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Abstract. We show that if ruled Lagrangian submanifold M3 in 3-dimensional
complex Euclidean space is Einstein, then it is flat, provided that the map which
gives direction of each ruling has constant rank. Also we give explicit construction
of flat ruled Lagrangian submanifolds M3 in C3, from some horizontal curves in
S5, such that M3 is neither totally geodesic nor Riemannian product Σ × R.

1. Introduction

Lagrangian submanifolds plays important roles in differential geometry, symplec-
tic geometry and mathematical physics. In particular, minimal Lagrangian sub-
manifolds in Kähler manifolds and special Lagrangian submanifolds in Ricci-flat
Kähler (i.e. Calabi-Yau ) manifolds are distinguished important objects. In com-
plex Euclidean spaces, minimal Lagrangian submanifolds and special Lagrangian
submanifolds are coincide [5]. To construct explicit examples of special Lagrangian
submanifolds in complex Euclidean 3-space, Joyce [6] investigated ruled Lagrangian
submanifolds in C3. On the other hand, ruled submanifolds are studied extensively
in not only differential geometry but also projective and algebraic geometry (cf.
[9] and [10]). In this paper we study differential geometric properties of ruled
Lagrangian submanifolds in C3.

Description of ruled 3-dimensional submanifolds in C3 are given by Joyce [6] as

M = {rϕ(p) + ψ(p) : p ∈ Σ, r ∈ R},
where Σ is a 2-dimensional surface, ϕ : Σ → S5 and ψ : Σ → C3 are smooth maps,
and S5 is the unit sphere in C3 (cf. §3). Then Joyce determined ruled 3-dimensional
special Lagrangian submanifolds in C3 in the case that ϕ is an immersion. On the
other hand, as a trivial case, when ϕ : Σ → S5 is a constant map, the corresponding
ruled submanifold is considered as a Riemannian product Σ × R, where Σ is a
submanifold in R5 = {ϕ(Σ)}⊥ by the immersion ψ : Σ → R5 ⊂ C3 cf. §4).
Then the product submanifold M3 = Σ × R is Lagrangian in C3 if and only if
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ψ : Σ → C2 ⊂ C3 is a Lagrangian immersion. Also the M3 is special (i.e. minimal)
Lagrangian in C3 if and only if Σ is minimal Lagrangian in C2.

Anyway ruled Lagrangian submanifold is interesting and important class among
Lagrangian submanifolds in C3, and determination of Einstein (i.e., constant cur-
vature) ruled Lagrangian 3-fold is a fundamental problem. When ϕ : Σ → S5 is a
constant map, if the ruled 3-fold M3 = Σ × R in C3 is Einstein, then M3 is flat
and Σ is a flat Lagrangian surface in C2 (cf. [1] and [3]). When ϕ is an immersion,
the ruled 3-fold M3 is Lagrangian provided that ϕ : Σ → S5 is a Legendre immer-
sion. Our first result is that if M3 is Einstein then Ric = 0 and the metric on Σ
induced by ϕ has constant Gaussian curvature 1 (Proposition 2). Also if the scalar
curvature R of M3 is constant, then R = 0 (Proposition 3).

Next we discuss the case: rank dϕ = 1. Then the ruled 3-fold M3 is Lagrangian
provided that the corresponding curve ϕ : I → S5 is horizontal with respect to
the Hopf fibration S5 → CP2. As a special case, we can construct flat ruled
Lagrangian 3-fold M3 explicitly, from a horizontal curve ϕ : I → S5 satisfying
∥ϕ′∥ = 1, ⟨ϕ′′, iϕ′⟩ = 0, ⟨ϕ′′′, iϕ′′⟩ ̸= 0 with non-vanishing geodesic curvature, and a
function µ : J × I → R satisfying µ ̸= 0 and µs ̸= 0 (I and J are intervals). Note
that resulting Lagrangian submanifolds M3 in C3 are neither totally geodesic, nor
Riemannian product of a Lagrangian surface Σ2 and a real line R.

