島根大学地球資源環境学研究報告 **31**, 33~48 ページ (2012 年 12 月) Geoscience Rept. Shimane Univ., **31**, p.33~48 (2012)

Article

Geochemistry of stream sediments in the watersheds of Lake Shinji and Lake Nakaumi

Barry P. Roser*, Keisuke Matsuura*, Yosuke Kaino*, Norihiko Matsuo* Takamine Toda*, and Narantuya Purevjav*

Abstract

Lakes Shinji and Nakaumi are parts of an important fluvio-lacustrine and estuarine system in Shimane prefecture, SW Japan. The Hii River provides much of the detrital load to these lakes, but other smaller rivers and streams could also contribute significant detrital flux. To characterize the composition of this locally derived detritus, 33 stream sediment samples were collected form the linashi and lu Rivers, which feed into Lake Nakaumi. Thirty-one samples were also collected from the Tamayu and Kimachi Rivers, which enter Lake Shinji from the south, and from small streams that enter from the north. Twenty-five basement whole-rock samples (granitoids and volcanics) were also collected. Two size fractions (<180 and 180-2000 μ m) of the stream sediment samples and the whole rocks were analyzed by X-ray fluorescence for major element and 14 trace elements. Bulk compositions of the stream sediments were also calculated, based on the proportions of the size fractions. The results show that compositions of bulk main channel sediments and 180- $2000 \,\mu m$ fractions in the Iinashi, Iu, Tamayu and Kimachi Rivers are highly depleted relative to Upper Continental Crust (UCC), reflecting the composition of the granitoids that dominate their watersheds. In contrast, the $< 180 \,\mu m$ fractions in these rivers have compositions very similar to UCC, reflecting their clay and heavy mineral content. Bulk sediments and fractions in sediments from North Shinji streams show little internal contrast and UCC-like composition, reflecting their derivation mainly from Josoji and Furue Formation mudrocks. Stream sediments in tributaries containing only single lithotypes also show variable contrast between size fractions, with greatest fractionation in granitoid-derived sediments, and least in those derived from intermediate-acid volcanic rocks. The results overall show that suspended and bedload sediments supplied to Shinji and Nakaumi will vary spatially according to the geology of the river watersheds. Spatial geochemical variations may thus also occur within the lakes, by storage of coarser 180-2000 μ m detritus in the river deltas and at lake margins, and outwash of $<180 \,\mu$ m material to more distal sites of deposition.

Key words: Geochemistry, stream sediments, rivers, size fractions, Shimane

Introduction

By their very nature, stream and river sediments broadly reflect the composition of the lithologies present in their drainage basins. Studies of the bulk chemical compositions of river and stream sediments or of fractions of such sediments provide important and valuable baseline data. Such data can be used in many geological and environmental fields, including baseline environmental surveys, mineral exploration, and in construction of geochemical maps. However, the chemical composition of stream sediments does not necessarily directly reflect that of their source rocks. Factors including the extent of source area weathering, sorting and average grain size, localized heavy mineral concentration, and alluvial storage or flushing of fine material can cause large contrasts between the source and sediment composition. Many other factors may also influence compositions. Johnsson (1993) gives an excellent review of the influence exerted by the main factors and processes.

Recent studies of this type in Japan have concentrated on the preparation of geochemical maps, which have applications for environmental assessments and establishment of background levels of many elements, especially those with possible environmental impact (e. g. Shiikawa, 1991). Other studies have used stream sediment data for mineral exploration (e. g. Moritsuna, 1974; Yamamoto, 1999). Stream sediment data thus represents basic information which can be put to a number of uses.

Stream sediment studies are normally based on analyses of the $<180\,\mu$ m fraction of the bulk sediment (e. g. Koval *et al.*, 1995; Licht and Tarvainen 1996; Ferreira *et al.*, 2001; Amorosi *et al.*, 2002). This is done to minimize the effects of grain size, so that differences between the mean grain sizes of individual samples are reduced. However, the composition of the $<180\,\mu$ m fractions may not necessarily reflect the bulk composition of the source rocks, and hence original provenance signatures may be obscured.

Recent work in the San'in district by Ortiz and Roser (2006a, b) examined major and trace element provenance signatures in stream sediments from the Kando, Hino, and Hii Rivers. Major element and trace element analyses were made of two size fractions (<180 and 180-2000 μ m). The <180 μ m fractions were found to be depleted in SiO₂ and enriched in most other major and trace elements relative to the 180-2000 μ m fractions. These studies characterized the composition of the bedload in these three significant river

^{*}Department of Geoscience, Shimane University, Matsue 690-8504, Japan

systems. They also identified characteristic fingerprints of individual rock types in proximal tributaries, especially of adakitic detritus derived from Mt. Daisen and Mt. Sambe, of ultrabasic rocks in the headwater of the Hino River, and of Hata and Omori Formation volcanic rocks. The intensity of these provenance signatures varied depending on the position in the river, and the extent to which the sediments had been diluted by detritus derived from the granitoids that formed most of the basement in the area.

These studies aside, the data available for stream sediments from local rivers entering Lake Nakaumi and Lake Shinji is limited. The aim of this study is to report the geochemical compositions of stream sediments (<180 and 180-2000 µm fractions) from the Iu and Iinashi Rivers, both of which enter Lake Nakaumi, and from the Tamayu and Kimachi Rivers and small streams that supply sediments directly to Lake Shinji (Fig. 1). Nakaumi and Shinji collectively form a very important brackish lagoon system. Many studies of these lakes have examined their paleontology, hydrology, organic geochemistry and other aspects, but the only information on the composition of the sediments entering these water bodies is that for the Hii River given by Ortiz and Roser (2005). Although the Hii River supplies the bulk of the sediment flux to the Shinji-Nakaumi lagoon system, it is also useful to characterize the composition of the sediments supplied from the smaller rivers listed above. We also examine the fractionation between the size fractions, and elemental contrasts between source rocks and the stream sediments. The data contained in this report are a valuable resource for future studies of the Shinji-Nakaumi system.

Catchments and sample suites

Samples for this study were collected between March and May, 2008. Sampling was carried out only on fine days and when stream were clear, a minimum of two days after any significant rainfall.

Iinashi River

The Iinashi River valley lies to the west of the Hino River watershed, and is adjacent to that watershed in the southeast. The Iinashi flows into Lake Nakaumi (Fig. 1), whereas the Hino River discharges into Miho Bay. The Iinashi drainage basin has an area of $\sim 208 \text{ km}^2$, and therefore is much smaller than that of the Hino River (870 km²) and the Kando River basins (471.3 km²) studied by Ortiz and Roser (2006a, 2006b).

Hata Formation andesite is widely distributed in the west of the Iinashi catchment, whereas most of the rest consists of granitoids. Hata Formation is exposed in a small range of hills trending NW-SE and lying to the west of the main channel of the Iinashi River. Lithotypes in the Hata Formation include aphyric andesite and common hornblende plagioclase andesite; amphibole hornblende dacite lava is also present. Dacite pyroclastic flow sediments and volcanoclastic sediments also occur. Fube granite is widely distributed over the southern part of the catchment, as are the Shimokuno and Hiyodori granites (Kano *et al.*, 1993). Fube granite is distributed around Yasugi town in the Yasugi city district, and in Okutawara and Hirose town of the Yokota area, in a belt 22 km in length and 10 km in width, trending in a northeast-southwest direction. The lithofacies consists of medium-grained biotite granite, although some finer-grained varieties also occur in the eastern part. Petrologically the Fube granite is described as medium-grained biotite granite. The major minerals are quartz, K-feldspar, plagioclase, and biotite. QPK ratios are Q = 50% P=30%, K=40% (Kano *et al.*, 1993). Accessory minerals include iron oxide (magnetite), muscovite, apatite, and zircon.

Shimokuno granite is distributed in a long and slender belt running from the vicinity of Kisuki town (Sakamizu) to Daito, to the Yokota area northwest, and in the Matsue area. The belt trends to the northeast, and is over 23 km in length and 2-3 km in width. The Shimokuno granite is a fine-grained biotite granite, and major minerals include quartz, plagioclase, and K-feldspar, in the proportions Q=40%P=30%, K=50% (Kano *et al.*, 1993). Accessory minerals are represented by biotite, muscovite, iron oxide (magnetite), allanite, and zircon.

Hiyodori granite is distributed around the margins of the Daito granodiorite, and consists of biotite granite with accompanying amphibole-biotite granite. The type locality is in Daito town (Hiyodori) in the Imaichi area. The typical lithofacies consists of medium grained biotite granite. Plagioclase, quartz, K-feldspar, and biotite are the major minerals, along with iron oxides, apatite, and zircon as accessory minerals.

The sample suite for the Iinashi River consists of 16 stream sediment samples and seven basement rock samples (Fig. 1). Seven of the stream sediment samples were collected from the main channel (MC), and the remainder from tributaries dominated by single rock types (andesite or granite) or a mixture of the two. The basement rocks samples comprise two Hata andesites and five granitoids. Some granitoids were collected from mildly weathered outcrops, but would be representative of the material supplied to the river. Basement rock analyses contained in this report should not, however, be used for petrogenetic interpretation.

Iu River

The Iu River catchment is much smaller than that of the Iinashi (Fig. 1), with a drainage basin with an area of only \sim 33.1 km². Although the Iu River drainage basin is small, its geology is locally complex. The catchment is mainly floored by three rock types. Omori Formation dacite dominates in the lower reaches, and Kuri Formation rhyolites crop out in both the upstream and downstream regions. Hiyodori granite occupies the central part. The geological description given below is based on the report of Kano *et al.* (1993).

Omori Formation dacite is distributed in Okusa town, east

Fig. 1. Locations of Lakes Nakaumi and Shinji, the rivers sampled, and sample sites. Base figures from Google Maps.

Adakae, the east Matsue area, and Sakusa town to Tamayu town in Kasenzan. The Omori dacites are massive, but blocky andesite lavas with platy joints also occur. Kuri Formation rhyolite is distributed intermittently in the south of the Shinji belt. The Kuri rhyolites are represented by lavas and rhyolite volcanic breccia. The lithofacies consist of mudstone and rhyolite lava, along with pyroclastic rocks. Hiyodori granite is distributed around the margins of the Daito granodiorite in Daito, from Yakumo village (Kumano) north to Higashi Izumo town (Ichihara area).

The Iu River sample set consists of 17 stream sediments and eight outcrop samples. Four of the stream sediment samples were collected from the main channel, and the remainder from tributaries dominated by Kuri rhyolite (n = 5), granite (4), or a mixture of lithologies. The basements rocks samples consist of granites (4), Omori dacite (2) and Kuri rhyolite (2).

Tamayu and Kimachi Rivers

The Tamatsukuri and Kimachi valleys lie on the southern shore of Lake Shinji (Fig. 1). The Tamayu and Kimachi Rivers run almost perpendicular to the shore of Lake Shinji, and have catchments composed of Miocene volcanic and sedimentary rocks adjacent to the lake, and Paleogene granitoids further inland. The Miocene rocks occur in a strip 3-5 km wide, striking parallel to the southern shoreline of Lake Shinji and dipping gently to the north. The Miocene rocks distributed in the field area are mainly composed of the Kawai, Kuri, Omori and Fujina Formations, in ascending stratigraphic order (Kano *et al.*, 1991).

The Kawai Formation accumulated in terrestrial environments and is composed of conglomerate, sandstone derived from granites and andesite lavas, dacite pyroclastic flows and volcanic sediments. Kawai Formation is distributed from Matsue to the Imaichi area (Kano *et al.*, 1988, 1991). The Kuri Formation is of similar age, and interfingers with the Kawai Formation. The Kuri strata accumulated in a marine environment. Kuri Formation is composed of mudstone, dacite, rhyolite pyroclastic flow sediments, and lavas.

The Omori Formation unconformably overlies the Kuri Formation. The lower part of the Omori Formation is composed of andesite and dacite lavas erupted on-land or in a shallow sea, which are succeeded by conglomerate. The upper part of the formation is composed of sandstones deposited in beach or shallow marine environments. The sedimentary rocks are derived from the andesite lavas beneath, and some are interpreted as gravity flow sediments. The conglomerates contain abundant angular to subrounded andesite clasts, and pass upwards into medium grained volcaniclastic sandstones of the "Kimachi" horizon, noted locally as a building stone.

The Omori sandstones pass upward into the Fujina Formation, which is composed of siltstones and very fine-grained sandstones containing abundant plant material. Fujina Formation accumulated in a shallow sea to offshore marine environment.

The catchments of the Tamayu and Kimachi Rivers also contain Cretaceous to Paleogene granitoids in their upper reaches (as described above), and these more felsic lithotypes would have supplied the bulk of the bedload, especially in the Tamayu River. The sediments supplied from these two rivers will thus be a mixture of chemically intermediate and more felsic detritus.

Seventeen stream sediment samples were collected from the Tamayu (n=8) and Kimachi (9) rivers. Of these nine were from the main channels, and the remainder from tributaries dominated by granitoids (n=6) or Miocene sediments (2). The stream sediments in the lower reaches of the Tamayu River differed from those in the Kimachi River. The Tamayu sediments were quite fine grained (fine-medium sand), and were obviously rich in quartz and feldspar. In contrast, the Kimachi River sediments were often coarser, and had a greater proportion of rock fragments, and contained much less fine-grained material.

