)-system. Suppose that

(P1, ..., Pn) is divided into subpolygons (P1, P2, ..., Pm) and (P1, Pm, Pm+1, ..., Pn), and Rm

and Sm ∈ SL(2, C) with R2
m = −PmP1, S2

m = −P1Pm and trRm = trSm are given. We show

that if (Q1, ..., Qm−1, Rm) and (Sm, Qm, ..., Qn) are (−)-systems, then (Q1, Q2, ..., Qn) is also

a (−)-system.

§ 1. Introduction and the main result

This paper is a continuation of [4] which established the “ideal Ptolemy identity”
for complex λ-lengths introduced in [2] and [3] following Penner’s paper [5]. We define

P = {P ∈ SL(2, C) : P is parabolic with trP = −2}.

Note that P is the conjugacy class of

(1.1)

(
−1−1

0−1

)
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and hence two matrices in P are conjugate to each other in SL(2, C). If two elements
P1 and P2 ∈ P do not commute, then there exists a square root Q of −P1P2, that is, a
matrix in SL(2, C) such that

(1.2) Q2 = −P1P2.

Q is determined up to sign, satisfies tr(P1P2) = 2 − (trQ)2 and also

(1.3) P2 = Q−1P1Q, and Q−1P1 and Q−1P2 are elliptic of order 2.

(Here the order of an elliptic A in SL(2, C) means the order of the Möbius transformation
A(z).) In order to see this, it suffices to consider the normalized pair

P1 =

(
−1−1
0 −1

)
, P2 =

(
−1 0
λ −1

)

with λ 6= 0. Then Q must be of the form

Q = ±

(√
λ−1/

√
λ√

λ 0

)
.

With this we can verify (1.3) and also

(1.4) trQ 6= 0.

In what follows the diagram

(1.5) P1
Q−→ P2

means that P1 and P2 ∈ P do not commute and Q2 = −P1P2.

Definition 1.1. A cycle (P1, P2, ..., Pn), Pn+1 = P1, of elements in P is called an
n-gon if Pi and Pj do not commute for i 6= j. If, in particular, n = 3 or 4, then it is called
a triangle or quadrangle, respectively. Two n-gons (P1, P2, ..., Pn) and (R1, R2, ..., Rn)
are congruent if there exists T ∈ SL(2, C) such that Rj = T−1PjT for j = 1, ..., n.

Let (P1, ..., Pn) be an n-gon in P. Then there exists a square root Qi of −PiPi+1

for i = 1, 2, ..., n. Since from (1.3)

P2 = Q−1
1 P1Q1, P3 = Q−1

2 P2Q2, ..., P1 = Q−1
n PnQn,

Q1Q2 · · ·Qn commutes with P1 and hence trQ1Q2 · · ·Qn is either −2 or +2.

Definition 1.2. (Q1, Q2, ..., Qn) is called a (−)-system if trQ1Q2 · · ·Qn = −2 and
a (+)-system if trQ1Q2 · · ·Qn = +2.
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Let (P1, P2, ..., Pn) be an n-gon and Qj be such that Pj
Qj−−→ Pj+1 for j = 1, ..., n. If

2 < m < n, then the “diagonal” P1Pm divides the n-gon into an m-gon (P1, P2, ..., Pm)
and an (n − m + 1)-gon (P1, Pm, Pm+1, ..., Pn). Choose Rm and Sm ∈ SL(2, C) such
that

Pm
Rm−−→ P1, P1

Sm−−→ Pm,

and that trRm = trSm. So Sm = P1RmP−1
1 . The main objective of this paper is to

prove

Theorem 1.1. If two among (Q1, Q2, ..., Qm−1, Rm), (Sm, Qm, Qm+1, ..., Qn) and
(Q1, Q2, ..., Qn) are (−)-systems, then so is the rest.