2. Lagrangian submanifolds in C3 and Legendrian submanifolds in S5

Let C3 = {(z1, z2, z3)|zj ∈ C, j = 1, 2, 3} be a 3-dimensional complex
Euclidean space with standard real inner product ⟨(z1, z2, z3), (w1, w2, w3)⟩ =
real part of (z1w̄1 + z2w̄2 + z3w̄3). Let M = M3 be a Lagrangian submanifold

in C3. Then Gauss equation is

g(R(X, Y )Z,W ) = c{g(Y, Z)g(X,W ) − g(X,Z)g(Y,W )}
+g(σ(Y, Z), σ(X,W )) − g(σ(X,Z), σ(Y,W )),

where R and σ denote curvature tensor and second fundamental tensor of M for
tangent vector field X,Y . Let T be a symmetric (0, 3)-tensor field on M defined
by T (X, Y, Z) = ⟨σ(X, Y ), JZ⟩. Then the Ricci tensor of M is given by

(1) Ric(X, Y ) =
3∑

i,j=1

(⟨T (X, Y, ei), T (ei, ej, ej)⟩ − ⟨T (X, ei, ej), T (Y, ei, ej)⟩)

where ei (i = 1, 2, 3) is an orthonormal basis of a tangent space of M . The scalar
curvature ρ of M is

(2) ρ = ∥H∥2 − ∥σ∥2.

Let S5 be the unit sphere in C3 and let f : M2 → S5 be an immersion. Then f
is called a Legendrian immersion if for any x ∈M , ⟨df(Tx(M)), if(x)⟩ = 0, where
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i =
√
−1. For a Legendrian immersion f : M2 → S5, Gauss equation is given by

K = 1 + ⟨σ(e1, e1), σ(e2, e2)⟩ − ⟨σ(e1, e2), σ(e1, e2)⟩,(3)

= 1 + ⟨σ(e1, e1), ie1⟩⟨σ(e2, e2), ie1⟩ + ⟨σ(e1, e1), ie2⟩⟨σ(e2, e2), ie2⟩
−⟨σ(e1, e2), ie1⟩⟨σ(e1, e2), ie1⟩ − ⟨σ(e1, e2), ie2⟩⟨σ(e1, e2), ie2⟩,

where K denotes the Gaussian curvature of M2 and e1, e2 is an orthonormal frame
of a tangent space of M2.

3. Ruled Lagrangian submanifolds of C3

According to §3 of [6] , we set up notation of ruled submanifolds in C3.

Definition 3.1. Let M be a real k-dimensional submanifold in C3. A ruling (Σ, π)
of M is a (k − 1)-dimensional manifold Σ and a smooth map π : M → Σ, such
that for each p ∈ Σ the fibre π−1(p) is a real affine straight line in C3. A ruled
submanifold is a triple (M,Σ, π), where M is a submanifold of C3 and (Σ, π) is a
ruling of M .

Usually we will refer to the ruled submanifold as M , taking Σ, π to be given. As
r-orientation for (Σ, π) is a choice of orientation for the real line π−1(p) for each
p ∈ Σ, which varies continuously with p. A ruled submanifold (M,Σ, π) with an
r-orientation is called r-oriented ruled submanifold.

Let (M,Σ, π) be an r-oriented ruled submanifold of N , and let S5 be the unit
sphere in C3. Define a map ϕ : Σ → S5 such that ϕ(p) is the unique unit vector
parallel to π−1(p) and in the positive direction with respect to the orientation on
π−1(p), for each p ∈ Σ. Note that ϕ is a smooth map.

Define a map ψ : Σ → C3 such that ψ(p) is the unique vector in π−1(p) orthogonal
to ϕ(p), for each p ∈ Σ. Then ψ is smooth and we have

(4) M = {rϕ(p) + ψ(p) : p ∈ Σ, r ∈ R}.
Real 3-dimensional rules submanifolds M in C3 given by (4) are essentially included
in one of the following classes: (i) rank of (differential of) ϕ : Σ → S5 is equal to
0, i.e., ϕ is a constant map. (ii) rank of ϕ is equal to 1. (iii) rank of ϕ is equal to
2, i.e., ϕ is an immersion. In [6], only the case (iii) is discussed.