North Shinji Rivers

Shimane Peninsula trends roughly east-west, and consists of a rugged range of hills ranging up to 358 m (Mt. Honguusan) in altitude. Streams running into Lake Shinji thus trend roughly north-south, and are relatively straight and evenly spaced along the northern shore of the lake (Fig. 1). Steepest gradients occur in the northern part of the peninsula. Streams in the southern part have shallow gradients and occupy valleys with flat floors that are used for rice cultivation. Samples were collected from a 30 km by 10 km rectangular zone on the northern shore of Lake Shinji. Three main formations crop out in the field area. These are the Koura, Josoji and Furue Formations, in ascending stratigraphic order. The formations also trend east to west, following the topographic trend of the peninsula.

Koura Formation is mainly distributed along the northern coast of Shimane Peninsula. These outcrops lie on the northern side of the drainage divide in the peninsula, and so would not contribute any sediment to Lake Shinji. However, two bodies of Koura Formation occur in uplands in the headwaters of the Ono and Aika Rivers, and these could contribute some detritus to the middle part of Lake Shinji. The Koura Formation consists mainly of interbedded sandstones and argillaceous rocks (Kano *et al.*, 1991). Some conglomerates also occur, and 10-20 m beds of acid tuff and andesite volcanic breccia are also present.

Josoji Formation is extensively distributed in the study area, running in an east-west belt in the mountainous districts in the central part of the peninsula. The formation is lithologically complex, consisting of black argillaceous rocks, rhyolite lavas, volcaniclastic rocks, and some andesite lava (Kano *et al.*, 1991). The rhyolites from a large mass in the west of the field area around Ofunayama and Higasen near Hirata town; a second mass is also found in the east around Josoji and Asahiyama. Several smaller bodies also occur in the Ono and Ino rivers. The rhyolite pyroclastic rocks consist of graded pumice lapilli tuffs and tuff. These form layers of several centimeters to several meters in thickness, alternating with tuffaceous sandstone and argillaceous rocks. However, black shales form the bulk of Josoji Formation in the central part of the peninsula.

Furue Formation is widely distributed in Shimane Peninsula, cropping out in a series of low hills in an east-west trending belt running along the northern shore of Lake Shinji. The thickness of the formation is about 600-900 m in the west, thinning to about 450 m in the east side (Kano *et al.*, 1991). The lithofacies are mainly black or grey mudstones or silt-stones. Lamellae of rhyolite tuff and sandstone may also be present.

Miocene dolerites occur as sheets and intrusive bodies in the Josoji and Koura Formations. The largest body is found in the hills between the headwaters of the Ono and Aika rivers, intruding both the Koura and Josoji Formations. Although the dolerites are not volumetrically abundant, their more mafic chemistry may impact on the composition of the stream sediments.

Most of the Furue outcrops observed in this area were moderately weathered and bleached to a pale grey or cream shade, and slaking and incipient spheroidal weathering were common. The ease with which Furue mudstones weather accounts for the form of the low rounded hills in this belt. The distribution of the Furue Formation also corresponds with the widest parts of the valleys, and cultivation of rice in paddy fields. In much of this zone the watercourses were completely concreted, and no stream sediment samples could be collected.

Fourteen stream sediment samples were collected from the upper reaches of eight small rivers that flow into Lake Shinji, along with 10 samples from source rock outcrops. Of the stream sediments analyzed, three were derived from streams draining mixed Josoji mudstone-rhyolite source rocks, three from Josoji rhyolites, five from Josoji mudstones, and three from Furue mudstones. The fine-grained nature of the source rocks meant insufficient 180-2000 μ m fraction could be separated for analysis at six sites, and in one sample insufficient <180 μ m fraction could be recovered. The basement rocks analyzed comprise five Josoji rhyolites, four Josoji mudstones, and one Furue mudstone.

Sampling Method and Treatment

Stream sediment sampling was carried out using the same method in all four areas. At each site 4-8 sub-samples were collected from free-flowing active channels, using a plastic water scoop. The sub-samples were collected over a channel length of ~50 m, where possible from both sides of the stream, and combined as a single representative sample. Sites where sediments were impounded by dams or weirs were avoided, as were sites where heavy minerals could accumulate. Sample weights varied according to the texture of the sediments at individual sites, with as little as 500 g collected from sites where sediments were well-graded, and up to 1500-2000 g where bedload was coarse.

The bulk stream sediment samples were dried in stainless steel trays at 110°C for several days, and then homogenized by coning and quartering. Samples were then dry sieved to remove granules and pebbles coarser than 2 mm. The resulting <2 mm fraction was then split using a simple aluminum chute. The splits of the $<2 \,\text{mm}$ fractions were then hand sieved through stainless steel sieves to separate the <180 and $180-2000\,\mu\text{m}$ fractions. The number of splits sieved varied with the grain size of the individual sample, with sieving continuing until sufficient weight (10 g) of the $<180 \,\mu$ m had been separated. Weights of the two fractions at each site were recorded so the bulk compositions at each site could be approximated based on their proportions. Ten gram splits of the $< 180 \,\mu m$ fractions were then ground in an automatic agate pestle and mortar for 15 min. The larger $180-2000 \,\mu m$ fractions were crushed for approximately 30-45 seconds in a tungsten carbide ring mill.

Whole rock samples were reduced to < 1 cm chip using a manual hydraulic rock splitter. Chip containing veins or strongly weathered samples, but pervasively weathered chip was retained, as representative of the material transported to the rivers. The chipped samples were washed in distilled water to remove any dust, and dried at 110°C for 24 h before crushing in a tungsten carbide ring mill as above.

XRF analysis

Splits of both fractions were then stored in glass vials and dried at 110°C for at least 24 hours before determination of loss on ignition (LOI). Gravimetric LOI determinations were made by weighing the dried samples into ceramic crucibles, followed by ignition in a muffle furnace at 1000°C for at least 2 hours. Loss of ignition was then calculated from the net weight loss. The ignited material was then manually crushed in an agate pestle, and dried at 110°C for at least 24 hours. This ignited material was used for preparation of glass fusion beads for the XRF analysis.

All analyses were made on beads prepared with an alkali flux consisting of 80% lithium tetraborate and 20% lithium metaborate, using a sample to flux ratio of 1:2 (Kimura and Yamada, 1996). The beads were then analyzed for major elements and 14 trace elements using a Rigaku RIX2000 XRF at Shimane University, based on the instrument conditions and calibration described by Kimura and Yamada (1996). In each batch of samples, calibration and drift were monitored using a secondary set of 10 rock standards produced by the Geological Survey of Japan, with compositions ranging from basalt to granite, and also two shales. This range in composition matched that observed in the stream sediments and the whole rock samples. Additional descriptions of the sample preparation and analytical methods used here are given by Roser et al. (1998, 2000, 2003), and Ortiz and Roser (2004a, b; 2005).

Results

The results for each river are summarized in Table 1 (anhydrous basis), with averages given for bulk sediments, and for the 180-2000 and $< 180 \,\mu m$ fractions. Separate averages are given for main channel samples (MC), for tributaries dominated by single lithologies, including granitoids (GD), volcanic rocks (VD), and sedimentary rocks (SD), and for the granitoids and volcanic rocks analyzed. No averages are given for tributaries with mixed sources, but compositions of these are likely to be close to those of the main channels. The main channel samples are most representative of the bulk sediment bedload entering Lakes Shinji and Nakaumi from these local sources. Averages for the $< 180 \,\mu m$ fractions are more likely to represent the composition of the suspended sediment carried into distal parts of the lakes, whereas the $180-2000 \,\mu m$ fractions will be representative of the coarser bedload deposited in the river deltas and around the lake shores.

Results for the two fractions and calculated bulk compositions are listed in Table 2. Results for both fractions are reported for all samples except for six from North Shinji, in which insufficient sample could be recovered for analysis of both fractions. In these cases the fraction analyzed is also reported as the bulk composition. Proportions of the fractions in individual samples are listed in Table 3. In the linashi, Iu, Tamayu and Kimachi Rivers the 180-2000 μ m fraction was by far the largest, ranging from 63.6% to 99.7% of the total <2000 μ m sample, averaging 94.1%. The 180-2000 μ m fraction also formed 96.6% of the sample in the 10 North Shinji samples from which both fractions could be recovered.

Discussion

The results show that average compositions of the fractions and bulk sediments show considerable variation between the rivers (Table 1). Average SiO₂ contents range from 63.10 wt% (Tamayu MC < 180 µm) to 81.46 wt% (Iinashi GD 180-2000 μ m), and those for Al₂O₃ from 10.54 wt% (Iinashi GD 180-2000 µm) to 18.62 wt% (Kimachi MC $< 180 \,\mu$ m). Ranges of averages for other major elements show even greater proportional contrast (e.g. TiO₂ 0.15-0.87 wt%; Fe₂O₃ 0.95-10.65 wt%; MgO 0.25-2.34 wt%; CaO 0.24-2.47 wt%; Na₂O 0.97-4.09 wt%; K₂O 1.89-4.29 wt%; Table 1). For these elements, average abundances are higher in the $< 180 \,\mu m$ fractions, reflecting association with the clay fraction. Several trace elements show comparatively limited contrasts between fractions, with averages for Ba ranging from 401-550 ppm, Rb from 65-170 ppm, and Sr from 55-242 ppm (Table 1), suggesting presence both in feldspars and in clays. Elements likely to reside in heavy minerals (Zr, 52-786 ppm; Ce 18-103) and Fe-oxides or ferromagnesian phases (Cr, 5-149 ppm; Ni 4-52 ppm; V, 7-197 ppm) also show very large variations, with highest concentrations in the $< 180 \,\mu m$ fractions. This is also the case for most of the remaining trace elements.

The differences in the averages noted above are caused by a combination of the varying proportions of lithotypes in individual catchments, variable weathering, and mineralogical fractionation between quartz, feldspar and lithic-rich 180-2000 μ m fractions and clay-rich < 180 μ m fractions. To compare the compositions of the sediments in the individual rivers, average MC values were normalized against the Upper Continental Crust (UCC) composition of Taylor and McLennan (1985).

The UCC_N patterns for the MC bulk compositions of the Iinashi, Iu, Tamayu and Kimachi Rivers have very similar shapes, with nearly all elements except SiO₂ being depleted relative to UCC (Fig. 2). Depletion is particularly marked for the mobile elements CaO, Na2O and Sr, all of which are liable to loss during weathering (Nesbitt and Young, 1984), and for ferromagnesian elements (MgO, Fe₂O₃, TiO₂, Ni, Cr, V) which are typically strongly depleted in felsic volcanic rocks such as granites. The Iinashi MC sediments, with the largest area of granitoids in its source, show the greatest depletion in these elements, whereas the Kimachi River shows the least. These features suggest the bulk sediment composition in these four rivers is mainly determined by the volume of granitoids in their sources south of Lake Shinji and Lake Nakaumi. In contrast, the UCC_N pattern for the MC sediments in the small streams north of Lake Shinji is almost flat, with elements in the segment Nb-Al₂O₃ being present in abundances similar to or slightly less than UCC, whereas the ferromagnesians Sc-V are only slightly enriched (Fig. 2). The most notable depletion is for CaO. This depletion and the flat pattern overall is consistent with inheritance from the Josoji and Furue shales which form most of the Shimane Peninsula source. The contrast between the patterns for North Shinji and Tamayu-Kimachi shows the sediments

Fig. 2. Average compositions of main channel bulk sediments normalized against the average Upper Continental Crust (UCC) values of Taylor and McLennan (1985). Elements are arranged from left to right following increasing order of normalized abundance (UCC_N) in average Mesozoic-Cenozoic greywacke (Condie, 1993), following the method of Dinelli *et al.* (1999). Major elements are normalized as oxides, trace elements as ppm. Stream sediment averages from Table 1.

entering Lake Shinji from the north and south have very different compositions. This could lead to spatial variation in the composition of sediments deposited within the lake.

Spidergrams were also prepared to examine the composition of the two fractions in the MC sediments in each river (Fig. 3). For all except the Tamayu and Kimachi Rivers, these were also compared with average whole-rock data for the main lithotypes in the catchments. The patterns for the two fractions in the Iinashi River show marked separation, with the 180-2000 μ m fraction showing significant depletion relative to UCC, and an overall pattern closely matching that for the granitoids in the catchment (Fig. 3a). In contrast, the $< 180 \,\mu m$ pattern is more UCC-like, similar to that for Iinashi volcanics, and shows marked enrichment in Zr and Th relative to both UCC and the 180-2000 μ m fraction. These features suggest the composition of the coarser fraction is dominated by quartz and feldspar derived from the source granitoids, whereas that of the finer fraction is controlled by clays derived from both the granitoids and the bimodal (andesite-rhyolite) volcanics, plus heavy mineral concentration (zircon) contributing higher amounts of Zr and Th. Preferential deposition of the 180-2000 μ m fraction in the Iinashi delta, and more distal deposition of the $< 180 \,\mu m$ fraction in central Lake Nakaumi will increase geochemical fractionation in this fluvial-lacustrine system. Provenance signature in the finer size grade will thus be obscured.