In [4] we showed this theorem for n = 4 and m = 3. In this case, if both of
(Q1, Q2, R3) and (S3, Q3, Q4) are (−)-systems, then (Q1, Q2, Q3, Q4) is also a (−)-
system. We choose R2 and S2 so that

P2
R2−−→ P4, P4

S2−→ P2,

and that trR2 = trS2. See Figure 1. If (Q1, R2, Q4) is a (−)-system, then from Theorem
1.1, (Q2, Q3, S2) is also a (−)-system. In this situation the following “ideal Ptolemy
identity” holds ([4, Theorem 0.1])

(1.6) trR2trR3 = trQ1trQ3 + trQ2trQ4.

Figure 1. A decomposition of a quadrangle into triangles

Theorem 1.1 follows immediately from

Lemma 1.1. With the notation as above the following identity holds:

(1.7) (trQ1Q2 · · ·Qm−1Rm)(trSmQm · · ·Qn) = −2trQ1Q2 · · ·Qn.

We prove (1.7) in Section 3.
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Remark 1.1. Let S̄ be an oriented closed surface of genus g and P = {x1, ..., xn}
a non-empty set of distinct points on S̄. Let S = S̄−P . We assume that 2g−2+n > 0.
Let R(S) denote the space of all conjugacy classes of faithful representations ρ : π1(S) →
SL(2, C) such that if δ is the homotopy class of a loop which goes around a puncture
xj once, then ρ(δ) ∈ P. Let ∆ = {c1, c2, ..., cd}, where d = 6g − 6 + 3n, be an arbitrary
ideal triangulation of S (see [5]). Let c = ci ∈ ∆ and suppose that xj and xk are the
end points of c. Choose a point y of c. We define δ1 to be the loop which goes from y

to xj along c and turns around xj in the positive direction and goes back to y along c.
We define δ2 in the same way for xk. Choose an arc δ0 from the base point of π1(S)
to y. Let [ρ] ∈ R(S). Then homotopy classes of δ0δ1δ

−1
0 and δ0δ2δ

−1
0 determine two

elements P1 = ρ(δ0δ1δ
−1
0 ) and P2 = ρ(δ0δ2δ

−1
0 ) in P. Since ρ is faithful, P1 and P2 do

not commute. Choose Qi so that P1
Qi−−→ P2. The value

λi = λ(ci, ρ) = trQi.

depends only on the class [ρ] and the homotopy class of ci. This value λi is called in [2]
and [3] the complex λ-length of ci associated to [ρ] . The positive branch of λi restricted
to the Fuchsian representation space of π1(S) coincides with the λ-length (for a special
choice of horocycles around punctures) introduced by Penner [5].

Since λi is determined up to sign, the tuple (λ1, ..., λd) defines a map Λ∆ : R(S) →
(C/{±1})d. If it is restricted to, for example, the subspace QF of quasifuchsian rep-
resentations, which is simply connected, the map Λ∆ can be lifted to a holomorphic
injection Λ∆ of QF into Cd, and it is possible to choose a lift Λ∆ so that λ1,..., λd

satisfy the condition that (Qi, Qj , Qk) are (−)-systems for all triangles (ci, cj , ck) in ∆,
see [3] for details. By using (1.6) we can show just as in [5] that, for two ideal triangula-
tions ∆1 and ∆2, the coordinate change between Λ∆1(QF) and Λ∆2(QF) is a rational
transformation. Thus the faithful representation of the mapping class group of S by a
group of rational transformations for its action on the decorated Teichmüller space ([5])
is naturally extended to its action on QF .

§ 2. Trace identities

We shall use repeatedly the following basic trace identities which hold for matrices
in SL(2, C) (see [1, 3.4]):

trY −1XY = trX,(2.1)

trXY + trXY −1 = trXtrY,(2.2)

From (2.1), trX1X2 · · ·Xn = trXσ(1)Xσ(2) · · ·Xσ(n) for any cyclic permutation σ on
{1, 2, ..., n}. So (2.2) yields

(2.3) trXY Z = trY trXZ − trXY −1Z
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for X, Y and Z ∈ SL(2, C). The following trace identities are proved in [2, Proposition
1.1] and [4, Lemma 1.3], respectively.

