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Abstract

Recently, we discussed optimality conditions for quasiconvex programming
by introducing ‘Q-subdifferential’, which is a notion of differential of qua-
siconvex functions. In this paper, we investigate basic and fundamental
properties of the Q-subdifferential. Especially, we show results of a chain
rule for composition with non-decreasing functions, monotonicity of the Q-
subdifferential, mean-value theorem, a sufficient condition for a global mini-
mizer for quasiconvex programming, and the calculus of the Q-subdifferential
of the supremum of quasiconvex functions.

Keywords: quasiconvex function, subdifferential, monotonicity, mean-value
theorem

1. Introduction

In convex programming, the subdifferential, which is a generalized notion
of the differential, plays very important roles to discuss optimality conditions.
For example, it is well known that x0 is a global minimizer of a convex
function f in a closed convex set A if and only if 0 ∈ ∂f(x0) +NA(x0), and
this result is used extensively in various studies.

In quasiconvex programming, several types of subdifferentials have been
defined and observed by many researchers, for example GP-subdifferential [3],
R-quasisubdifferential [14], MLS-subdifferential [7] and so on. In these liter-
atures, properties of such subdifferentials of quasiconvex functions and some
optimality conditions of quasiconvex programming which are similar to the
above optimality condition of convex programming have been studied. How-
ever, these subdifferentials are not generalizations of the differential, that is,
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even if a quasiconvex function is differentiable, these subdifferentials are not
equal to the differential.

Recently, we introduced the subdifferential for quasiconvex functions (the
Q-subdifferential) by using the notion of generator in [13]. The Q-subdifferential
is a generalization of the Gâteaux derivative and the subdifferential in the
sense of convex analysis. Also, we discussed a necessary condition for a lo-
cal minimizer and a constraint qualification for quasiconvex programming by
using the Q-subdifferential.

In this paper, we investigate basic and fundamental properties of the Q-
subdifferential. The remainder of the present paper is organized as follows.
In Section 2, we introduce some preliminaries. From Section 3 to Section 7,
we investigate a chain rule for composition with non-decreasing functions,
monotonicity of the Q-subdifferential, a mean-value theorem with respect to
the Q-subdifferential, a sufficient condition for a global minimizer by using
the Q-subdifferential, and the Q-subdifferential of the supremum of quasi-
convex functions.

2. Preliminaries

Let X be a locally convex Hausdorff topological vector space, let X∗ be
the continuous dual space ofX, and let ⟨x∗, x⟩ denote the value of a functional
x∗ ∈ X∗ at x ∈ X. Given a set A∗ ⊂ X∗, we denote the weak∗-closure, the
convex hull, the conical hull, and the relative interior generated by A∗, by
clA∗, coA∗, coneA∗, and riA∗, respectively. The indicator function δA of A is
defined by

δA(x) :=

{
0 x ∈ A,
∞ otherwise.

Throughout the present paper, let f be a function from X to R, where
R = [−∞,∞]. Here, f is said to be proper if for all x ∈ X, f(x) > −∞
and there exists x0 ∈ X such that f(x0) ∈ R. We denote the domain of f
by domf , that is, domf = {x ∈ X | f(x) < ∞}. The epigraph of f , epif , is
defined as epif = {(x, r) ∈ X × R | f(x) ≤ r}, and f is said to be convex
if epif is convex. In addition, the Fenchel conjugate of f , f ∗ : X∗ → R, is
defined as f ∗(u) = supx∈domf{⟨u, x⟩ − f(x)}. Remember that f is said to be
quasiconvex if for all x1, x2 ∈ X and λ ∈ (0, 1),

f((1− λ)x1 + λx2) ≤ max{f(x1), f(x2)}.
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Define the level sets of f with respect to a binary relation ⋄ on R as

L(f, ⋄, β) = {x ∈ X | f(x) ⋄ β}

for any β ∈ R. Then, f is quasiconvex if and only if for any β ∈ R, L(f,≤, β)
is a convex set, or equivalently, for any β ∈ R, L(f,<, β) is a convex set.
Any convex function is quasiconvex, but the opposite is not true.