A similar pattern is observed for the Iu River fractions,

with the 180-2000 μ m fraction average closely matching the composition of the granitoids in the catchment (Fig. 3b). The Iu volcanic average is also a good match, reflecting the highly felsic nature (rhyolite-dacite) of the volcanic rocks in the area, compared to intermediate Hata volcanics in the western Iinashi watershed. As with the Iinashi, the Iu <180 μ m fraction average is compositionally similar to UCC, but with no significant depletion in the ferromagnesian elements. Consequently, suspended sediment supplied to central Lake Nakaumi from the Iu River will also have a more mafic (UCC-like) composition than coarser bedload deposited in the Iu delta.

The UCC_N patterns for the Tamayu and Kimachi 180-2000 and < 180 μ m fractions are strikingly similar (Fig. 3c). The < 180-2000 μ m patterns show an overall downward trend from Nb to V, and only moderate depletion relative to UCC compared to the Iinashi and Iu. This probably reflects dampening of the influence of granitoid detritus by the greater proportion of geochemically intermediate Omori rocks in the area. The < 180 μ m fractions have almost flat patterns, close to UCC (Fig. 3c). The most obvious anomaly is strong enrichment in Zr, and to a lesser extent Th. This is most likely due to zircon concentration, which have been shown to be concentrated in this fraction in sediments from the Hino River (Ortiz and Roser, 2006b). The higher peak for Zr than in the Iinashi and Iu Rivers may be due to finer sizing of zircons in Tamayu-Kimachi granitoids, as is most

Fig. 3. UCC_N plots for 180-2000 and < 180 μ m fraction averages in the (a) linashi, (b) Iu, (c) Tamayu and Kimachi Rivers, and (d) North Shinji streams, compared to local granitoid and volcanic source rock averages. Method as in Fig. 2.

of the quartz-feldspar detritus in the rivers draining the latter. The similarity of the trends in the Tamayu and Kimachi, and lesser variation between the fractions, compared to the variability and fraction contrast in the Iinashi and Iu, is also probably a product of their smaller catchment areas, and significant extent of Omori rocks on the south side of Lake Shinji.

The single-channel 180-2000 and < 180 μ m fractions from North Shinji show almost identical trends, with slightly concave patterns, close to UCC composition (Fig. 3d). Fractionation between the two fractions is low, with a relative enrichment in CaO in the $< 180 \,\mu m$ fractions being the only major difference. This apart, the average pattern for Josoji and Furue mudstones is quite similar, whereas Josoji rhyolites show very evolved patterns, with strong depletion in CaO, Sr, MgO, and ferromagnesian elements in the segment Sc-V. The patterns for the North Shinji stream sediments are compatible with a mix of these three main sources, although Josoji mudstones obviously dominate the source. The apparent enrichment in CaO in the $<180\,\mu m$ fractions cannot be accounted for by such a mix, however. The cause of this anomaly is unknown. Nevertheless, the patterns for the North Shinji fractions compared to those from the Tamayu and Kimachi Rivers further highlight the differing compositions of sediments supplied to Lake Shinji from its northern and southern shores.

Potential fractionation between source rocks and stream sediment fractions in tributaries dominated by single rock types was also investigated. UCC_N patterns for granitoid-derived (GD) $180-2000 \,\mu\text{m}$ fractions in the Iinashi, Iu, and Tamayu Rivers are highly evolved, with marked depletion for CaO, Sr, MgO and Sc-V (Fig. 4a). These compare very well with the patterns for local granitoids, confirming that the dominant coarse fraction is the best indicator of provenance. The $< 180 \,\mu m$ fractions have patterns closer to UCC, with significant depletion only for Ni and Cr, and hence fractionation between the splits is significant. In contrast, patterns for volcanic-sourced (VD) fractions in tributaries in the Iinashi and Iu show little difference, and also compare very well with average volcanic source rocks in these areas (Fig. 4b). These features show that chemical fractionation is more advanced in granitoid-derived suites, with the opportunity to separate coarse-grained unitary quartz and feldspar detritus from finer-grained clay weathering products depleted in mobile elements. In sediments derived from volcanic sources, in the coarser size grades bulk chemistry is determined by the proportions among volcanic lithics, whereas in the $< 180 \,\mu m$ fraction composition is controlled by the weathering products of the same lithic assemblage, leading to reduced contrast between the size fractions.

The contrasts in composition seen in the fractions in the tributaries are produced by their contrasting plutonic and volcanic lithotypes. Nevertheless, homogenization of the tributary provenance signatures in the main channels reduces this fractionation, to the extent where original fingerprints

for tributaries draining only (a) granitoids, and (b) volcanic rocks, compared to the local source rock averages. Method as in Fig. 2.

of the original volcanic sources may be obscured, as in the lower reaches of the Iinashi and Iu Rivers (Fig. 2). In smaller catchments, such as the Tamayu and Kimachi, higher proportions of volcanic sources may remain evident.

Conclusions

The results show that average compositions of the 180-2000 and $< 180 \,\mu m$ fractions and bulk sediments show considerable variation between the rivers. Bulk main channel stream sediments from the Iu, Iinashi, Tamayu and Kimachi Rivers have broadly similar compositions, with depleted UCC_N patterns reflecting derivation from petrogenetically evolved granitoid sources. Fractionation between the 180-2000 and $<180\,\mu$ m fractions is significant, with granitoid-like signatures in the former, and UCC-like compositions in the latter. In contrast, main channel sediments from small streams in North Shinji have flat UCC_N patterns, reflecting derivation mainly from Josoji Formation shales, and 180-2000 and $< 180 \,\mu m$ fractions have similar compositions. Compositions of fractions derived from small tributaries draining only single lithologies also show variation. The coarser fractions of sediments in tributaries draining granitoids have similar composition to their source rocks, whereas the $< 180 \,\mu m$ fractions show

relative concentration of Zr, Th and elements associated with Fe-oxides and ferromagnesian minerals (Sc, Fe, Ti, Ni, Cr, and V). Fractions derived from volcanic rocks show little contrast in composition. These features suggest that suspended and bedload sediments supplied to Lakes Shinji and Nakaumi vary spatially, and that spatial geochemical variations may also occur in the lakes. Such variation would be produced by storage of coarser 180-2000 μ m detritus in the river deltas and at lake margins, and outwash of < 180 μ m material to more distal sites of deposition.

References

- Amorosi, A., Centineo, M. C., Dinelli, E., Lucchini, F. and Tateo, F., 2002, Geochemical and mineralogical variations as indicators of provenance changes in Late Quaternary deposits of SE Po Plain. *Sedimentary Geology*, 151, 273-292.
- Condie, K. C., 1993, Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. *Chemical Geology*, **104**, 1-37.
- Dinelli, E., Lucchini, F., Mordenti, A. and Paganelli, L., 1999, Geochemistry of Oligocene-Miocene sandstones of the northern Apennines (Italy) and evolution of chemical features in relation to provenance changes. *Sedimentary Geology*, **127**, 193-207.
- Ferreira, A., Inacio, M. M., Morgado, P., Batista, M. J., Ferreira, L., Pereira, V. and Pinto, M. S., 2001, Low-density geochemical mapping in Portugal. *Applied Geochemistry*, **16**, 1323-1331.
- Johnsson, M. J., 1993, The system controlling the composition of clastic sediments. *Geological Society of America Special Paper*, 284, 1-19.
- Kano, K., Takeuchi, K. and Matsuura, T., 1991, Geology of the Imaichi district. *Quadrangle series (scale 1: 50 000) Okayama*, 12, 16.
- Kano, K., Yamauchi, S., Takayasu, K. and Matsuura, H., 1993, Geology of the Matsue district. *Quadrangle series (scale 1:50,000) Okayama*, 12, 17.
- Kimura, J-I. and Yamada, Y., 1996, Evaluation of major and trace element analyses using a flux to sample ratio of two to one glass beads. *Journal of Mineralogy, Petrology and Economic Geology, Japan*, 91, 62-72.
- Koval, P. V., Burenkov, E. K. and Golovin, A. A., 1995, Introduction to the program 'Multipurpose Geochemical Mapping of Russia'. *Journal of Geochemical Exploration*, 55, 115-23.

Licht, O. A. B. and Tarvainen, T., 1996, Multipurpose geochemical exploration

data sets in the Parana Shield, Brasil. *Journal of Geochemical Exploration*, **56**, 167-182.

- Moritsuna, S., 1974, Relationship between the percentages of cold-extractable copper to total copper in stream sediments and copper deposits. *Mining Geology, Japan*, 24, 401-406.
- Nesbitt, H. W. and Young, G. M., 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. *Geochimica et Cosmochimica Acta*, 48, 1523-1534.
- Ortiz, E. and Roser, B. P., 2004a, Major and trace element abundances in the sand fractions of stream sediments from the Kando River, Shimane Prefecture, Japan. *Geoscience Reports of Shimane University*, 23, 17-25.
- Ortiz, E. and Roser, B. P., 2004b, Major and trace element abundances in the fine and sand fractions of stream sediments from the Hino River, northern San-in District, Japan. *Geoscience Reports of Shimane University*, 23, 27-37.
- Ortiz, E. and Roser, B. P., 2005, Major and trace element abundances in <180 and 180-2000 μ m fractions of stream sediments from the Hii River, Shimane Prefecture, Japan. *Geoscience Reports of Shimane University*, **24**, 53-58.
- Ortiz, E. and Roser, B. P., 2006a, Major and trace element provenance signatures in modern stream sediments from the Kando River, San'in district, SW Japan. *The Island Arc*, **15**, 223-238.
- Ortiz, E. and Roser, B. P., 2006b, Geochemistry of stream sediments from the Hino River, SW Japan: source rock signatures, downstream compositional variations, and influence of sorting and weathering. *Chikyu Kagaku (Earth Science)*, **60**, 131-146.
- Roser, B. P., Sawada, Y. and Kabeto, K., 1998, Crushing performance and contamination trials of a tungsten carbide ring mill compared to agate grinding. *Geoscience Reports of Shimane University*, **17**, 1-11.
- Roser, B. P., Kimura, J.-I. and Hisatomi, K., 2000, Whole-rock elemental abundances in sandstones and mudrocks from the Tanabe Group, Kii Peninsula, Japan. *Geoscience Reports of Shimane University*, **19**, 101-112.
- Roser, B. P., Kimura, J. I. and Sifeta, K., 2003, Tantalum and niobium contamination from tungsten carbide ring mills: much ado about nothing. *Geoscience Reports of Shimane University*, 22, 107-110.
- Shiikawa, M., 1991, Geochemical maps of various areas. *Chikyu Kagaku (Geochemistry)*, 25, 101-125.
- Taylor, S. R. and McLennan, S. M., 1985. The continental crust: its composition and evolution. Oxford, Blackwell Scientific, 312 p.
- Yamamoto, K., 1999, Stream sediment exploration at the Esashi prospect, Hokkaido, Japan. *Resource Geology*, 49, 109-116.

(Received: Oct. 30, 2012, Accepted: Nov. 30, 2012)

42

(要 旨)

Roser, Barry P.・松浦圭祐・貝野陽介・松尾典彦・戸田雄峰・Purevjav, Narantuya, 2012 宍道湖・中海 流域河川堆積物の地球化学. 島根大学地球資源環境学研究報告, 31, 33-48.

宍道湖及び中海は島根県における重要な汽水湖 - 河口システムを形成している. 斐伊川は多量の 砕屑物をこれらの湖に供給しているが、他の小規模な河川も砕屑物の供給に重要な役割を果たして いる. 地域ごとの砕屑物の組成を特徴づけるために、中海に流入する飯梨川と意宇川から 33 の河川 堆積物試料を採取した.また、宍道湖に南方から流入する玉湯川及び来待川、北方から流入する小 河川から21 試料を採取した. さらに基盤岩(花こう岩類及び火山岩類)を25 試料採取した.2つ に区分した粒径(<180 µm と 180-2000 µm)の河川堆積物試料と基盤岩について蛍光 X 線分析装置 を用いて主要元素及び14の微量元素の分析が行われた.また、粒径分布をもとにして河川堆積物の 全岩組成も計算された.飯梨川,意宇川,玉湯川及び来待川の堆積物全岩組成及び180-2000 µm 粒 径の組成は、流域に広く分布する花こう岩類の組成を反映して上部大陸地殻(UCC)に比べて著し く枯渇している.対照的に <180 µm の粒径のものは、粘土及び重鉱物含有量を反映して UCC の組 成によく似ている。宍道湖北方の小河川堆積物の全岩及び粒径別組成はいずれもよく似た組成傾向 を示し、UCC に似た組成である.これはこれらの堆積物が主に成相寺累層及び古江累層の泥岩に由 来することを反映している。単一岩相中の支流の河川堆積物は、粒径の違いによりさまざまな相違 を示す. 花こう岩類から由来する河川堆積物では最も分別が大きく, 反対に中性~酸性火山岩に由 来する堆積物では分別が最小となる。これらの結果は宍道湖・中海に供給された懸濁物質及び堆積 物は河川流域の地質の違いによって地域的に多様性をもつことを示している。湖における地域的な 地球化学的性質の多様性は, 180-2000 µm 粒径の粗粒の砕屑物は湖沿岸の河川デルタに堆積し, 粒径 <180µmの細粒砕屑物はより沖合に堆積することによって引き起こされる.