Lemma 2.1. If A,B,C and D ∈ SL(2, C) are such that trABCD = −2, then

(trAB + trCD)(trBC + trAD)

= (trA + trBCD)(trC + trABD) + (trB + trACD)(trD + trABC).

(2.4)

Lemma 2.2. Let X, Y1,..., Yn+1 ∈ SL(2, C), where n ≥ 1. If trY1 = · · · = trYn+1,
then ∑

ε1,...,εn∈{0,1}

(−1)ε1+···+εntrXY ε1
1 Y ε1+ε2

2 · · ·Y εn−1+εn
n Y εn+1

n+1

=
∑

ε1,...,εn∈{0,1}

(−1)ε1+···+εntrXY ε1+1
1 Y ε1+ε2

2 · · ·Y εn−1+εn
n Y εn

n+1.(2.5)

Lemma 2.3. Let X ∈ SL(2, C) and P1,..., Pn ∈ P with n ≥ 2. Then∑
ε1,...,εn∈{0,1}

trXP ε1
1 P ε2

2 · · ·P εn
n

=
∑

ε1,...,εn∈{0,1}

(−1)ε1+···+εn−1+1trXP 1+ε1
1 P ε1+ε2

2 · · ·P εn−1+εn
n .(2.6)

Proof. If n = 2, then by using (2.3) and trP1 = trP2 = −2, we can deform the right
had side of (2.6) to the left hand side as follows:∑

ε1,ε2∈{0,1}

(−1)ε1+1trXP 1+ε1
1 P ε1+ε2

2 = −trXP1 + trXP 2
1 P2 − trXP1P2 + trXP 2

1 P 2
2

= −trXP1 + (−2trXP1P2 − trXP2) − trXP1P2 + (−2trXP 2
1 P2 − trXP 2

1 )

= −trXP1 − trXP2 − 3trXP1P2

+(−2(−2trXP1P2 − trXP2) + 2trXP1 + trX)

= trX + trXP1 + trXP2 + trXP1P2.

We prove (2.6) for n > 2 by induction. We divide the sum in the right hand side into
the sum for ε1 = 0 and that for ε1 = 1. Then it equals∑

ε2,...,εn∈{0,1}

(−1)ε2+···+εn−1+1trXP1P
−1
2 P 1+ε2

2 P ε2+ε3
3 · · ·P εn−1+εn

n

−
∑

ε2,...,εn∈{0,1}

(−1)ε2+···+εn−1+1trXP 2
1 P 1+ε2

2 P ε2+ε3
3 · · ·P εn−1+εn

n .
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We assume that (2.6) holds for n − 1 and we apply it to P2,..., Pn and X replaced by
XP1P

−1
2 and XP 2

1 . Then the last term equals

(2.7)
∑

ε2,...,εn∈{0,1}

trXP1P
−1
2 P ε2

2 · · ·P εn
n −

∑
ε2,...,εn∈{0,1}

trXP 2
1 P ε2

2 · · ·P εn
n .

Let Y = P ε2
2 P ε3

3 · · ·P εn
n . From (2.3) trXP1P

−1
2 Y = −trXP1P2Y − 2trXP1Y and

trXP 2
1 Y = −2trXP1Y − trXY . Then we have with Z = P ε3

3 · · ·P ε
n∑

ε2∈{0,1}

trXP1P
−1
2 (P ε2

2 Z) −
∑

ε2∈{0,1}

trXP 2
1 (P ε2

2 Z)

= −
∑

ε2∈{0,1}

trXP1P2P
ε2
2 Z +

∑
ε2∈{0,1}

trXP ε2
2 Z

= −trXP1P2Z − trXP1P
2
2 Z + trXZ + trXP2Z

= −trXP1P2Z − (−2trXP1P2Z − trXP1Z) + trXZ + trXP2Z

= trXZ + trXP1Z + trXP2Z + trXP1P2Z.