4. Riemannian product of Lagrangian surfaces in C2 and real lines

First we consider the case (i), i.e., ϕ : Σ → S5 is a constant map. Then clearly
the ruled submanifold M in C3 is given as the Riemannian product R × Σ, where
Σ is considered as a surface in R5 = {ϕ(Σ)}⊥ by the immersion ψ : Σ → R5 ⊂ C3.
Moreover, in this case M = R×Σ is a Lagrangian submanifold in C3 if and only if
ψ : Σ → C2 is a Lagrangian immersion, where C2 is the complex orthogonal com-
plement of ϕ(Σ) in C3. Note that M = R×Σ is a minimal Lagrangian submanifold
(i.e. special Lagrangian submanifold) in C3 if and only if ψ(Σ) is a minimal La-
grangian surface in C2. Also if M = R×Σ is an Einstein (i.e., constant curvature)
Lagrangian submanifold in C3, then M is flat and ψ(Σ) is a flat Lagrangian surface
in C2 (cf. [1]).
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Remark 4.1. Let ψ be a Lagrangian isometric immersion from 2-dimensional
Riemannian manifold Σ of constant curvature λ (cf. [1]) to C2. Then the in-
duced metric g of the Lagrangian submanifold M = R × Σ in C3 is a gradient
Ricci soliton satisfying Hessg f +Ricg = λg, where f = λt2/2 and t is the standard
coordinate of the Euclidean factor R (cf. [9]).

5. Ruled Lagrangian submanifolds of C3 and Legendrian surfaces in
S5

In this section, we consider ruled Lagrangian submanifolds in C3 such that the
map ϕ : Σ → S5, which gives a direction of ruling, is an immersion. This case was
also discussed in [6]. Let Σ be a real 2-dimensional manifold and let ϕ : Σ → S5 be
an immersion. Let ψ : Σ → C3 be a map satisfying ⟨ϕ(p), ψ(p)⟩ = 0 for any p ∈ Σ.
Let M be the image of the map Φ : R × Σ → C3 given by

(5) Φ(r, p) = rϕ(p) + ψ(p).

As ϕ is an immersion, Φ is an immersion almost every where in R × Σ. The
images of points where Φ is not an immersion are generally singular points on M .
Regarding M as an immersed copy of R×Σ with (possibly singular) immersion Φ,
we may define π : M → Σ by π(r, p) = p. Then (Σ, π) is a ruling on M .

Suppose Φ is an immersion at (r, p) in R × Σ. As ϕ : Σ → S5 is an immersion,
the pull-back of the round metric on S5 makes Σ into a Riemannian 2-manifold.
We choose isothermal coordinate (s, t) on Σ near p. Then we have

(6) ρ = ρ(s, t) := ∥ϕs∥ = ∥ϕt∥ > 0, ⟨ϕs, ϕt⟩ = 0.

First we would like to find conditions for which Φ is a Lagrangian immersion. First
partial derivatives of Φ are given as

Φr =
∂Φ

∂r
(r, p) = ϕ(p), Φs =

∂Φ

∂s
(r, p) = rϕs(p) + ψs(p),(7)

and Φt =
∂Φ

∂t
(r, p) = rϕt(p) + ψt(p).

Then Φ is a Lagrangian immersion if and only if

(8) ⟨Φr, iΦs⟩ = ⟨Φr, iΦt⟩ = ⟨Φs, iΦt⟩ = 0.