North-	
reams in the	
ers, and st	
imachi Riv	
tyu, and K	
Iu, Tame	
ne Iinashi,	
es from th	
ock sampl	
d whole r	
sitions, an	ats ppm.
ulk compo	ace elemei
culated bu	ts wt%, tra
nents, cal	or elemen
ream sedir	rous), maj
tions of st	sis (anhyd
idual frac	alyzed bas
s of indiv	n an as-an
omposition	reported o
Average co	trea. Data
Table 1. /	Shinji â

Abbreviations: S = 180-2000 micron fraction; F = <180 micron; Bulk -bulk compositions calculated from fraction proportions; MC = main channel; VD = volcanic-derived; GD - granitoid derived; SD = sediment derived. n - number of samples.

u	SiO	ŐI	Al ₂ O,	Fe,O,	MnO	OpM	CaO	Na ₂ O	К,О	P,O,	SUM	Ba	0 O	Ğ	dN b	Z	Pp	Rb	Sc	Ś	Ļ	>	≻	Zr
~	78.79	0.18	11.81	1.23	0.05	0.33	0.59	2.16	4.26	0.02	99.41	495	22	- 60	8	4	212	166	3.6	68	8.9	13	14	88
\sim	79.06	0.16	11.66	1.14	0.04	0.32	0.57	2.12	4.29	0.01	99.39	498	19	10	8	4	21	168	3.4	87	7.9	5	12	56
~	68.26	0.60	17.11	4.31	0.14	0.68	1.38	4.09	3.48	0.06 1(00.10	401 1	03 3.	4 18	3 20	7	21	139	8.5	146	33.0	78	41	402
ო	81.16	0.17	10.67	1.05	0.03	0.27	0.25	1.47	4.22	0.02	99.31	472	20	6	6	5	17	169	4.1	56	7.4	6	4	59
ო	81.46	0.15	10.54	0.95	0.03	0.25	0.24	1.44	4.23	0.02	99.30	473	18	с, С	6	5	17	170	3.8	55	7.1	7	4	52
ო	67.32	0.87	17.23	5.63	0.15	1.10	0.83	3.05	3.65	0.12	96.96	410	76 3	۵۵ ۳	3 18	15	19	146	14.8	120	19.8	114	43	343
ო	68.34	0.85	15.14	8.30	0.23	1.80	0.84	2.00	2.59	0.13 10	00.23	433	31 2	4	. 7	ø	36	100	21.2	122	4.4	160	19	133
ო	68.41	0.85	15.07	8.36	0.23	1.81	0.84	1.97	2.56	0.13 10	00.25	431	30 2.	4	- 7	œ	36	66	21.3	122	4.1	161	19	130
ო	64.93	1.15	17.57	7.58	0.20	1.52	1.04	2.79	3.01	0.14	99.94	449	58 5	2	9 14	16	25	118	21.5	126	12.5	173	30	231
2	57.24	1.31	18.00	10.77	0.25	3.51	2.63	2.92	2.97	0.28	99.87	482	34 1.	7 2,	9	10	13	92	32.6	212	3.9	233	27	159
2	76.79	0.17	12.95	0.98	0.02	0.28	0.45	3.39	4.29	0.01	99.33	488	55	4	10	ი	18	168	3.8	20	16.5	œ	24	93
4	79.29	0.31	11.35	2.72	0.20	0.62	0.63	1.41	2.97	0.05	99.54	438	24 1.	4	9	9	21	104	8.3	06	7.0	42	17	94
4	79.54	0.29	11.19	2.69	0.17	0.61	0.62	1.40	2.97	0.05	99.53	438	23 1:	ω 	9	9	21	105	8.3	89	7.0	41	16	92
4	69.68	0.85	15.19	6.26	0.45	1.16	1.48	1.98	2.71	0.14	<u>99.89</u>	475	66 51	5	3 11	21	29	100	14.8	137	14.3	129	34	324
4	78.55	0.26	11.78	2.30	0.07	0.57	0.67	1.74	3.59	0.04	99.57	517	24 1	°°	9	7	28	111	6.5	100	7.5	36	12	91
4	78.76	0.25	11.69	2.22	0.07	0.56	0.66	1.73	3.61	0.04	99.56	517	23 1	.0	8	9	28	112	6.5	66	7.3	34	12	86
4	67.38	0.79	16.72	6.59	0.24	1.37	1.54	2.18	2.93	0.15	99.89	514	68 6	1	3 11	21	35	101	15.8	144	12.8	139	30	374
2	76.62	0.41	13.46	4.20	0.15	0.96	0.65	1.22	2.36	0.06 10	00.08	456	29 18	8	3 7	8	25	87	10.8	66	6.8	68	18	136
2	76.72	0.40	13.44	4.16	0.14	0.95	0.63	1.22	2.37	0.06 10	00.10	458	29 1	7 13	3 7	œ	25	87	10.6	97	6.6	99	18	131
2	74.75	0.67	13.71	5.06	0.18	1.05	1.00	1.27	1.94	0.09	99.72	408	48 3.	4	6	13	25	77	12.6	121	7.6	101	23	251
4	74.70	0.46	14.13	2.97	0.04	0.76	1.47	2.69	2.79	0.05 10	00.06	387	27	9 12	1 7	с	35	83	12.0	134	5.8	63	15	152
4	74.92	0.38	15.33	2.72	0.05	0.79	0.12	1.41	4.32	0.05 1(00.07	872	33	3	9	9	25	122	9.8	63	7.0	45	14	124
4	76.09	0.28	12.44	2.91	0.06	0.73	1.44	2.29	3.11	0.03	99.38	430	36 1	~ ~	4	9	1 4	82	4.3	215	7.3	47	6	161
4	77.36	0.23	12.12	2.25	0.04	0.62	1.33	2.25	3.18	0.02	99.39	433	28	2	4	2	14	83	3.0	213	5.5	31	ø	73
4	63.10	0.81	16.99	8.83	0.23	1.92	2.47	2.49	2.46	0.16	99.47	430 1	02 6	9 18	3 10	21	22	78	17.3	242	19.5	179	29	786
4	75.50	0.35	13.32	3.07	0.09	0.79	1.31	1.86	3.23	0.04	99.56	460	31 1	0,10	3 5	7	22	89	4.5	182	5.8	47	10	129
4	76.62	0.29	12.92	2.54	0.07	0.70	1.22	1.84	3.32	0.03	99.56	461	25 1:	2	3 5	9	21	06	3.5	173	4.5	35	б	79
4	64.10	0.80	17.74	7.88	0.26	1.71	2.31	2.30	2.46	0.16	99.71	468	90 2	4	9 10	19	31	79	15.8	220	15.5	155	27	389
5	78.24	0.33	11.81	3.54	0.13	0.75	0.88	1.02	2.99	0.06	99.76	412	40 1	3	9	80	17	86	5.2	121	7.4	45	£	177
S	79.89	0.29	11.09	2.92	0.11	0.68	0.77	0.97	3.03	0.04	99.80	404	34 1	5	0 5	7	16	87	4.2	115	6.2	34	10	96
S	63.46	0.70	18.62	8.55	0.36	1.41	1.92	1.86	2.72	0.20	99.82	487	88 4	9 18	3 10	25	26	86	12.8	188	14.4	128	27	339
2	75.02	0.39	12.72	4.87	0.19	0.92	1.24	1.16	2.94	60.0	99.53	475	35 1	÷	5	7	19	85	8.5	148	7.0	78	15	134
2	77.08	0.34	11.83	3.91	0.15	0.76	1.21	1.21	3.04	0.05	99.57	465	29 1	,-	5	5	19	86	6.5	148	5.5	64	12	00
2	61.60	0.84	18.21	10.66	0.45	1.86	1.90	1.29	2.53	0.26	99.61	550	80 51	1	6	21	22	86	19.0	173	14.0	183	31	518
ø	71.66	0.92	14.08	5.66	0.11	1.90	1.61	1.32	1.98	0.15 9	99.39	474	43 9.	7 15	5 12	36	19	73	19.2	169	6.4	120	23	163
ß	71.25	1.04	13.82	5.50	0.12	2.15	1.86	1.48	1.92	0.14	99.28	461	41 12	1	112	43	18	65	20.9	183	5.9	127	22	169
ø	67.65	1.93	14.77	7.40	0.16	2.34	1.85	1.27	1.89	0.21	99.46	463	49 14:	9 16	3 20	52	22	74	21.9	174	7.1	197	25	222
2	73.74	0.71	15.18	5.15	0.02	1.20	0.17	0.65	2.66	0.06	99.53	751	57 6	9 18	11	15	25	118	22.5	81	8.9	136	26	159
5	79.00	0.22	12.23	1.40	0.02	0.11	0.10	5.00	1.88	0.01	96.96	370	41	2 12	5	2	12	39	5.8	54	5.9	4	24	144

Table 2. XRF analyses of individual fractions of stream sediments, calculated bulk compositions, and whole rock samples from the Iinashi, Iu, Tamayu, and Kimachi Rivers, and streams in the North Shinji area. Data reported on an as-analyzed basis (anhydrous), major elements wt%, trace elements ppm.

Abbreviations: *Fract* - fraction (S = 180-2000 *µm*; F = <180 *µm*; Bulk -bulk compositions calculated from fraction proportions; WR = whole rock); Type - MC = main channel; VD = volcanic-derived; GD - granitoid derived; SD = sediment derived; MX = mixed source; *Source* - Andes = andesite; Rhyo = rhyolite; Gran = granitoid, Mst=mudstone; *LO1* - original loss on ignition.