It is well known that a proper lsc convex function consists of a supremum
of some family of affine functions. In the case of quasiconvex functions,
a similar result was also proved in [6, 8]. First, we introduce a notion of
quasiaffine function. A function f is said to be quasiaffine if quasiconvex
and quasiconcave. It is worth noting that f is lsc quasiaffine if and only
if there exists k ∈ Q and w ∈ X∗ such that f = k ◦ w, where Q = {h :
R → R | h is lsc and non-decreasing}. By using the notion of quasiaffine,
it was proved that f is lsc quasiconvex if and only if there exists {(ki, wi) |
i ∈ I} ⊂ Q × X∗ such that f = supi∈I ki ◦ wi. This result indicates that
a lsc quasiconvex function f consists of a supremum of some family of lsc
quasiaffine functions. In [12], we define a notion of generator for quasiconvex
functions, that is, {(ki, wi) | i ∈ I} ⊂ Q × X∗ is said to be a generator of
f if f = supi∈I ki ◦ wi. Because of the result in [6, 8], all lsc quasiconvex
functions have at least one generator. Also, when f is a proper lsc convex
function, Bf = {(kv, v) | v ∈ domf ∗, kv(t) = t− f ∗(v), ∀t ∈ R} ⊂ Q×X∗ is
a generator of f . Actually, for all x ∈ X,

f(x) = f ∗∗(x) = sup{⟨v, x⟩ − f ∗(v) | v ∈ domf ∗} = sup
v∈domf∗

kv(⟨v, x⟩).

We call the generator Bf “the basic generator” of convex function f . The
basic generator is very important with respect to the comparison of convex
and quasiconvex programming.

Also, we denote the lower left-hand Dini derivative of h ∈ Q at t by
D−h(t), that is D−h(t) = lim infε→0−

h(t+ε)−h(t)
ε

. A function h is said to be
lower left-hand Dini differentiable if D−h(t) is finite for all t ∈ R.

In [13], we introduced the following subdifferential for quasiconvex func-
tions.

Definition 1. [13] Let f be a lsc quasiconvex function with a generator G =
{(ki, wi) | i ∈ I} ⊂ Q × X∗, and assume that ki is lower left-hand Dini
differentiable for all i ∈ I. Then, we define the subdifferential for quasiconvex
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functions (the Q-subdifferential) of f at x0 with respect to G as follows:

∂Gf(x0) = clco{D−ki(⟨wi, x0⟩)wi | i ∈ I(x0)},

where I(x0) = {i ∈ I | f(x0) = ki ◦ wi(x0)}.

The Q-subdifferential is a generalized notion of the subdifferential for con-
vex functions. Actually, if f is a proper lsc convex function with the basic
generator Bf , then

∂Bf
f(x0) = clco{D−kv(⟨v, x0⟩)v | v ∈ domf ∗, f(x0) = kv(⟨v, x⟩)}

= clco{v | v ∈ domf ∗, f(x0) = ⟨v, x⟩ − f ∗(v)}
= ∂f(x0).

Also, if f is Gâteaux differentiable at x0, ks are differentiable at x0 for all
i ∈ I(x0), and I(x0) ̸= ∅, then we can check ∂Gf(x0) = {f ′(x0)}, see [13].

Remark 1. In [3], Greenberg and Pierskalla introduced the quasi-subdifferential.
In [7], Marit́ınez-Legaz and Sach introduced the Q-subdifferential, and called
the quasi-subdifferential Greenberg-Pierskalla subdifferential. In this paper,
we call quasi-subdifferential in [3] GP-subdifferential, Q-subdifferential in [7]
MLS-subdifferential, and the subdifferential in [13] the Q-subdifferential.

By using the Q-subdifferential, we investigated the following optimality
condition for quasiconvex programming.