Substituting in for Φr,Φs,Φt using (5) gives equations upon ϕ and ψ and their
derivatives, which are linear or quadratic polynomials in r. As the equations should
hold for all r ∈ R, the coefficient of each power of r should vanish. So we find that
(8) holding for all r is equivalent to the equations

⟨ϕ, iϕs⟩ = ⟨ϕ, iϕt⟩ = ⟨ϕs, iϕt⟩ = 0,(9)

⟨ϕ, iψs⟩ = ⟨ϕ, iψt⟩ = ⟨ϕs, iψt⟩ − ⟨ϕt, iψs⟩ = 0,(10)

⟨ψs, iψt⟩ = 0.(11)

Note that ϕ : Σ → S5 is a Legendrian immersion by (9).
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(6) and (5) imply that the induced metric g on R × Σ is expressed with respect
to the basis {∂/∂r, ∂/∂s, ∂/∂t} of the tangent space T(r,p)(R × Σ) = TrR × TpΣ as

(12) g =

g11 g12 g13

g21 g22 g23

g31 g32 g33

 ,

where

g11 = ∥Φr∥2 = 1, g12 = g21 = ⟨Φr,Φs⟩ = c1, g13 = g31 = ⟨Φr,Φt⟩ = c2,

g22 = ∥Φs∥2 = r2ρ2 + ra1 + b1, g33 = ∥Φt∥2 = r2ρ2 + ra3 + b3,(13)

g23 = g32 = ⟨Φs,Φt⟩ = ra2 + b2,

with

a1 = 2⟨ϕs, ψs⟩, a2 = ⟨ϕs, ψt⟩ + ⟨ϕt, ψs⟩, a3 = 2⟨ϕt, ψt⟩,
b1 = ∥ψs∥2, b2 = ⟨ψs, ψt⟩, b3 = ∥ψt∥2,(14)

c1 = ⟨ϕ, ψs⟩, c2 = ⟨ϕ, ψt⟩.
We have

det g = r4ρ4 + r3ρ2(a1 + a3) + r2(ρ2
(
b1 + b3 − c21 − c22

)
+ a1a3 − a2

2)(15)

+r(a1b3 − 2a2b2 + a3b1 − a1c
2
2 + 2a2c1c2 − a3c

2
1)

+b1b3 − b22 − b1c
2
2 + 2b2c1c2 − b3c

2
1.

Next we calculate components of symmetric (0, 3) tensor field T (X,Y, Z) =
⟨σ(X,Y ), iZ⟩ on ruled Lagrangian submanifold M3 for X, Y, Z ∈ TM . Φrr =
∂2Φ/∂r2 = 0 implies that

T111 = ⟨Φrr, iΦr⟩ = 0, T112 = ⟨Φrr, iΦs⟩ = 0, T113 = ⟨Φrr, iΦt⟩ = 0.(16)

(9) and (10) yield

T122 = ⟨Φrs, iΦs⟩ = A1, T123 = ⟨Φrs, iΦt⟩ = A2, T133 = ⟨Φrt, iΦt⟩ = A3,(17)

where

A1 = ⟨ϕs, iψs⟩, A2 = ⟨ϕs, iψt⟩ = ⟨ϕt, iψs⟩, A3 = ⟨ϕt, iψt⟩.(18)

Also we obtain

T222 = ⟨Φss, iΦs⟩ = r2B1 + rC1 +D1, T223 = ⟨Φss, iΦt⟩ = r2B2 + rC2 +D2,

(19)

T233 = ⟨Φst, iΦt⟩ = r2B3 + rC3 +D3, T333 = ⟨Φtt, iΦt⟩ = r2B4 + rC4 +D4,

where

B1 = ⟨ϕss, iϕs⟩, B2 = ⟨ϕss, iϕt⟩, B3 = ⟨ϕst, iϕt⟩, B4 = ⟨ϕtt, iϕt⟩,(20)

C1 = ⟨ϕss, iψs⟩ + ⟨ψss, iϕs⟩, C2 = ⟨ϕss, iψt⟩ + ⟨ψss, iϕt⟩,
C3 = ⟨ϕst, iψt⟩ + ⟨ψst, iϕt⟩, C4 = ⟨ϕtt, iψt⟩ + ⟨ψtt, iϕt⟩,