Summing the last term over ε3,..., εn, we obtain the left hand side of (2.6). Thus (2.6)
holds for all n. ¤

Lemma 2.4. Let P1, P2 ∈ P and X,Y ∈ SL(2, C). Then

(2.8)
∑

ε1,ε2∈{0,1}

trP ε1
2 P ε2

1 Y ·
∑

ε3,ε4∈{0,1}

trP ε3
1 P ε4

2 X = (trP1P2−2)
∑

ε1,ε2∈{0,1}

trP ε1
1 Y P ε2

2 X.

Proof. We can substitute A = P1, B = P−1
1 XP1, C = P−1

1 X−1Y −1 and D = Y P2 into
(2.4), because trABCD = trP2 = −2. We have

trA + trBCD = trP1 + trP−1
1 P2

= trP1 + (−2trP1 − trP1P2) = −trP1 − trP1P2.

Likewise we obtain

trA + trBCD = 2 − trP1P2, trB + trACD = −trX − trXP2,

trC + trABD = trXP1Y + trXP1Y P2, trD + trABC = trY + trY P2,

trAB + trCD = −trXP1 − trXP1P2, trBC + trAD = trP1Y + trP1Y P2.

Therefore (2.4) in this case equals

(trXP1 + trXP1P2)(trP1Y + trP1Y P2)

= (trP1P2 − 2)(trXP1Y + trXP1Y P2) + (trX + trXP2)(trY + trY P2).

(2.9)
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Substituting P−1
1 Y to Y in this equation, we obtain

(trXP1 + trXP1P2)(trY + trY P2)

= (trP1P2 − 2)(trXY + trXY P2) + (trX + trXP2)(trP−1
1 Y + trP−1

1 Y P2).

= (trP1P2 − 2)(trXY + trXY P2)

+(trX + trXP2)(−2trY − trP1Y − 2trY P2 − trP1Y P2).(2.10)

By adding (2.9) and (2.10) we obtain (2.8).

§ 3. Proof of the main theorem

Let (P1, P2, ..., Pn) be an n-gon in P, where n ≥ 4, and Qi ∈ SL(2, C) be such that

Pi
Qi−−→ Pi+1 for i = 1, 2, ..., n.

Lemma 3.1.

(3.1) trQ1trQ2 · · · trQntrQ1 · · ·Qn =
∑

ε1,...,εn∈{0,1}

2trP ε1
1 P ε2

2 · · ·P εn
n .

Proof. By (2.2) we have with Xn−1 = Q1 · · ·Qn−1

trQntrQ1 · · ·Qn = trXn−1Q
2
n + trXn−1QnQ−1

n = trXn−1Q
2
n + trXn−1

and then with Xn−2 = Q1 · · ·Qn−2

trQn−1trQntrQ1 · · ·Qn

= (trQ2
nXn−2Q

2
n−1 + trQ2

nXn−2) + (trXn−2Q
2
n−1 + trXn−2)

=
∑

εn−1,εn∈{0,1}

trXn−2Q
2εn−1
n−1 Q2εn

n ..

By proceeding in this manner we have

trQ1trQ2 · · · trQntrQ1 · · ·Qn =
∑

ε1,...,εn∈{0,1}

trQ2ε1
1 Q2ε2

2 · · ·Q2εn
n .

Thus

trQ1trQ2 · · · trQntrQ1 · · ·Qn

=
∑

ε1,...,εn∈{0,1}

tr(−P1P2)ε1(−P2P3)ε2 · · · (−PnP1)εn

=
∑

ε1,...,εn∈{0,1}

(−1)ε1+ε2+···+εntrP εn+ε1
1 P ε1+ε2

2 · · ·P εn−1+εn
n
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We divide the last sum into the sum for εn = 0 and the sum for εn = 1 and apply (2.5)
to the second term by setting X = P1 and Yi = Pi for i = 1, ..., n. Then we obtain∑

ε1,...,εn−1∈{0,1}

(−1)ε1+···+εn−1trP ε1
1 P ε1+ε2

2 · · ·P εn−1
n

+
∑

ε1,...,εn−1∈{0,1}

(−1)1+ε1+···+εn−1trP 1+ε1
1 P ε1+ε2

2 · · ·P εn−1+1
n

=
∑

ε1,...,εn−1∈{0,1}

(−1)ε1+···+εn−1trP ε1
1 P ε1+ε2

2 · · ·P εn−1
n

+
∑

ε1,...,εn−1∈{0,1}

(−1)1+ε1+···+εn−1trP 2+ε1
1 P ε1+ε2

2 · · ·P εn−1
n .(3.2)