Theorem 1. [13] Let A be a closed convex subset of X, f be a lsc quasicon-
vex function with a generator G = {(ki, wi) | i ∈ I} ⊂ Q ×X∗ and x0 ∈ A.
Assume that ki is lower left-hand Dini differentiable for all i ∈ I and at least
one of the following holds:

(i) I is finite and ki is continuous for all i ∈ I,

(ii) X is a Banach space, I is a compact topological space, i 7→ wi is
continuous on I to (X∗, ∥ · ∥), (i, t) 7→ ki(t) is usc on I × R, and
(i, t) 7→ D−ki(t) is continuous on I × R.

If x0 is a local minimizer of f in A then, 0 ∈ ∂Gf(x0) +NA(x0).
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3. Chain rule for composition with non-decreasing functions

The chain rule of the usual differential is well known, and the chain rule
of the subdifferential in the sense of convex analysis is also investigated.
In [7], Mart́ınez-Legaz and Sach investigated a chain rule for the MLS-
subdifferential. In this section, we investigate a chain rule for composition
with non-decreasing functions.

Theorem 2. Let f be a real-valued lsc quasiconvex function with a differen-
tiable generator G = {(ki, wi) | i ∈ I} ⊂ Q ×X∗, g ∈ Q be continuous and
x0 ∈ X. Assume that g is differentiable at f(x0), then

g′(f(x0))∂Gf(x0) ⊂ ∂Ḡ(g ◦ f)(x0),

where Ḡ = {(g ◦ ki, wi) | i ∈ I}. Moreover, if g is increasing, then equality
holds.

proof. At first, we show that Ḡ is a generator of g ◦ f . It is clear that
g ◦ f = supi∈I g ◦ ki ◦wi, and we can check g ◦ ki is lsc. Actually, if {tn} ⊂ R
converges to t ∈ R, then ki(t) ≤ lim infk→∞ ki(tn). Since g is non-decreasing
and continuous,

g(ki(t)) ≤ lim inf
k→∞

g(ki(tn)).

Hence, Ḡ ⊂ Q × X∗ is a generator of g ◦ f . If i ∈ I(x0), then g ◦ f(x0) =
g ◦ ki ◦ wi(x0), this implies that for all v ∈ {k′

i(⟨wi, x0⟩)wi | i ∈ I(x0)},

g′(f(x0))v ∈ {(g ◦ ki)′(⟨wi, x0⟩)wi | g ◦ f(x0) = g ◦ ki ◦ wi(x0)},

that is, g′(f(x0))∂Gf(x0) ⊂ ∂Ḡ(g ◦ f)(x0). Moreover, if g is increasing, then
“i ∈ I(x0)” and “g ◦ f(x0) = g ◦ ki ◦ wi(x0)” are equivalent. Hence, the
equality holds.

4. Monotonicity of the Q-subdifferential

In this section, we investigate monotonicity of the Q-subdifferential. It is
well known that if a function f is proper lsc convex, then the subdifferential
of f in the sense of convex analysis is maximal monotone. This result is fun-
damental and useful for convex programming problems, and has been studied
extensively. Also, it is well known that a function f is convex (quasiconvex)
if and only if the Clarke subdifferential of f is monotone (quasimonotone,
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respectively), in detail, see [5, 10]. Some similar results were investigated by
some researchers for the other subdifferentials.

In the following theorem, we show that the Q-subdifferential is quasi-
monotone, that is, for all x, y ∈ X, x∗ ∈ ∂Gf(x), y

∗ ∈ ∂Gf(y),

min{⟨x∗, y − x⟩ , ⟨y∗, x− y⟩} ≤ 0.