~
\sim
-
-
Ψ.
~
~
LL.
_
_
0)
-
τυ.
_
1
-

		(l																								
Sample #	Fract T	ype S	source	SiO_2	TIO_2	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ 0	P_2O_5	SUM	Ba	Ce	స	Ga	qN	١Z	Ч	b Sc	Sr	ЧL	>	≻	Zr	LOI
Stream s	edimen	ıts																										
IN01-S	2 S	٩C ١C	Aixed	79.90	0.15	11.16	0.86	0.03	0.27	0.58	1.89	4.49	0.00	99.34	513	22	с	6	œ	4	5 17	1 2.6	95	5.7	4	12	57	0.87
IN01-F	≥ 2 ≓ ∟ 0	29	/ixed	69.02 70.70	0.57	17.31	3.61	0.12	0.63	1.63	4.10	3.52	0.04	100.55	398	66	32	<u>8</u> 0	20	5 ·	8 r 8 c	80 T	175	28.8	. 63	89	376	2.87
IN01 DUIK	≥ > Nine	2 Q	Andes	/ 9./ 9 66.63	c1.0	15.33	0.89 9.50	0.33	2.25	0.51	1.64	2.79	0.13	100.01	71c	26	22 22	۲ م 1 م	o c	4 <u>-</u> 6	20	5 23.2	282	2.0	0 194	2 1	118	0.09
IN02-F	· >	ę	Andes	62.92	1.48	18.12	9.52	0.26	2.17	0.98	2.59	2.34	0.19	100.56	428	46	56	50	- 2	18	9	5 28.0	119	5.3	241	28	192	13.63
IN02 bulk	Bulk <	í Q	Andes	66.56	0.91	15.38	9.50	0.33	2.25	0.52	1.65	2.79	0.13	100.02	498	26	22	17	9	11 6	6 10	5 23.3	3 78	2.8	195	17	120	7.06
IN04a-S	≥ 2	××	/ixed	80.88	0.23	9.94	2.17	0.13	0.47	0.38	1.49	3.51	0.04	99.25 00.85	498	11	23	ωç	, , ,	202	7 13	5 7.5	4 7 7 8 7	4.9 8.9	27	ç ;	58	2.06
IN048-F	∠ Z A		/lixed	87.20 80.82	05.1	0.97	9.70	0.04	0.47	70.1 0 30	1 40	2.04 2.04	0.43	99.85 00 25	101	: +	29U	<u>ν</u> α	<u>0</u> r	ы 10 10 10	⊇ç ⊇ç	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	0.01	202	<u>0</u> 4	209 70	0.10
IN05-S	s N N N N N	×	Aixed	71.80	0.59	14.62	5.44	0.14	1.26	06.0	2.26	3.14	0.11	100.24	473	24	3.5	5	. 0	, ci 0 0	0 5 5 5 5	7 17.5	135	5.0	99	9	101	3.75
IN05-F	≥ ⊥	AX V	Aixed	63.37	1.39	17.05	9.91	0.22	1.84	1.45	2.84	2.30	0.18	100.54	377	99	84	19	4	20	6 6	1 23.2	162	14.7	235	31	269	9.37
IN05 bulk	Bulk	×.	Aixed	71.71	0.60	14.64	5.48	0.14	1.27	0.91	2.26	3.13	0.11	100.24	472	25	33	15	9	6	1	7 17.6	136	5.1	93	16	103	3.81
N06-S	ວ : ວຸງ	è.	Andes	69.25 00.00	0.84	14.78	8.06	0.18	1.55	0.91	2.03	2.62	0.12	100.33	404	82	24	16	o ç		2 1 1 1 1 1 1	21.3	135	4 (() L	160	20 20 20	135	4.51
NU6-F		29	Andes	62.99	1.48	91.16	07.01	0.19	1.82	/Z'L	2.40	2.16	0.15	99.88	369	200	7.9	204	2 c	<u>0</u> 10	~ -	0.07 0.70 0.70	191	0.P	239	0 7	197	10.12
INUO DUIK	N N N N N N		Airues	83.49 83.49	0.26	8,13	o. 10 2.30	0.04	0.52	0.51	1.22	2.27	0.04	98.77	307	19 2	4 10 14	<u>o</u> 10	0 00	- 9	00	8 5.7	- 120 03	4 0	37	<u>o (</u>	13/	1.45
IN07-F	:≥)⊥	X	Aixed	66.07	0.92	17.11	6.67	0.15	1.18	1.13	3.18	3.17	0.14	99.73	435	82	67	17	9 8	22	6 12	7 17.1	116	19.6	136	45	303	9.95
IN07 bulk	Bulk	N N	Aixed	83.41	0.26	8.17	2.32	0.04	0.52	0.51	1.23	2.28	0.04	98.77	308	19	10	ß	8	6	2	8 5.7	83	9.4	37	13	61	1.49
IN08-S	s S	1 Q	Andes	69.35	0.81	15.10	7.52	0.19	1.64	1.11	2.25	2.28	0.13	100.39	391	35	25	18	œ	7	7 8	9 19.4	154	5.1	129	21	138	4.37
IN08-F	> ±	≁ ₽	Andes	68.89	0.48	17.44	3.03	0.15	0.58	0.88	3.32	4.52	0.07	99.37	551	78	40	18	21	16 2	1 17	2 9.9	103	22.6	39	37	245	15.67
IN08 bulk	Bulk <	≁ Q	Andes	69.33	0.79	15.22	7.30	0.19	1.59	1.10	2.31	2.39	0.13	100.34	399	37	26	18	ø	7	7 9	3 18.9	152	6.0	125	22	143	4.92
IN11-S	s	ñ	Bran	80.27	0.16	11.34	0.94	0.04	0.25	0.24	1.58	4.47	0.01	99.28	587	15	ი	10	10	4	9 17	2 3.4	51	7.1	4	13	60	1.94
IN 11-F	، ن ا	<u> </u>	Bran	61.21	1.53	18.56	10.94	0.24	2.13	1.17	2.44	1.81	0.20	100.22	369	55	51	5	≓∶	18	5	6 29.8	154	9.6	232	33	322	21.22
IN11 bulk	Bulk Sulk	Ë,	Bran	79.87	0.19	11.49	1.14	0.04	0.29	0.26	1.59	4.42	0.02	99.30	583	9	6 '	6,	90	4 i	9 17	0 I 4 ·	53	7.2	ດເ	4	65	2.34
N12a-S	ິ ທີ່	, , , , , , ,	Sran	83.66	0.13	9.14	0.77	0.03	0.25	0.21	1.25	3.64	0.01	99.09	450	19	ۍ n	9	ωg	ມ ເ	9 7	7 4.5	22	6.9 0	~ .	<u>5</u>	40	1.12
IN12-F	ت م ا	<u>ק</u>	ran Pran	09.40 83.56	0.55	0.00	2.93 7 8	0.12	10.0	0.73	3.81	4.18 2.64	0.08	99.94	449	5 Q	יי ב מ	<u>p</u> u	ο N α	<u>_</u> u	9 7 9 7	0 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	777	0 C	5 5 7	667	5.0Z
IN13-S		, ,		80.43	212	11 13	2.7 7	0.03	0.20	0.26	149	4 58	0.0	00.53	285	2 5	о С	, t	0 Ç	 	<u> </u>	- 0	, <u>6</u>		- σ	2 4	1 10	2 4 4
IN13-F	о ш	, n	Gran	71.28	0.52	15.74	3.03	0.09	0.52	0.59	2.92	4.96	0.09	99.73	413	- 0 <u></u>	52	2 12	2 2	, <u>6</u>	<u> </u>	8	6	27.6	20	2 89	407	4.19
IN13 bulk	Bulk G	ي م	Bran	80.06	0.18	11.32	1.23	0.04	0.27	0.27	1.55	4.59	0.03	99.54	382	24	12	9	10	ۍ ۲	6 19	0 3.7	8	8.0	; ;	17	71	1.80
IN14-S	s	٩ ١ ٢	Aixed	80.40	0.14	10.90	0.87	0.03	0.26	0.65	1.82	4.24	0.01	99.31	491	18	0	6	7	а 1	5 16	2 3.6	3 106	6.0	10	10	48	0.81
IN14-F	≥ ⊥	Q V	Aixed	67.86	0.75	16.23	5.63	0.17	0.70	1.58	3.99	3.39	0.06	100.34	410	128	46	17	27	12	8 13	3 10.6	163	39.0	111	46	538	3.70
IN14 bulk	Bulk ≥ :	Į Į	/lixed	80.32	0.15	10.93	0.89	0.03	0.26	0.65	1.83	4.24	0.01	99.32	490 101	۱ 2	~ ~	റ	~ ′	~ ·	5 19 19	1 3.7	, 18 18	6.2 0	₽,	5.	51	0.83
	≥ ≥ 0 ⊔	۽ د	/lixed	19.01	0.10	09.11	0./ 0 0 1 2	0.0	C7.0	00	4 67	0.4	0.0	39.00 100.05	070	- 110	4 ç	ۍ م	, 1 0	4 C		- + - + - +	4 C 4		4 d	۲ م ۲	242	70 7 8 4
IN15 bulk	≥ ≥ Bulk	ະ ຊ	Aixed	79.60	0.11	11.77	0.84	0.03	0.26	0.58	2.17	4.51	0.01	60.001	522	9	g 4	<u>_</u>	2 9	54 74	- 1 -	6 2.2	82 62	7.0	5 0 10	‡ 6	50	0.01 1.13
IN16-S	2 S	Q V	Aixed	79.74	0.13	11.41	0.86	0.03	0.29	0.47	2.02	4.41	0.01	99.36	524	16	ŝ	2 2	ø	ۍ ۲	7 17	2 0.8	8 78	10.6	0	5	50	1.04
IN16-F	≥ ⊥	٩ ٩	Aixed	68.89	0.58	17.10	3.47	0.11	0.66	1.23	4.12	3.60	0.05	99.81	396	92	29	17	50	10	2 14	3 7.0	133	33.4	60	38	309	3.43
IN16 bulk	Bulk	ų V	Aixed	79.63	0.14	11.47	0.89	0.03	0.29	0.47	2.04	4.40	0.01	99.37	523	17	ო	5	ø	5	7 17	2 0.8	3 78	10.8	ი	7	53	1.06
IN17-S	≥: ∽	Q I	/lixed	80.29	0.09	10.93	0.58	0.02	0.22	0.46	2.16	4.42	0.01	99.18	507	17	4	<u>م</u>	9	4		4 2.8	12	9.9	- 1	6	4	0.78
N17-F	23	υ Ω	/lixed	67.70	0.43	18.08	3.40	0.15	0.60	1.37	4.79	3.70	0.06	100.29	417	100	26 7	60	21	12	 4 (9 6.2	147	33.5	62	68 90	359	4.35
	N N N	ູ່	/lixed	67.U8	90.0	10.96	0.59 1 0.1	0.02	77.0	0.40	11.2	4.42	0.01	99.19	105	2 10	υ (τ τ	<u>ه</u> و	4 u		4 4 7 7 8 7	200	, o ,	- 6	ר קי מ	47	0.79
IN18-F	≥≥)∟	. ຊ ຊູ ຊູ	Aixed	67.78	0.52	17.85	3.69	0.15	0.62	1.17	4.05	3.74	0.07	99.64	411	104	5 5	<u>t</u> ∞	<u>2</u>	, 6 , 6	2 4	9.4 0.7 0.5	131	33.9	65	54	346	4.70
IN18 bulk	Bulk N	AC N	Aixed	71.82	0.28	15.57	2.22	0.11	0.48	0.87	3.45	4.30	0.04	99.14	466	44	20	15	ŧ	6	0 16	9 5.0	105	15.3	30	22	134	3.00
IN21-S	≥ 2 ഗ∟	ς ζ	/lixed	80.29	0.29	10.68 15.51	2.23	0.05	0.54	0.47	1.53	3.49	0.04	99.62	444	24	9 5	<u>ئ</u> ∞	ę ę	ۍ در در د	0 t 4 t	3 7.8	66	10.1	31	19	82 517	1.97
IN21 bulk	r Bulk ₹	 ເ	/lixed	80.13	0.30	10.74	2.30	0.05	0.55	0.48	1.55	2.31 3.48	0.04	99.63	302 443	08 25	- 9	<u>~</u> ∞	<u>0</u> 0	- 10 - 10	- 0 - 4	1 <u>1</u> 2 2 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		10.2	33	50%	21C	2.01 2.01