Let Y = P ε1+ε2
2 · · ·P εn−1

n . Then from (2.3)

trP ε1
1 Y − trP 2+ε1

1 Y = 2trP 1+ε1
1 Y + 2trP ε1

1 Y.

Taking the sum over ε1, ..., εn−1 we see that (3.2) equals∑
ε1,...,εn−1∈{0,1}

(−1)ε1+···+εn−12trP 1+ε1
1 P ε1+ε2

2 · · ·P εn−1
n

+
∑

ε1,...,εn−1∈{0,1}

(−1)ε1+···+εn−12trP ε1
1 P ε1+ε2

2 · · ·P εn−1
n .

We apply (2.5) to the first term in this expression, then it equals∑
ε1,...,εn−1∈{0,1}

(−1)ε1+···+εn−12trP ε1
1 P ε1+ε2

2 · · ·P εn−1+1
n

+
∑

ε1,...,εn−1∈{0,1}

(−1)ε1+···+εn−12trP ε1
1 P ε1+ε2

2 · · ·P εn−1
n

=
∑

ε1,...,εn∈{0,1}

(−1)ε1+ε2+···+εn−12trP ε1
1 P ε1+ε2

2 · · ·P εn−1+εn
n

Let a(1,2,...,n) denote the last expression. Then by dividing the sum in it into the sum
for ε1 = 0 and the sum for ε1 = 1,

a(1,2,...,n) =
∑

ε2,...,εn∈{0,1}

(−1)ε2+···+εn−12trP ε2
2 P ε2+ε3

3 · · ·P εn−1+εn
n

+
∑

ε2,...,εn∈{0,1}

(−1)1+ε2+···+εn−12trP1P
1+ε2
2 P ε2+ε3

3 · · ·P εn−1+εn
n .

From (2.6) follows

(3.3) a(1,2,...,n) = a(2,3,..,n) +
∑

ε2,...,εn∈{0,1}

2trP1P
ε2
2 P ε3

3 · · ·P εn
n .
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We have

a((n−1)n) =
∑

εn−1,εn∈{0,1}

(−1)εn−12trP εn−1
n−1 P εn−1+εn

n

= 2trI + 2trPn − 2trPn−1Pn − 2trPn−1P
2
n

= 2trI + 2trPn − 2trPn−1Pn − 2(−2trPn−1Pn − trPn−1)

= 2trI + 2trPn−1 + 2trPn + 2trPn−1Pn,

where I is the unit matrix. From this and (3.3) we can obtain (3.1) by induction on n.
¤

Now we prove the identity (1.7) in Lemma 1.1 from which Theorem 1.1 is easily
obtained. From (3.1) we see that

(trQ1 · · · trQm−1trRm)(trQ1 · · ·Qm−1Rm) · (trSmtrQm · · · trQn)(trSmQm · · ·Qn)

equals ∑
ηm,η1,ε2,....,εm−1∈{0,1}

2trP ηm
m P η1

1 P ε2
2 · · ·P εm−1

m−1 ·
∑

ε1,εm,...,εn∈{0,1}

2trP ε1
1 P εm

m P
εm+1
m+1 · · ·P εn

n

By replacing P3, X and Y in (2.8) by Pm, P
εm+1
m+1 · · ·P εn

n and P ε2
2 · · ·P εm−1

m−1 , respectively,
we see that the last expression equals

4(trP1Pm − 2)
∑

ε1,...,εn∈{0,1}

P ε1
1 P ε2

2 · · ·P εn
n

= −2(trRm)2trQ1trQ2 · · · trQntrQ1Q2 · · ·Qn.

Here we used −trP1Pm = trR2
m = (trRm)2 − 2 and (3.1). Since trRm = trSm and none

of trRm, trQ1,..., trQn are non-zero (see (1.4)), we obtain (1.7).
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