D1 = ⟨ψss, iψs⟩, D2 = ⟨ψss, iψt⟩, D3 = ⟨ψst, iψt⟩, D4 = ⟨ψtt, iψt⟩.
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We calculate Ricci tensor of the ruled Lagrangian submanifold M3 in C3 by using
the Gauss equation. We can express the components

(21) Rαβ =
∑
ijkl

gijgkl(TαβiTjkl − TαikTβjl)

(α, β, i, j, k, l = 1, 2, 3) of the Ricci tensor on M as the form (det g)−2P (r), where
P (r) is a polynomial of r with which each coefficient is a function of (s, t) as:

R11 = (det g)−2
(
−r4ρ4(A2

1 + 2A2
2 + A2

3) + lower term
)
,(22)

R12 = (det g)−2
(
r6ρ4(A2(B4 −B2) +B3(A1 − A3)) + lower term

)
,

R13 = (det g)−2
(
r6ρ4(A2(B1 −B3) +B2(A3 − A1)) + lower term

)
,

R22 = (det g)−2
(
r8ρ4(B2(B4 −B2) +B3(B1 −B3)) + lower term

)
,

R23 = (det g)−2
(
r7ρ2(B2(B4 −B2) +B3(B1 −B3)) + lower term

)
,

R33 = (det g)−2
(
r8ρ4(B2(B4 −B2) +B3(B1 −B3)) + lower term

)
.

Proposition 5.1. Let (M,Σ, π) be an r-oriented ruled Lagrangian submanifold in
C3. Let ϕ : Σ → S5 and ψ : Σ → C3 be the corresponding maps and suppose ϕ is
an immersion. If M is Einstein (i.e., constant sectional curvature) with respect to
the induced metric, then M is flat and ϕ, ψ satisfy the following: (i) ϕ : Σ → S5

is a Legendrian immersion such that the metric on Σ induced by ϕ has constant
Gaussian curvature 1, and (ii) ψs, ψt ∈ spanR{ϕ, ϕs, ϕt}.

Remark 5.2. Let ϕ : Σ → S5 be a Legendrian immersion such that the metric on Σ
induced by ϕ has constant Gaussian curvature 1. Then by taking a composition of
ϕ and the Hopf fibration S5 → CP2, we have a Lagrangian surface Σ in CP2 with
constant Gauss curvature. Such surfaces were classified in [2] and [3].

Also the scalar curvature R of M3 is

(23) R =
∑
ij

gijRij = (det g)−3PR(r),

where PR(r) is a polynomial of degree 8 with respect to r and each coefficient is a
function of s and t. By comparing degrees of denominator and numerator of R, we
obtain:

Proposition 5.3. Let (M,Σ, π) be a r-oriented ruled Lagrangian submanifold in
C3 Let ϕ : Σ → S5 and ψ : Σ → C3 be the corresponding maps and suppose ϕ is
an immersion. If the scalar curvature R of M with respect to the induced metric
is constant, then R = 0.

6. Ruled Lagrangian submanifolds of C3 and horizontal curves in S5

In this section, we consider ruled Lagrangian submanifolds in C3 such that the
map ϕ : Σ → S5, has rank 1. We use same notations as §5. Let Σ be a real
2-dimensional manifold and let ϕ : Σ → S5 be a map such that the rank of its
differential map dϕ : TpΣ → Tϕ(p)S

5 is equal to 1 at each point p ∈ Σ. Let ψ : Σ →
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C3 be a map satisfying ⟨ϕ(p), ψ(p)⟩ = 0 for any p ∈ Σ. The ruled submanifold M
is the image of the map Φ : R × Σ → C3 given by Φ(r, p) = rϕ(p) + ψ(p) as (5).
Suppose Φ is an immersion at (r, p) in R × Σ. Since the rank of dϕ is equal to 1
at p ∈ Σ, we can take local coordinate (s, t) on Σ near p such that ϕ = ϕ(t) with
|ϕ′(t)| = 1 and ∂ϕ/∂s = 0, by implicit function theorem.