linashi R	iver (I	î																											_
Sample #	ract Ty	'pe S	source	SiO_2	TIO ₂	A_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	SUM	Ba	Ce	ŗ	Ga	qN	Ni	Pb F	s d	s S	T	>	Υ	. Zr	LOI	
Whole roc	k samp	ples																											
IN03-B	VR An	H sept	lata	53.67 60.80	1.55 1.06	19.08 16.02	13.36 8.17	0.31	4.91	0.72	1.57 4 26	4.41 5.4	0.22	99.79 99.79	606 350	23 46	32	24 10	7 4	¢	11	58 38. 28. 28. 28.	7 36.	2 10	348	22	124	5.78	
IN10-B	ZR G	ran G	iara Bran	76.71	0.22	12.43	1.43	0.02	0.32	0.57	2.48	5.22	0.02	99.43 99.43	399	f 6	14	2 ₽	~	5 01	50 4 1	22 20	5 2 2 2 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3	0 16.6	50 20	35	6 7	1.09	
IN19-B	VR VR G	ran 'an G	bran bran	76.02 77.56	0.17 0.13	14.14 12.57	0.79 0.83	0.00 0.02	0.24 0.26	0.30 0.45	3.14 3.82	4.29 3.95	0.01 0.01	99.11 99.60	517 502	53 35	0 0	15	= =	സന	2 18 2 18	36 0.5	ວັດ ຕຸດ	6 17.9 9 15.6	40	19 23	105	1.78 0.71	
IN22-B	VR VR Gr	ran 'an G	bran Bran	76.98 76.69	0.14 0.17	12.58 13.03	0.83 1.04	0.01 0.03	0.24 0.32	0.45 0.46	3.80 3.73	4.02 3.95	0.01	99.07 99.44	508 515	42 47	94	6 C	6 6	~ ~	21 16 19 12	22 8 4 2	- 2 0 0	0 16.1 5 16.3	- 00 - 00	23	101	0.68 1.11	
		,			:		5	8		5	5		2		2	-	•	!	2		2	2		2	,		-		
IU KIVEL	<u> </u>																												
Sample # F	ract Ty	pe S	source	SIO_2	TIO ₂	A_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	SUM	Ba	Ce	ŗ	Ga	qN	iN	ЪР	s d	s S	r T	ہ ۲	Υ	Zr	LOI	
Stream se	diment	ŝ																											
10-01S	WC WC	2	lixed	84.55	0.16	8.22	1.51	0.04	0.38	0.45	1.32	2.68	0.02	99.33	412	15	7	9	4	4	33	68	20	4.0	20	11	61	1.30	
IU-01F F	ž	:≥ >0	lixed	69.27	0.76	15.21	6.19	0.28	1.26	1.69	2.26	2.51	0.15	99.57	489	2 2	107	, 1	. 6	. 96	32	39 14.	13:	2 17.0	124	: 00 . 1	308	8.01	
IU-01 bulk E	3ulk MC	≥ 0	lixed	83.87	0.22	8.71	1.50	0.16	0.43	0.45	1.32	2.67	0.04	99.38	408	16	£	9	ß	4	13	38 7.	- 0	4	5	=	62	1.32	
IU-02S	м Ж	≥ ∪	lixed .	77.66	0.27	12.11	2.63	0.05	0.67	0.95	1.72	2.95	0.04	99.04	435	22	7	10	5	4	26	92 7.	9 0	4 5.0	44	€	88	2.68	
IU-02F	ž	2 0	lixed	68.00	1.09	15.16	7.71	0.16	1.31	1.85	2.10	2.44	0.12	99.93	441	64	38	1 3	5	£	33	31 18.	146	9 12.0	189	28	371	5.60	
IU-02 bulk 1	Bulk MC	2: 0:	lixed	77.57	0.28	12.14	2.68	0.05	0.67	0.96	1.72	2.95	0.04	99.05	435	22	r ,	9 1	ы С	4 ı	200	32	i ğ	0.0 	9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	÷ ÷	<u> </u>	2.71	
	Ξź	2 2 × >	lixed	81.89 50.40	0.20	9.60	1.96	0.06	0.45	10.0	1.40	3.01	0.03	100.01	456	23	24	- 4	ρç	n ç	5 19	14.		1 0.0	72		4 000	1.62	
	- MI	≥ ≥ < >	lixed	00.1U	0.93	0.60	7.09	12.0	95.1	1.44 0.50	1.02	20.2	0.17	100.04	401	0, 20	6 5	<u>0</u> r	<u>v</u> «	о и	00 00 00 00	- / C				55	200	9.04 7.1	
		≥ ≥ < ×	lixed	79.45	0.26	9.09 10.50	2.0.2	0.00	0.610	0.66	1 70	3.26	0.06	99.12 00.01	403	4 C	2 2	~ a	οıα	n ur	1 2				3 6	<u> </u>	2.58	+ 0.15	
IU-06F F		≥ ≥ < ×	lixed .	58.06	0.84	16.07	6.06	0.23	1.46	1.19	2.03	2.83	0.28	90.06	484	22	34	<u>5</u>	, ⊏	, 1 1	27	22 17.	12	2 10.0	132	58-0	262	96.6	
IU-06 bulk E	3ulk M>	≥ ×	lixed	68.93	0.80	15.66	5.78	0.22	1.39	1.15	2.01	2.86	0.26	99.05	485	50	45	4	ŧ	15	26 10	02 16.	11	9 10.0	0 125	27	248	9.37	
3 ST0-UI	s vc	ц Ц	thyo	83.89	0.16	10.26	2.60	0.11	0.80	0.23	0.56	1.57	0.02	100.21	331	25	12	8	9	7	21	32 7.	ð 0	4 7.0	0 29	23	11	4.80	
IU-07F		E I	thyo	80.31	0.40	10.98	3.73	0.17	1.03	0.66	0.83	1.30	0.04	99.45	351	4	25	ი	2	10	24	10.	20	3.7	05	50	186	7.47	
IU-07 bulk 1	Bulk VE	ш С	shyo	83.57	0.18	10.33	2.71	0.1	0.82	0.27	0.58	1.54	0.02	100.14	333	26	4	ωġ	юı	~ '	23	20 20 10 20 10	0		33	23	118	5.04	
	~	ים רכ		51.39 78.05	77.0	11.40	87.7 V 02	0.15	0.04	0.40	20.1 7 1 7	2.40 1 75	0.0	90 00	449	202	ۍ ۲	⊇∝	- t	ი ź	25	22	ŏ ŀ					3.34 7.74	
IU-08 bulk E	3ulk VD		shyo thyo	81.33	0.23	11.40	2.32	0.16	0.64	0.46	1.52	2.45	0.01	100.51	448	68	9	° 6	<u>1</u> ~	20	336	22	- 10 - 0	20.2	52	36	118	3.37	
3 S60-UI	G	U D	èran .	77.30	0.23	12.12	2.30	0.06	0.61	0.85	2.13	3.77	0.05	99.42	536	24	20	6	ß	ß	22	4 6.	0 10	6 7.0	37	12	17	1.92	
1U-09F F	G	0	èran (66.25	0.73	16.69	6.94	0.24	1.57	1.72	2.56	3.01	0.23	99.95	557	99	67	15	12	18	33 10	03 14.0	4	3 13.0	114	31	312	8.36	
IU-09 bulk 1	aulk G	ט: בים	bran	77.01	0.24	12.25	2.43	0.07	0.63	0.87	2.14	3.75	0.06	99.44 20.70	537	26	5, 5	ი ;	ഹ	60	52	9. 20	0 0		330	6 2	8	2.09	
101-10S	È È	2 2 × ×	lixed	/1.13 80.31	0.60	14.64 15.57	5.01 7.7.7	0.15	1.60	20.1 801	2.04	3.43 2.64	0.11	99.79 90.61	97G	5 8	91 2 2	<u>+</u> ť	∞ :	×÷	1 1	14.1	= ÷	19.7	201 101 102		749	00.5 4 88	
IU-10 bulk E	3ulk M>	: 2 : X	lixed	71.03	0.61	14.69	5.04	0.15	1.66	1.03	2.07	3.38	0.11	99.78	523	35	15	5 4	_ ∞	. 00	33	10	= ==	2 0.0	103	58	154	3.63	
IU-11S 5	G	U D	bran 6	81.10	0.24	10.41	2.26	0.07	0.51	0.59	1.63	3.04	0.04	99.88	454	24	13	9	9	7	46 10	11 7.	6	3.8.0	31	=	85	1.74	
IU-11F	5	0	Bran	68.26	0.95	15.19	7.55	0.27	1.43	1.60	1.92	2.50	0.15	99.83	458	20	61	15	42	26	43 0	90 18.	13	7 13.0	0 172	8	374	8.09	
10-11 bulk 1	Sulk GL	ני גם	Bran .	80.99	0.25	10.44	2.30	0.07	0.52	0.60	1.63	3.03	0.04	99.88	454	52	13	ωç	9	~ *	46		6		32	= ;	87	1.79	
10-123		≥ ≥ < ×	lixed .	07.02 88.20	101	14.40	40.4	0.00	154	1.61	001	0.1 7 15	0.00	99.02 00 55	432	7 0	070	<u>4</u> f	o (<u>3 t</u>	0 02	21.0		19.0		2 2	373	0.43	
11-12 hulk F	AN AN	≥ ≥ < ×		73.18	0.36	14 49	4 43	110	28.0	146	1 83	2 83		00.60	467	. 6	1 00	<u>5</u> 6	<u>i</u> «	24		30					111	2.5.5	
10-15S	le le	:0	Sran .	79.17	0.29	11.68	2.27	0.09	0.57	0.57	1.78	3.48	0.05	99.94	527	22	3 ≿	<u>i</u> ∞	o o	- ~	26 1	0			38	2 4	8	2.10	
IU-15F F	5	0	Bran	58.97	0.68	16.62	5.44	0.27	1.14	1.35	2.28	2.99	0.16	99.91	499	69	62	15	10	24	28	05 15.	14	5 12.0	104	35	323	9.15	
IU-15 bulk E	3ulk GE	U D	bran .	79.06	0.29	11.73	2.30	0.09	0.58	0.57	1.78	3.48	0.05	99.94	527	22	7	œ	5	7	26 11	0 7.	0 10(0.7.0	37	15	102	2.18	
IU-16S	G	0	sran .	77.45	0.24	12.54	2.04	0.05	0.53	0.62	1.37	4.13	0.01	00.06	549	22	16	10	7	ß	18	21 6.	6	7.0	31	0	8	3.05	
IU-16F		00 01	bran .	66.03	0.81	18.38	6.41	0.17	1.33	1.50	1.94	3.22	0.07	99.86 00.00	541	67	22	<u>8</u>	± ,	16	35	40 16.0	0 47 64 64 64 64 64 64 64 64 64 64 64 64 64	9 13.0	167	53	487	9.65	
10-10 DUIK		ם כ ה ב		74 14	0.20	17.21	01.7 7 E0	0.00	00.0	CO.U	90. I	4.10	0.02	20.99	549 504	2 2	27	2€	~ r	0 r	19	0.0	50				5 6	3.23	
IU-19F F				70.27	0.96	15.76	6.37	0.23	1.05	0.87	1.13	2.82	0.17	99.63	447	6	58 1	<u>5 6</u>	- =	15 -	- + 5 88	201	11 2	000	106	302	263	8.81	
IU-19 bulk E	3ulk VE	с С	ohy	73.99	0.60	14.43	4.65	0.15	0.85	0.56	1.27	3.18	0.10	99.77	499	38	4	13	4	œ	34 8	8	10	0.7	20	50	163	4.34	
IU-22S	S MC	≥ ∪	lixed .	77.18	0.35	12.56	3.41	0.21	0.73	0.64	1.39	3.15	0.07	99.70	484	28	16	6	7	8	24 11	0 10.	1	8.0	57	16	108	3.15	
IU-22F	ž	2 0	lixed .	71.67	0.64	15.02	5.24	0.38	1.03	1.25	1.77	2.65	0.15	99.81	468	51	29	13	10	13	27	99 13.	0 15	12.0	26 0	27	270	7.43	
111-22 hulk F	3ulk MC	2	lixed .	77,10	0.35	12.60	3.44	0.22	0.74	0.65	1 40	3.14	0.07	02 66	484	29	16	σ	7	œ	24 10	10.1	11	1 80	57	17	111	3.21	

Table 2 (Ctd).