Theorem 3. Let f be a continuous quasiconvex function with a differentiable
generator G. Then, ∂Gf is quasimonotone.

proof. We assume that there exist x, y ∈ X, x∗ ∈ ∂Gf(x) and y∗ ∈ ∂Gf(y)
such that ⟨x∗, y − x⟩ > 0 and ⟨y∗, x− y⟩ > 0. Then, there exist x∗

0 and y∗0 ∈
X∗ such that x∗

0 ∈ co{k′
i(⟨wi, x⟩)wi | i ∈ I(x)}, y∗0 ∈ co{k′

i(⟨wi, y⟩)wi | i ∈
I(y)}, and ⟨x∗

0, y − x⟩ > 0 and ⟨y∗0, x− y⟩ > 0. Also, there exists ix ∈ I(x)
such that ⟨wix , y − x⟩ > 0 and k′

ix(⟨wix , x⟩) > 0. Since kix is non-decreasing
and differentiable, kix(⟨wix , y⟩) > kix(⟨wix , x⟩). This implies f(y) > f(x).
Similarly, we can prove that f(x) > f(y), this is a contradiction.

5. Mean-value theorem

The mean-value theorem for usual differentiable functions is well known
and studied extensively. In convex analysis, many researchers investigated
some types of mean-value theorem. In this section, we investigate mean-value
theorem with respect to the Q-subdifferential.

The following lemma is essential.

Lemma 1. Let f be a continuous quasiconvex function from R to R with a
differentiable generator G = {(ki, wi) | i ∈ I} ⊂ Q×R. Assume that at least
one of the following holds:

(i) I is finite,

(ii) I is a compact topological space, (i, t) 7→ ki(⟨wi, t⟩) is usc on I × R,
and (i, t) 7→ k′

i(⟨wi, t⟩)wi is continuous on I × R.

Then, there exist c ∈ (0, 1) such that f(1)− f(0) ∈ ∂Gf(c).

proof. Let α = f(1) − f(0) and F (t) = f(t) − αt − f(0) for all t ∈ [0, 1],
then, F (0) = F (1) = 0.

Case 1. There exists c ∈ (0, 1) such that F (c) = mint∈[0,1] F (t).
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Then, for all x ∈ [0, 1], F (x) ≥ 0(x− c) +F (c). Because of the definition
of F , for all x ∈ [0, 1], f(x) ≥ α(x− c) + f(c).

By the assumption, we can check

∂Gf(c) = [min
i∈I(c)

k′
i(⟨wi, c⟩)wi,max

i∈I(c)
k′
i(⟨wi, c⟩)wi].

Indeed, if I is finite, then it is clear. If (ii) holds, we can check I(c) is compact
because I(c) = {i ∈ I | ki(⟨wi, c⟩) = f(c)} = {i ∈ I | ki(⟨wi, c⟩) ≥ f(c)}.
Because of the continuity of k′

i(⟨wi, c⟩)wi on I, the above equality holds.
For each n ∈ N, I(c+ 1

n
) is nonempty since I is compact and ki(⟨wi, c⟩) is

usc on I, (or I is finite). Without loss of generality, we can choose a sequence
{in} ∈ I such that in ∈ I(c+ 1

n
) and in converges to some i0 ∈ I, because of

the compactness (or finiteness, respectively) of I. Then,

f(c) ≤ lim inf
n→∞

f(c+
1

n
) ≤ lim sup

n→∞
kin ◦ win(c+

1

n
) ≤ k ◦ wi0(c),

that is, i0 ∈ I(c). Also,

kin ◦ win(c+
1
n
)− kin ◦ win(c)

c+ 1
n
− c

≥
f(c+ 1

n
)− f(c)
1
n

≥
α(c+ 1

n
− c)

1
n

= α.

By using the usual mean-value theorem for kin◦win , there exists cn ∈ (c, c+ 1
n
)

such that (kin ◦ win)
′(cn) ≥ α. Since cn converges to c,

(ki0 ◦ wi0)
′(c) = lim

n→∞
(kin ◦ win)

′(cn) ≥ α.

This implies that maxi∈I(c) k
′
i(⟨wi, c⟩)wi ≥ α. Similarly we can prove that

α ≥ mini∈I(c) k
′
i(⟨wi, c⟩)wi, that is, f(1)− f(0) = α ∈ ∂Gf(c).