We find conditions for which Φ is a Lagrangian immersion. First partial deriva-
tives of Φ are given as

Φr =
∂Φ

∂r
(r, p) = ϕ(p), Φs =

∂Φ

∂s
(r, p) = ψs(p),(24)

and Φt =
∂Φ

∂t
(r, p) = rϕ′(p) + ψt(p).

Then by (8), Φ is a Lagrangian immersion if and only if

⟨ϕ, iϕ′⟩ = 0,(25)

⟨ϕ, iψs⟩ = ⟨ϕ, iψt⟩ = ⟨ϕ′, iψs⟩ = 0,(26)

⟨ψs, iψt⟩ = 0.(27)

(25) yields that the curve t 7→ ϕ(t) in S5 is horizontal with respect to the Hopf
fibration S5 → CP2.

The induced metric g on R × Σ is expressed with respect to the basis
{∂/∂r, ∂/∂s, ∂/∂t} of the tangent space T(r,p)(R × Σ) = TrR × TpΣ by (12). (6)
implies that

g11 = ∥Φr∥2 = 1, g12 = g21 = ⟨Φr,Φs⟩ = ⟨ϕ, ψs⟩ = 0,(28)

g13 = g31 = ⟨Φr,Φt⟩ = c2, g22 = ∥Φs∥2 = b1,

g23 = g32 = ⟨Φs,Φt⟩ = ra4 + b2, g33 = ∥Φt∥2 = r2 + ra5 + b3,

with

a4 = ⟨ϕ′, ψs⟩, a5 = ⟨ϕ′, ψt⟩, b1 = ∥ψs∥2,(29)

b2 = ⟨ψs, ψt⟩, b3 = ∥ψt∥2, c2 = ⟨ϕ, ψt⟩.

Note that ⟨ϕ, ψ⟩ = 0 implies ⟨ϕ, ψs⟩ = 0. We have

(30) det g = r2(b1 − a2
4) + r(a5b1 − 2a4b2) + b1(b3 − c22) − b22.

Components of the tensor T are described as:

T111 = ⟨Φrr, iΦr⟩ = 0, T112 = ⟨Φrr, iΦs⟩ = 0, T113 = ⟨Φrr, iΦt⟩ = 0,

T122 = ⟨Φrs, iΦs⟩ = 0, T123 = ⟨Φrs, iΦt⟩ = 0, T133 = ⟨Φrt, iΦt⟩ = A4,

T222 = ⟨Φss, iΦs⟩ = D1, T223 = ⟨Φss, iΦt⟩ = rC5 +D2,

T233 = ⟨Φst, iΦt⟩ = rC6 +D3, T333 = ⟨Φtt, iΦt⟩ = r2B5 + rC7 +D4,
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where

A4 = ⟨ϕ′, iψt⟩, B5 = ⟨ϕ′′, iϕ′⟩,(31)

C5 = ⟨ψss, iϕ
′⟩, C6 = ⟨ψst, iϕ

′⟩, C7 = ⟨ϕ′′, iψt⟩ + ⟨ψtt, iϕ
′⟩,

D1 = ⟨ψss, iψs⟩, D2 = ⟨ψss, iψt⟩, D3 = ⟨ψst, iψt⟩, D4 = ⟨ψtt, iψt⟩.

We can express the components Rαβ of the Ricci tensor on M as the form
(det g)−2P (r), where P (r) is a polynomial of r with which each coefficient is a
function of (s, t) as:

R11 = −(det g)−2b21A
2
4,(32)

R12 = (det g)−2
(
r2a4A4(2b1C5 − a4D1) + lower term

)
,

R13 = (det g)−2
(
r3A4(C5(a

2
4 + b1) − a4D1) + lower term

)
,

R22 = (det g)−2
(
−r4b1C

2
5 + lower term

)
,

R23 = (det g)−2
(
−r5a4C

2
5 + lower term

)
,

R33 = (det g)−2
(
−r6C2

5 + lower term
)
.