er (IU) ci # Fract T	vbe	Source	SiO	ŐĽ	A,O,	Fe,O,	OUM	ObM	CaO	Na,O	х О	P.O.	SUM	Ba	C	ວັ	Ga	£	Ī	ą	ą	Sc	ي. د	Ę	>	>		ō
imen	ts (ct	(p)	200	2	202	500 -		0	000		22	202	00	3	8	5	5	2		2	2	8	5			-		
	555666666	Mixed Mixed Rhyo Rhyo Rhyo Rhyo Rhyo	78.78 69.77 78.62 72.85 72.85 72.56 72.34 71.34 71.67 71.36	0.38 0.39 0.49 0.69 0.55 0.55	11.87 15.35 11.93 14.94 14.94 15.88 16.21 16.19	3.22 5.89 5.75 5.75 5.77 5.77 5.77 5.77	0.36 0.37 0.37 0.16 0.16 0.15 0.15 0.13 0.13	0.64 1.05 1.17 1.17 1.17 1.18 1.31	0.45 1.12 0.99 1.44 1.00 1.04 0.94 0.94 0.97	1.18 1.19 1.39 1.39 1.33 1.33 1.34 1.34	3.11 3.24 2.36 2.35 2.35 2.35 2.28 2.28	0.05 0.15 0.00 0.09 0.09 0.07 0.09 0.07 0.09	100.03 100.24 100.23 100.24 100.26 99.99 99.97 99.97 99.97 99.97	501 501 502 502 502 507 507 507 502	28 28 28 28 23 23 23 23 23 23 23 23 23 23 23 23 23	$\begin{array}{c} 22\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\$	12 1 15 1 12 1 15 1 15 1 15 1 17 1 15 1 15 1 15 1	80,000000000000000000000000000000000000	5 5 7 7 9 7 9 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	2 1 2 3 3 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 7 5 7 5 7	128 128 128 128 128 128 128 128 128 128		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		44 44 22 12 22 12 22 12 22 12 22 12 22 12 22 12 22 2	73 73 73 73 73 73 74<	0000400000 000400000	07 110 110 110 110 110 100 100
ik sam	ples																											
ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	acB BraB BraB BraB BraB BraB BraB BraB B	Dacite Dacite Gran Gran Rhyo Rhyo	72.35 72.32 66.78 66.78 82.19 82.19 82.19	0.41 0.22 0.38 0.38 0.79 0.20	14.75 16.79 13.46 19.67 16.48 11.69 15.46 9.53	3.06 3.26 0.98 5.78 2.85 1.25 1.25 1.47	0.06 0.04 0.08 0.08 0.08 0.03 0.06	0.67 0.37 0.37 0.87 1.12 1.69 0.78 0.25	3.16 2.30 0.21 0.04 0.19 0.05 0.05 0.05	3.36 2.79 3.22 0.29 0.41 0.41	1.86 4.74 5.97 3.55 3.55 5.73 5.73	0.07 0.03 0.13 0.13 0.01 0.01	99.74 99.46 100.20 99.46 100.31 100.31 100.36 99.92	390 362 574 1563 362 362 362 987 210 585	26 58 58 11 13 14 14 14 14 14 14 14 14 14 14 14 14 14	000 x x x 000 x x 000 x x 000 x x x x x	15 13 110 110 110	ω ω ν ν ο α 4 1 υ	4000040	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50 15 51 14 157 25 1101 4 94 5 94 5 163 16	0.4 8 0.4 8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	86 55 882 71 71 48 48 1 48 1 48 1 57 55 55 55 55 55 55 55 55 55 55 55 55	2	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 25 8 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00400000	71 75 75 75 75 75 75 75
(TM)	and	Kimac	hi (KM) Riv	ers																							
Fract Ty	ype :	Source	SIO_2	TIO_2	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na_2O	K₂O	P_2O_5	SUM	l Ba	Ce	ŗ	Ga	qN	ïZ	Рb	Rb	Sc	Sr	Тh	>	Υ	r.	ō
edimen	ıts																											
ormormo ¥ ≥≥≥≥≥≥≥≥≥	5555555	Mixed Mixed Mixed Mixed Mixed	77.42 64.97 76.37 73.95 63.19 71.65	0.20 0.71 0.38 0.90 0.49	11.93 16.56 12.32 13.89 13.13	1.97 7.13 2.41 3.96 5.54 5.54	0.04 0.18 0.05 0.14 0.07	0.56 1.78 0.66 0.89 1.79	1.26 2.47 1.37 1.56 2.50 1.76	2.22 2.63 2.45 2.45 2.45 2.45	3.37 2.53 3.15 3.15 3.15 3.01	0.02	99.29	430 429 429 436 430 434 422	28 88 33 137 53	5 4 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	13 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	ოთ4ოედი	4 L い L む u	1 2 2 4 4 4 4	86 86 85 87 81 81 81 81 81 81 81 81 81 81 81 81 81	2 2 2 2 2 7 0 2 2 2 2 2 2 2 7 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 22 22 22 22 22 22 22 22 22	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	227 667 10 867 10 867 10 87 10 87 10 87 10 10 10 10 10 10 10 10 10 10 10 10 10	26 70 6 28 12 8 29 122 9 22 9 122 9 33 2 28 12 9 28 12 9 29 12 9 20 10 12 9 20 10 10 10 10 10 10 10 10 10 10 10 10 10		<u>ה</u> היה היה היה היה
O O c Buk Buk	200	Gran Gran Gran	67.79 73.55	0.93 0.48 0.48	13.85 17.01 14.56	3.20 6.66 4.05	0.13 0.13 0.07	1.22 1.22 0.79	1.10 1.58 1.25	1.02 1.51 1.59	3.35 2.47 3.15	0.11 0.06	99.56	419 4476 476	74 38 38	39 20	10 <u>1</u> 10 10 10 10 10 10 10 10 10 10 10 10 10	o 10 ۲	ი 15 8	5 33 72 5 33 72	95 15 1	- 1 0.0 9.0	5 2 2 Z	3.0	- 49 73	26 45 °	- L L - 10 0	מי מי מי
Sulk Bulk 0.00	000	Gran Gran Gran	77.60 61.83 76.50	0.25 0.74 0.28	12.24 18.25 12.66	2.04 8.82 2.52	0.04 0.23 0.06	0.68 2.04 0.78	1.29 2.61 1.38	1.97 2.59 2.01	3.43 2.36 3.35	0.01	99.56 99.60	449 419 447	19 94 24	58 4 8	12 2 2 2 7	4 6 4	9 9 v	9 15 9	89 76 89 11 0	1 0.0	90 38 38 79 7	0.00	27 72 37	7 7 29 79 8 12	040	
S Z Z		Mixed	77.60 59.87	0.20	12.38 19.23	1.69 9.94	0.05	0.59 2.21	1.34	2.31	3.20 2.35	0.02	99.67	460	27 91	9 C 8	552	. ω E	9 4 0	19 27	82 5. 83 83	2.0	5 7 1 30 53 30 53	1.0	18	34 58 6	. – – . – –	. הי ה
N Bulk	5 Č Č	Mixed Gran	77.14 80.13	0.22 0.16	12.56 11.11	1.91 1.61	0.06 0.07	0.63	1.37 1.05	2.30 1.72	3.18 3.16	0.02	99.38	461	28 25	°£¦	ç	^{с, с, с,}	4 ω (20 16	8 8 9	0.00	123	0.4.0	15 15	8 9 9	200	а.
ם ה Bulk הסמ	200	Gran Gran	61.89 79.82 73.50	0.83 0.17 0.30	11.20 11.22	9.53 1.75 2.23	0.08	0.51	1.08 2.59 1.08	2.53 1.73 2.06	2.00 3.16 3.35	0.03	99.91 99.54	433 486	27 27	2 2 6	<u>5</u> 0 1	: ლიფ	ο 4 σ	34 16 16	≝```G ≅85	0.0.0	543 27 27 20 27 20	- 0.0	7 8 8	86 90 00 00	00-	מי מי מ
Buk Buk G G G	, <u>, , , , , , , , , , , , , , , , , , </u>	Gran Gran	64.88 72.12	0.70	18.43 14.83	6.48 3.98	0.22 0.14	1.72 1.08	2.44	2.12	2.38 3.26	0.11	99.91 99.58	462 483	34 72	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20 16	တစ	, ² 5	43 35	25 75 89	2 2 0 2	04 15 04 15	0.0	20 00 q	24 52 0	- ~ ~	
Bulk Bulk Bulk	<u> </u>	Mixed Mixed Mixed	80.45 64.38 79.23	0.13 0.71 0.18	11.22 18.26 11.76	1.36 6.91 1.78	0.03 0.20 0.04	0.45 1.91 0.56	1.15 2.51 1.25	2.04 2.49 2.07	3.01 2.45 2.97	0.02 0.20 0.03	99.86 100.02 99.87	408	26 92 31	စတ္ထစ	7 8 8 8	ო თ 4	4 53 3	1 23	8 28 80 8 26 80 8 26 80	0.0 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10	97 16 16 16 16	8.0 1 0.0 1	2 2 2 2 7 2	6 6 27 62 7 10	-04	
S E E E E E E E E E E E E E E E E E E E	5555	Mixed Mixed Mixed	82.51 65.54 81.79 80.24	0.22 0.84 0.24	9.91 16.70 10.20	2.02 8.73 2.30 6.3	0.07 0.34 0.08	0.48 1.40 0.52 0.70	0.82 1.95 0.87 0.71	1.11 1.68 1.14 78	2.87 2.61 2.86 3.10	0.03	100.04 99.97 100.03	374 462 378 304	35 37 37	6 8 E t	<u> 16 г</u>	4 t n 4	<u>ω </u> ⁶ 4 α	16 37 17	84 83 83 45 83 45	22.0 2.0 7 7 7 7 7 7 7 7	22 84 10 10 10 10 10 10 10 10 10 10 10 10 10	20.0	2 4 5 8 9 4 9 8 9 7 9 8 9 7 9 8 9 8 9 8 9 8 9 8 9 8	9 7 9 9 9 9 72	0000	מי מי מי מ
ora Nuk Nuk	័ត៍តិត	Mixed	61.95 79.20	0.75	19.59 11.37	9.95 3.04	0.31	0.75 0.75	1.56	0.70 1.18 0.80	2.53 3.07	0.28	99.75 99.41	398 398	35 35	22	1 2 1	t 0 ru	29 2	18	26 96 17 17		56 11 11	0.00	9 9 8 7 3 9 7 7 7	32 35 / 8 35 /	 	

Table 2 (Ctd).

Tamayu	(TM)	and F	Kimac	hi (KM	1) Riv	ers (c	td)																					
Sample #	Fract Ty	/pe S	Source	SiO_2	TIO ₂	A_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P205	SUM	Ba	Ce	ບັ	Ga	qN	ы	b R	b Sc	S	Ļ	>	≻	Zr	LOI
Stream s	edimen	ts (ct	d)																									
KM-04 S	SI SI)mori	74.27	0.47	13.91	4.22 6.74	0.05	0.77	2.25	1.94	2.04	0.07	99.99 00 64	391 461	27	14 7 4	, 13	റം	40	15	3 12.0	235	5.0	72	15	119	n.a.
KM-04 Bulk	Bulk SL	20	Omori	73.52	0.56	14.11	4.72	0.06	0.85	2.30	1.79	1.93	0.08	99.92	405	9 6	6	<u>t</u> 6	o 0	ο ω	200	13.0	250	5.0	84	14	<u>5</u>	п.а.
KM-05 S	S IS		, viri	81.68	0.15	10.06	1.45	0.12	0.33	0.47	0.74	3.81	0.01	98.82	436	53	9 Z	ດເ	4	~	5 : 5 :	9 3.0	8 6	0.0	с с	ωġ	61	n.a.
KM-05 Bulk	Bulk SI	- × - 0	in ju	80.79	0.17	10.52	0.20	0.14	0.36	0.53	0.81	3.79	0.02	99.7.3 98.87	000 442	26 I	7 4	<u>_</u> 6	<u>ס</u> יס	<u>ი</u> ო	4 Ω = ∓	0.01 0.0	92	0.0	000	າ ຈ	- 88	n.a. n.a.
KM-06 S	S	0	Bran	80.21	0.19	10.60	2.15	0.07	0.47	1.00	1.54	. 3.11	0.03	99.37	409	28	17	6	4	4	8	2 3.0	154	5.0	26	7	72	n.a.
KM-06 F	ы П П П П П П П		Bran	61.23	0.91	18.03	9.90	0.40	1.74	2.37	2.16	2.80	0.24	99.78 00.70	522	96	76	90	₽.	25 7 3	000	17.0	216	17.0	187	27	768	n.a.
KM-07 S	שׁ צוחמ אווא	<u>ב</u> ב	ran. Aixed	74.30	0.22 0.44	13.09	2.48 5.73	0.08	10.95 0.85	00.1	70.1 119	3.10	0.04	99.39 99 91	414	- 5 2	57	» (4 oc	ے ہے 1	0 0 0 0	2 4 C	135	0.0	33 75	¢ د	102	
KM-07 F	Ξ		Aixed	60.82	0.80	18.57	11.16	0.39	1.47	1.93	1.43	2.50	0.28	99.34	482	117	5	! @	, ±	53	2 4 2 6 0 60	2 15.0	176	17.0	168	33 1	960	n.a.
KM-07 Bulk	Bulk M	2	Mixed	69.39	0.57	15.09	7.71	0.26	1.05	1.39	1.28	2.77	0.18	99.71	445	77	37	4	თ	15 2	8	2 11.0	150	12.0	109	23	522	n.a.
KM-08 S	0 C		Bran	73.94	0.48	13.06	5.66	0.23	1.0 9,0	14.	0.87	2.97	0.08	99.77	520	29	22	66	۱ دی	10 1 1	0.1	9 10.0	142	9.0 7	101	17	127	n.a.
				70.64	0.70	14 52	7 26	0.00	- <u> </u>	 	0.40	07.7	0.20	44.66 00 60	110	000	5 4 7 4	<u> </u>	- 9	<u> </u>	<u>t o</u>		120	0.0	1,0	5 ç	166	
KM-09 S	ν N N N N N N	ے <u>ہ</u>	lixed	80.95	0.21	10.67	1.79	0.08	0.59	0.68	1.15	3.51	0.01	99.64	425	20	2 0	2 6	o 4	 0 0	0 0 0 0	3 2.0	120	0.4 0.0	14	9 0	61	ц. Ц.
KM-09 F	Σ	2 2	Aixed	65.15	0.49	18.25	6.28	0.33	1.20	2.13	3.08	3.10	0.11	100.12	495	79	49	16	00	21 2	21 8	6 9.0	227	13.0	96	18	582	n.a.
KM-09 Bulk	Bulk M	0	dixed	80.69	0.22	10.79	1.86	0.09	0.60	0.70	1.18	3.51	0.01	39.65	426	21	7	9	4	9	2	2 2.0	121	5.0	19	9	20	n.a.
KM-10 S	S ⊒		Mixed	81.49 62.07	0.30	10.91	2.45 e e 4	0.1	32.0	0.57	0.63	2.75	0.03	100.01	401	27	4 5	6 6	4 0	∞ ç	2 0	2 0.0 7 0.0	94	0.7	е С	۲ ac	81	п.а.
KM-10 Bulk	Bulk	20	viixed	80.15	0.32	11.60	2.76	0.14 0.14	0.82	0.68	0.73	2.76	0.03	99.90 100.00	411	30	16 1	9 0	o vo	2 C	0 8 1	5 0.0 9 0.0	102	7.0	37	6	108	ы. П. а.
North S	hinii (N	(SP																										
		2		0.0	ć		(:	:		:	:	1		1	(,		:	:		((i	:	:		ē
Sample #	Fract Ty	vpe 5	Source	SiO_2	TIO2	A ₂ 03	Fe ₂ 0 ₃	MnO	MgC	CaO	Na ₂ O	K20	P205	SUM	Ba	Se	ວັ	Ga	qN	N.	a R	b SC	ي م	Ę	>	~	Zr	ГО
Stream s	edimen	ts																										
NS-1M	Σ L	X	/lixed (67.52	0.79	16.93	8.66	0.24	1.43	0.78	0.33	1.92	0.43	99.02	529	64	74	20	12 2	8	4 89	9 21.0	96	8.9	130	29	20	17.12
NS-1M	Bulk 0	ž i	Mixed (67.52 	0.79	16.93	8.66	0.24	1.43	0.78	0.33	1.92	0.43	99.02	529	64	44	20	12	8 0	*	9 21.0	95	0.0 0	130	26	520	17.12 2.12
NS-2S			Anyo	72.67	0.47	14.65	4.65	0.18	22.1	30.1	1.84	2.59	0.09	99.42	596		9 0	; ;	~ r		о ч о ч	15.0	158	0 u 1	64 67	57 C	2 2	6.13 6.13
NS-SM			Aixed 7	72.00	0.59	14.34	6.57	0.10	1 28	8.6	40.1 77 0	2.29 2.19	0.09 0.16	99.42 99 11	090 435	6 7 7	81	- 4	- σ	ະຕິ ຄ	ő 8		62	7.6	5 5	26 4	48	00 8 99
NS-3M	Bulk M.		Aixed 7	72.00	0.59	14.34	6.57	0.19	1.28	1.02	0.77	2.19	0.16	99.11	435	43	57	2 8	ი ი ი		88	20.2	95	7.6	102	50 20	48	8.99
NS-4S	S	N N	lixed	72.08	09.0	13.99	5.48	0.16	1.50	1.44	1.70	2.18	0.10	99.24	440	30	59	16	8	0	7 78	3 20.8	152	4.7	103	20	30	5.33
NS-4F	≥ : : :	X	Mixed	65.85	1.20	16.15	7.75	0.23	2.25	2.22	1.58	1.85	0.18	99.25	442	51	125	19	13	2	~ ~	1 25.5	183	7.2	170	58	38	10.78
NS-4 DUIK	Bulk N	≚ - ≚ c	VIIXed	71.92	0.61	14.04	5.54	0.16	1.52	1.46	0/.1	2.17	0.10	99.24	440	00 10	61	10	N 7	≓ ; ⊃ r	i 2 1 02	20.5	153	4 r xi c	105 105		23	5.6U
NS-5F	о п N	ם נ רי		56.92	5.12	14.44	11.63	0.24	4.39	3.07	1.59	1.57	0.23	99.20	389	25	425	0 0	4 0 4 0 4 0 7 1 3	- 7	26	33.5	217	0.0 0	442	52 <u>e</u>	5 4	0.34
NS-5 bulk	Bulk SI	۔ م	losoji (69.22	0.87	14.08	6.01	0.13	2.37	2.24	1.87	2.14	0.13	99.07	453	35	153	16	10 4	6 12	7 71	1 26.0	197	5.3	132	18	145	5.57
NS-10S	s S	۔ م	losoji (65.31	1.63	14.21	6.70	0.09	3.30	3.40	2.30	1.90	0.18	99.03	435	39	228	4	16 6	16	62	28.0	258	5.1	207	2	178	5.74
NS-10F	ц S	, D	losoji	52.79	6.55	13.85	12.42	0.22	4.72	4.36	2.05	1.42	0.40	98.79	388	56	384	4	54 11	5	7 46	3 40.3	277	5.7	533	27	388	8.44
NS-10 bulk	Bulk St	, · _ ·	losoji (64.42	1.98	14.18	7.11	0.10	3.40	3.47	2.28	1.86	0.20	99.01	431	6	239	† i	19 6	÷ 1	0 0	1 28.8	260	5.1	230	5	93	5.88
NS-11S	S N	, ,	losoji (64.45	2.10	16.41	7.08	0.19	3.43	2.22	1.67	1.63	0.22	99.40	512	55	192	17	20	2	0	27.1	225	9.9	204	29	262	33.94
NS-11F	л П П П П	,. 0 0	ilosoli	69.72	0.73	15.53	5.68	0.14	2.66	1.61	1.93	1.83	0.17	100.00	459	43 1	107	; <u>1</u> 6	10 5	ლ ი	8 6 6	3 17.4	198	5.0 1	112	24	99	10.78
NO-11 DUIK	NING L	- , ۵ د	líosor	74.77	7.07	10.30	0.99	0.10	0.0G	2.10	1.03	40 C	17.0	99.44	ADC 1	4 7	10/	2 4	200	5 V 0 V			272	0.0	667		000	10.00
NS-12M	יים דים	, - 	losoli	71.19	10.0	14.02	0.39 6.30	. 5	1.60	1.30	1.1	2.10 81.0	0.10 0.10	05.99	400	4 f	20	<u>o</u> 4	0 ¢	ч с - г	- ,	0 ¥	141	0. 2	201	3 8	37	0.US
NS-14M	л П Л	, <u>,</u>	Shvo	72.40	0.60	14.33	5.66	0.09	1.56	1.30	1.32	2.07	0.15	99.48	475	5 4	8 8	0 0	<u>0</u> 0	2 4	- 0	1 0 0	153	6.3	66	3 22	36	6.80
NS-14M	Bulk Vi	- D	Shyo	72.40	0.60	14.33	5.66	0.09	1.56	1.30	1.32	2.07	0.15	99.48	475	4	48	16	9 2	Б 5	. 0	3 18.0	153	6.3	66	53	36	6.80
NS-15M	г S	D	-urue	72.82	0.66	14.02	5.71	0.10	1.58	1.46	1.23	1.94	0.14	99.68	516	38	52	15	10 2	3	0 75	5 15.2	171	6.1	101	23	49	7.50
NS-15M	Bulk SI	ے د	-urue	72.82	0.66	14.02	5.71	0.10	1.58	1.46	1.23	1.94	0.14	99.68	516	38	52	15	10	3	0 75	15.2	171	6.1	101	53	149	7.50
NS-17M	ы Б С		- - -	73.94	0.59	14.88	5.23	0.08	1.21	0.72	0.75	2.14	0.14	99.70	489	52	57	16	12	8	4	18.4	115	8.5	67	54 54	62	9.07
NS-17M	Bulk St	- -	-urue	73.94	0.59	14.88	5.23	0.08	1.21	0.72	0.75	2.14	0.14	99.70	489	52	57	16	12	2 8	4	18.4	115	8.5	67	24	162	9.07