Case 2. For all y ∈ (0, 1), F (y) > minx∈[0,1] F (x).
Then, F (1) = F (0) = minx∈[0,1] F (x) and there exists c ∈ (0, 1) such that

F (c) = maxx∈[0,1] F (x) since F is continuous. Because of the definition of F ,
for all x ∈ [0, 1], f(x) ≤ ⟨f(1)− f(0), x− c⟩+ f(c). Then, for all i ∈ I(c),

lim inf
ε→0+

f(c)− f(c− ε)

ε
≤ lim sup

ε→0+

f(c)− f(c− ε)

ε
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≤ lim sup
ε→0+

ki ◦ wi(c)− ki ◦ wi(c− ε)

ε

= (ki ◦ wi)
′(c)

= lim inf
ε→0+

ki ◦ wi(c+ ε)− ki ◦ wi(c)

ε

≤ lim inf
ε→0+

f(c+ ε)− f(c)

ε

≤ lim sup
ε→0+

f(c+ ε)− f(c)

ε

≤ lim sup
ε→0+

f(c) + α(c+ ε− c)− f(c)

ε
= α

≤ lim inf
ε→0+

f(c)− (f(c) + α(c− ε− c))

ε

≤ lim inf
ε→0+

f(c)− f(c− ε)

ε

Hence, f is differentiable at c and f ′(c) = α. Because of the assumption,
I(c) ̸= ∅, that is,

f(1)− f(0) = α ∈ {f ′(c)} = ∂Gf(c).

Now we show the mean-value theorem for quasiconvex functions.

Theorem 4. Let f be a continuous quasiconvex function with a differentiable
generator G = {(ki, wi) | i ∈ I} ⊂ Q × X∗, x, y ∈ X, and x ̸= y. Assume
that at least one of the following holds:

(i) I is finite,

(ii) X is a Banach space, I is a compact topological space, (i, x) 7→ ki◦wi(x)
is usc on I ×X, and (i, x) 7→ k′

i(⟨wi, x⟩)wi is continuous on I ×X to
(X∗, σ(X∗, X)).

Then, there exist z ∈ (x, y) and z∗ ∈ ∂Gf(z) such that

f(y)− f(x) = ⟨z∗, y − x⟩ .
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proof. Put g be the following function from R to R, g(t) = f((1− t)x+ ty)
for all t ∈ R. Then, Ḡ = {(k̄i, ⟨wi, y − x⟩) | i ∈ I, k̄i(t) = ki(t + ⟨wi, a⟩)}
is a generator of g. We can check that ∂Gf(z) is w∗-compact for each z ∈
X. Actually, if the assumption (i) holds, it is obvious. If the assumption
(ii) holds, ∂Gf(z) is w∗-closed and bounded. By using the Banach-Alaoglu
theorem, ∂Gf(z) is w

∗-compact. Then, we can check that

∂Ḡg(t) = {⟨z∗, y − x⟩ | z∗ ∈ ∂Gf((1− t)x+ ty)}.

By the assumption, at least one of the condition (i) or (ii) in Lemma 1 holds.
Hence, by using Lemma 1, there exist c ∈ (0, 1) and c∗ ∈ ∂Ḡf(c) such that
g(1)−g(0) = c∗. Put z = (1−c)x+cy, then c∗ ∈ {⟨z∗, y − x⟩ | z∗ ∈ ∂Gf(z)}.
Hence, there exists z∗ ∈ ∂Gf(z) such that f(y)− f(x) = ⟨z∗, y − x⟩.

Remark 2. Assumptions in Theorem 4 is similar to assumptions in Theo-
rem 1. If f has a differentiable generator, the condition (ii) in Theorem 4
is weaker than the condition (ii) in Theorem 1. However, in Theorem 1, we
assume that the generator is only lower left-hand Dini differentiable. Any-
way, these assumptions are satisfied when f is a lsc convex function with the
basic generator and domf ∗ is compact. For this reason, it seems that these
conditions are not so strong for quasiconvex programming.

6. Sufficient condition for a global minimizer

In convex analysis, equivalent conditions for a global solution were in-
vestigated by using the subdifferential. In quasiconvex analysis, many re-
searchers investigated optimality conditions by using some subdifferentials.
In [13], we investigate a necessary condition for a local solution by using the
Q-subdifferential.