Also the scalar curvature R of M3 is

(33) R =
∑
ij

gijRij = (det g)−3
(
r4a4A4C5(b1 − a2

4) + lower term
)

If (M3, g) is Einstein with Ric = λg such that λ ̸= 0, then

(34) det g is independent of r.

7. An explicit construction of flat ruled Lagrangian submanifolds
from some horizontal curves in S5

So hereafter we consider this case (34). Then by (29) and (30), we have

(35) 0 = b1 − a2
4 = ∥ψs∥2 − ⟨ϕ′, ψs⟩2.

Hence there are some functions ν(s, t) and µ(s, t) such that ψs(s, t) = ν(s, t)ϕ′(t)
and ψ(s, t) = µ(s, t)ϕ(t) (∂µ/∂s = ν). So the map Φ is written as

(36) Φ(r, s, t) = rϕ(t) + µ(s, t)ϕ′(t),

and the ruled submanifold M is given by a curve ϕ : I → S5 (I is an interval) and
a function µ(s, t). First partial derivatives of Φ are given as

Φr = ϕ, Φs = µsϕ
′, Φt = (r + µt)ϕ

′ + µϕ′′.(37)

Then by (8), Φ is a Lagrangian immersion if and only if

⟨ϕ, iϕ′⟩ = ⟨ϕ′′, iϕ′⟩ = 0.(38)

In particular, ϕ(t) is a horizontal curve in S5.
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The induced metric g on R × Σ is

g11 = ∥Φr∥2 = 1, g12 = g21 = ⟨Φr,Φs⟩ = ⟨ϕ, ψs⟩ = 0,(39)

g13 = g31 = ⟨Φr,Φt⟩ = −µ, g22 = ∥Φs∥2 = µ2
s,

g23 = g32 = ⟨Φs,Φt⟩ = (r + µt)µs, g33 = ∥Φt∥2 = (r + µt)
2 + µ2∥ϕ′′∥2.

and

(40) det g = µ2µ2
sκ

2
ϕ,

where κϕ =
√

∥ϕ′′∥2 − 1 is the curvature of ϕ(t) as a spherical curve in S5. So in
this case Φ is an immersion if and only if µ ̸= 0, µs ̸= 0 and κϕ ̸= 0. By direct
computation, we can see that components of the tensor T are all 0 except

T333 = ⟨Φtt, iΦt⟩ = µ2⟨ϕ′′′, iϕ′′⟩,

and we have Ric = 0, i.e., M3 is flat. Consequently we have:

Theorem 7.1. Let I and J be open intervals in R. Let ϕ : I → S5 be a horizontal
curve satisfying ∥ϕ′∥ = 1, ⟨ϕ′′, iϕ′⟩ = 0, κϕ ̸= 0, ⟨ϕ′′′, iϕ′′⟩ ̸= 0 and let µ : J×I → R
be a function satisfying µ ̸= 0 and µs ̸= 0. Then Φ(r, s, t) = rϕ(t) + µ(s, t)ϕ′(t)
defines a flat ruled Lagrangian submanifold in C3, which is neither totally geodesic
nor a Riemannian product.

Proposition 7.2. Let (M,Σ, π) be a r-oriented ruled Lagrangian submanifold in
C3. Let ϕ : Σ → S5 and ψ : Σ → C3 be the corresponding maps and suppose the
rank of ϕ is equal to 1. If M is Einstein (i.e., constant sectional curvature) with
respect to the induced metric, then M is flat and ϕ, ψ satisfy the following: (i) ϕ(Σ)
is a horizontal curve in S5, and (ii) ⟨ψss, iϕ

′⟩ = 0.

Combining Propositions 5.1, 7.2 and §4, we get

Theorem 7.3. Let (M,Σ, π) be a r-oriented ruled Lagrangian submanifold in C3.
Let ϕ : Σ → S5 and ψ : Σ → C3 be the corresponding maps and suppose the rank
of ϕ is constant. If M is Einstein (i.e., constant sectional curvature) with respect
to the induced metric, then M is flat.
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