Table 2 (Ctd).

Table 2 (Ctd).

 Table 3. Stream sediment sample weight fractions.

 Abbreviations as in Table 2.

North S	hinji (I	NS) (ctd																									
Sample #	Fract T	ype	Source	SiO ₂		Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	SUM	Ba	Ce	c	Ga	qN	NiF	b R	kb Si	S	r Th	>	۲	Zr	LOI
Stream s	edimer	nts (ci	td)																									
NS-18S	s s	ő	Josoli	76.31	0.39	13.33	4.56	0.10	1.04	0.67	0.85	2.07	0.10	99.43	459	43	24	15	7	5 2	0	1 13.6	3 107	6.5	20	25	132	5.97
NS-18F	г S	ő	Josoji	72.18	0.65	15.25	5.77	0.15	1.35	1.12	0.77	2.07	0.16	99.46	474	50	61	17	10 2	7 2	0 8(0 18.	1 125	8.3	100	29	210	12.22
NS-18 bulk	Bulk S	ñ	Josoji	76.20	0.40	13.38	4.60	0.10	1.05	0.69	0.85	2.07	0.10	99.43	460	43	25	15	7	6 2	2	2 13.7	7 107	6.5	71	25	134	6.28
NS-19S	ر د	ę	Rhyo	79.89	0.27	11.56	2.92	0.12	0.65	0.89	1.07	2.13	0.06	99.55	484	42	6	13	9	8	7 68	8 11.	7 128	6.3	36	21	123	4.62
NS-19F	> L	ę	Rhyo	71.19	09.0	15.11	5.14	0.28	1.18	2.09	1.70	2.24	0.13	99.66	501	73	42	16	12 3	1	ώ ω	14.	191	12.1	74	35	273	13.18
NS-19 bulk	Bulk V	ę	Rhyo	79.70	0.28	11.63	2.97	0.13	0.66	0.91	1.08	2.13	0.06	99.56	484	42	10	13	9	8	7 68	8 11.	7 129	6.4	37	21	126	5.05
NS-22S	s	õ	Furue	80.79	0.27	11.07	3.23	0.10	0.61	0.78	0.72	1.86	0.07	99.49	446	35	10	10	9	5	Q	1.9.	3 130	6.0	26	19	130	5.41
NS-22F	л С	õ	Furue	71.65	0.59	15.54	6.35	0.23	1.19	1.11	0.67	1.95	0.28	99.55	499	54	56	17	11 2	4 3	4 8	4 16.	141	9.2	89	29	224	13.69
NS-22 bulk	Bulk S	ñ	Furue	80.68	0.27	11.12	3.26	0.10	0.62	0.79	0.72	1.86	0.07	99.49	447	35	ŧ	10	9	5 1	.0 2	9.9	9 130	6.0	26	19	131	5.82
Whole ro	ck sam	nples																										
NS-6M	WR	/Ist	Josoli	74.04	0.53	13.11	6.20	0.02	0.75	0.12	0.83	3.54	0.06	99.21	2101	4	67	18	7	5 2	1	3 26.0	3 92	5.5	158	21	105	5.61
NS-7M	WR	Ast	Josoji	74.14	0.95	15.68	4.64	0.03	1.24	0.32	0.85	1.89	0.03	99.76	538	67	58	20	16 2	2	2	5 20.9	66	11.1	118	30	230	6.90
MS-SN	WR	/Ist	Josoli	75.46	0.56	13.42	4.92	0.02	1.48	0.27	0.99	2.29	0.03	99.46	429	46	65	15	с 8	0	2	0 22.8	8	6.9	126	18	100	6.44
NS-13M	WR N	Vist	Josoji	72.41	0.64	15.72	6.45	0.00	1.28	0.07	0.05	2.74	0.11	99.45	319	68	78	18	10	4 3	6 14	2 21.	53	8.4	152	26	132	8.57
NS-16M	WR N	VIst	Furue	72.63	0.85	17.96	3.52	0.00	1.28	0.08	0.54	2.83	0.05	99.75	369	89	75	20	17 1	3	2	3 21.	2 83	12.6	125	33	229	4.03
NS-20B	WR R	Shyo	Josoji	79.49	0.23	12.17	0.86	0.00	0.12	0.06	4.96	2.28	0.01	100.18	442	34	-	12	5	1	6	7 6.0	3 57	9.9	2	19	148	0.73
NS-21B	WR R	Shyo	Josoji	79.89	0.22	11.05	2.69	0.05	0.01	0.14	4.23	1.79	0.04	100.10	381	40	-	1	9	-	33	6 6	1 52	5.6	~	28	136	1.44
NS-23M	WR R	shyo .	Josoji	77.84	0.23	13.08	1.15	0.01	0.13	0.09	5.49	1.78	0.01	99.79	336	42	-	13	5	4	0.3	7 2.6	54	6.3	e	25	150	1.05
NS-24M	WR R	shyo .	Josoji	79.68	0.21	11.96	1.06	0.01	0.16	0.08	4.97	1.60	0.01	99.75	312	45	5	12	5	2	й 0	4	51	5.3	4	25	140	0.83
NS-25M	WR R	Shyo	Josoji	78.07	0.22	12.88	1.23	0.02	0.15	0.10	5.38	1.93	0.02	100.00	382	47	-	12	9	2	ё 6	 0	1 58	5.8	4	23	146	1.09

SaNr	Type/Lith	Source	Proportio	on %
			180-2000 µm	<180 µm
linashi				
INI-01	MC	Mixed	98 99	1 01
IN-02	VD	Andesite	98.18	1.01
IN_04	MX	And-Gran	99.71	0.29
IN-05	MX	And-Gran	98.97	1.03
IN-06	VD	Andesite	98.13	1.00
	MX	And_Gran	00.10	0.44
		Andecite	05.10	4 00
IN 11	CD	Granite	95.10	4.90
	GD	Granite	00.31	2.00
IN-12	GD	Granite	99.31	0.09
IN-13	GD	Mixed	95.67	4.13
IN-14 IN-15	MC	Mixed	99.42	0.00
IN-15	MC	Mixed	97.00	2.52
	NC	Mixed	90.90	0.26
IIN-17 INI 10	MC	Mixed	99.04 79.00	0.30
IIN-10	MC	Mixed	78.20	21.00
IN-21	MC	MIXed	98.65	1.35
lu				
IU-01	MC	Mixed	99.20	0.81
IU-02	MC	Mixed	98.97	1.04
IU-05	MX	Volc-Gran	98.46	1.54
IU-06	MX	Volc-Gran	92.43	7.57
IU-07	VD	Rhyolite	90.95	9.05
IU-08	VD	Rhyolite	97.58	2.42
IU-09	GD	Granite	97.31	2.75
IU-10	MX	Volc-Gran	94.57	5.43
IU-11	GD	Granite	99.20	0.80
IU-12	MX	Volc-Gran	97.97	2.03
IU-15	GD	Granite	98.87	1.13
IU-16	GD	Granite	97.24	2.76
IU-19	MC	Mixed	96.11	3.89
111-22	MC	Mixed	98.50	1 50
10-23	MC	Mixed	98.30	1 70
10 20	VD	Rhvolite	98.13	1.70
10-24		Phyolite	94.08	5.02
T-20		T TYONG	04.00	0.02
Tamayu	and Kim	acni	o 	
IM-01	MC	Mixed	91.47	8.53
TM-02	MC	Mixed	78.56	21.44
TM-03	GD	Granite	77.15	22.85
TM-04	GD	Granite	93.05	6.95
TM-06	MC	Mixed	97.42	2.58
TM-07	GD	Granite	98.30	1.70
TM-08	GD	Granite	88.14	11.86
TM-09	MC	Mixed	92.37	7.63
KM-01	MC	Mixed	95.77	4.23
KM-02	MC	Mixed	94.26	5.74
KM-04	SD	Omori	80.32	19.68
KM-05	SD	Kuri	94.17	5.83
KM-06	GD	Granite	95.70	4.30
KM-07	MC	Mixed	63.58	36.42
KM-08	GD	Granite	72.44	27.56
KM-09	MC	Mixed	98.42	1.58
KM-10	MC	Mixed	92.41	7.59
North S	hinii			
NS-1	MX	Mixed	0.00	100.00
NS-2	VD	Rhvolite	97 35	2 64
NG 3	MY	Mixed	0.00	100.00
NG-J		Mixed	0.00	2.60
NO 5		logoii	97.40	2.00
0-07	30	JUSUJI	90.01	1.19
NO-10	50	JUSOJI	92.90	7.10
NS-11	SD	JOSOJI	94.08	5.92
NS-12	SD	JOSOJI	0.00	100.00
NS-14	VD	Rhyolite	0.00	100.00
NS-15	SD	Furue	0.00	100.00
NS-17	SD	Furue	0.00	100.00
NS-18	SD	Josoji	97.25	2.75
NS-19	VD	Rhyolite	0.00	100.00
NS-22	SD	Furue	98.89	1.11