In this section, we show a sufficient condition for a global solution of
quasiconvex programming problem.

Theorem 5. Let f be a lsc quasiconvex function with a generator G =
{(ki, wi) | i ∈ I} ⊂ Q × X∗, A ⊂ X be closed convex and x0 ∈ A. As-
sume that for all i ∈ I(x0), D−ki(⟨wi, x0⟩) > 0. If 0 ∈ ri∂Gf(x0) + NA(x0),
then, f(x0) = minx∈A f(x).

proof. At first, we can see that ri∂Gf(x0) = riclco{D−ki(⟨wi, x0⟩)wi | i ∈
I(x0)} = rico{D−ki(⟨wi, x0⟩)wi | i ∈ I(x0)} ⊂ co{D−ki(⟨wi, x0⟩)wi | i ∈
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I(x0)}. If 0 ∈ ri∂Gf(x0)+NA(x0), there exists x
∗ ∈ co{D−ki(⟨wi, x0⟩)wi | i ∈

I(x0)} such that −x∗ ∈ NA(x0). Hence, for all x ∈ X, there exists i ∈ I(x0)
such that D−ki(⟨wi, x0⟩) ⟨wi, x− x0⟩ ≥ 0. Since, ki is non-decreasing and
D−ki(⟨wi, x0⟩) > 0, f(x) ≥ ki ◦ wi(x) ≥ ki ◦ wi(x0) = f(x0). This completes
the proof.

Also, if co{D−ki(⟨wi, x0⟩)wi | i ∈ I(x0)} is w∗-closed andD−ki(⟨wi, x0⟩) >
0 for all i ∈ I(x0), then 0 ∈ ∂Gf(x0) +NA(x0) implies f(x0) = minx∈A f(x).
If f is a proper lsc convex function with basic generator, then these assump-
tions satisfy, and the following well known equivalence relation holds:

0 ∈ ∂f(x0) +NA(x0) ⇐⇒ f(x0) = min
x∈A

f(x).

7. The Q-subdifferential of the supremum of quasiconvex functions

Theorem 6. Let I be an index set, for each i ∈ I, gi be a lsc quasiconvex
function from X to R with generator Gi = {(ki

j, w
i
j) | j ∈ Ji} ⊂ Q × X∗,

g = supi∈I gi, G =
∪

i∈I Gi, x0 ∈ X and I(x0) = {i ∈ I | g(x0) = gi(x0)}.
Then, following conditions hold:

(i) G is a generator of g,

(ii) ∂Gg(x0) = cl co
∪

i∈I(x0)

∂Gi
g(x0).

proof. It is clear that (i) holds, and we only show the condition (ii). Let
v ∈ {D−k(⟨w, x0⟩)w | (k, w) ∈ G, g(x0) = k ◦ w(x0)}, then, there exists
(k0, w0) ∈ G such that

v = D−k0(⟨w0, x0⟩)w0 and g(x0) = k0 ◦ w0(x0).

Since G =
∪

i∈I Gi, there exists i0 ∈ I such that (k, w) ∈ Gi. Hence,

g(x0) ≥ gi0(x0) ≥ ki0wi0(x0) = g(x0),

that is, i0 ∈ I(x0) and v ∈ ∂Gi0
gi(x0). This implies that

∂Gg(x0) ⊂ cl co
∪

i∈I(x0)

∂Gi
g(x0).

Conversely, for all i ∈ I(x0) and v ∈ {D−k
i
j(
⟨
wi

j, x0

⟩
)wi

j | j ∈ Ji, g(x0) =

ki
j ◦ wi

j(x0)}, there exists j0 ∈ Ji such that v = D−k
i
j0
(
⟨
wi

j0
, x0

⟩
)wi

j0
and

g(x0) = ki
j0
◦ wi

j0
(x0). Since i ∈ I(x0), g(x0) = gi(x0) = ki

j0
◦ wi

j0
(x0), this

implies the converse inclusion.
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