Mem. Fac. Sci. Shimane Univ. 28, pp.13-18 Dec. 28, 1994

On the *p*-Systems in a Straight Locally Inverse Semigroup whose Idempotents form a Band

Miyuki Yamada

Shimane University Matsue, 690 JAPAN Communicated by Kunitaka Shoji (Received September 5, 1994)

In the previous paper [4], the concept of a *p*-system in a regular semigroup has been introduced; and it has been shown that every *-operation in a regular semigroup S is determined by some *p*-system in S, and conversely in a regular semigroup S with *-operation the projections of S form a *p*-system in S. On the other hand, the structure of orthodox SLI (straight locally inverse)-semigroups has been clarified in [5]. In this short note, the *p*-systems in an orthodox SLI-semigroup will be studied.

§0. Introduction

Let S be a regular semigroup equipped with a unary operation $* : S \rightarrow S$ satisfying the following three axioms :

- (1) $xx^*x = x$ for $x \in S$,
- (2) $(x^*)^* = x$ for $x \in S$,
- (3) $(xy)^* = y^*x^*$ for $x, y \in S$.

In this case, S is called a regular *-semigroup. An element x of S is called a projection if $x = x^*$ and $x^2 = x$.

Let S be a regular semigroup, and E(S) the set of idempotents of S. A subset P of E(S) is called *a p-system* in S if it satisfies the following : Let V(a) be the set of all inverses of a for $a \in S$.

(1) For any $a \in S$, there exists a unique $a^* \in V(a)$ such that aa^* , $a^*a \in P$,

(2) for any $a \in S$, $a^*Pa \subseteq P$ and $aPa^* \subseteq P$, where * is the unary operation in S determined by (1),

(3) $P^2 \subset E(S)$.

It has been shown in [4] that if P is a p-system in S then S becomes a regular *-semigroup under the unary operation * determined by (1) above. In this case, the unary oprration * above is called *the* *-operation determined by P. It is easy to see that the set of projections of the regular *-semigroup S concides with P. Conversely, if S is a regular *-semigroup with *-operation #, then the set P of all projections is a p-system in S, and the *-operation * determined by P coincides with #; that is # = *. If there exists at least one p-

Miyuki YAMADA

system in a regular semigroup S, then S is called *involutive*. Therefore, we can say that S is involutive if and only if a *-operation is well-defined in S.

Now, let S be a locally inverse semigroup, that is a regular semigroup such that

(1) eSe is an inverse semigroup for each $e \in E(S)$.

If S further satisfies the following :

(2) E(S) is a disjoint union of maximal subsemilattices, then S is called a straight locally inverse semigroup (SLI-semigroup) (see [2]).

It has been shown in [2] that if S is a SLI-semigroup then S is a rectangular band χ of subsemigroups $\{S_{\alpha} : \alpha \in \chi\}$, where $E(S_{\alpha})$ is commutative for each $\alpha \in \chi$. The main purpose of this paper is to find out all the *p*-systems, accordingly all the *-operations, in an orthodox SLI-semigroup.

§1. Involutive orthodox SLI-semigroups.

Let S be an orthodox SLI-semigroup. Then, S is a rectangular band χ of $\{S_{\alpha} : \alpha \in \chi\}$, where S_{α} is a subsemigroup of S for $\alpha \in \chi$ such that $E(S_{\alpha})$ is a subsemilattice. Since E(S) is a band, E(S) is a rectangular band χ of $\{E_{\alpha} : \alpha \in \chi\}$, where $E_{\alpha} = E(S_{\alpha}) = E(S) \cap S_{\alpha}$. Let ϕ be the homomorphism of S onto χ defined by $x\phi = \alpha$ if $x \in S_{\alpha}$, and τ the congruence on S induced by ϕ . Let ϕ_E , τ_E be the restrictions of ϕ , τ to E = E(S) respectively. On the other hand, since S is an orthodox semigroup, there exists an inverse semigroup $\Gamma(\Lambda)$ (where Λ is the semilattice of idempotents of Γ) and a surjective homomorphism $\Psi : S \rightarrow \Gamma(\Lambda)$ such that $\lambda \Psi^{-1}$ is a rectangular subband of E for each $\lambda \in \Lambda$ (see [1]). Let $\gamma \Psi^{-1} = T_r$ for $\gamma \in \Gamma$. Then, every T_{λ} is a rectangular band for $\lambda \in \Lambda$. Let ξ be the congruence on S induced by Ψ ; that is, $x\xi y$ if and only if $x\Psi = y\Psi$. Let Ψ_E , ξ_E be the restrictions of Ψ , ξ to E respectively. Since χ is a rectangular band, χ is the direct product of a left zero semigroup I and a right zero semigroup $J : \chi \times I \times J$. Now, $\tau_E \cap \xi_E = \epsilon_E$ (the equality on E; further, in fact $\tau \cap \xi = \epsilon_S$ (the equality on S)), and hence E is isomorphic to a subdirect product $E/\tau_E \approx E/\xi_E$ of E/τ_E and E/ξ_E . It is obvious that $E/\tau_E \cong$ χ (isomorpic) and $E/\xi_E \cong \Lambda$. Hence, $E \cong \chi \ll \Lambda$, and an isomorphism θ is goven by $e\theta = (e\phi, e\Psi) \in \chi \ll \Lambda$ for $e \in E$. Now, identify e with $(e\phi, e\Psi)$.

Then, we can assume that $E = \chi \times \Lambda$. Let *P* be a *p*-system in *E*. Let # be the *-operation in *E* determined by *P*. Let *e*, *f* be elements of *E* such that $e\tau_E f$. Then, since *e*, $f \in E_\alpha$ for some α , *e* and *f* have forms $e = ((i, j), \lambda)$ and $f = ((i, j), \delta)$, where $(i, j) \in I \times J$ and $\lambda, \delta \in \Lambda$. Let $e^{\#} = ((k, s), \varepsilon)$ and $f^{\#} = ((u, v), \sigma)$. Since $e^{\#}$ is an inverse of *e*, $\varepsilon = \lambda$.

Similarly, $\sigma = \delta$. Now, $((i, j), \lambda)(k, s), \lambda) = ((i, s), \lambda) \in P$, $((k, s), \lambda)((i, j), \lambda) = ((k, j), \lambda) \in P$, $((i, j), \delta)((u, v), \delta) = ((i, v), \delta) \in P$ and $((u, v), \delta)((i, j), \delta) = ((u, (j), \delta) \in P$. Hence, $((i, s), \lambda)((u, v), \delta)((i, s), \lambda) = ((i, s), \lambda\delta) \in P$. Similarly, $((k, j), \lambda\delta)$, $((i, v), \lambda\delta), ((u, j), \lambda\delta) \in P$. Since each L-class of E contains only one element of P, it follows that k = u.

Dually, we have s=v. Therefore, $f^{\#}=((k, s), \sigma)$. Hence, $e^{\#}\tau_{E}f^{\#}$. Thus, we have the

On the *p*-Systems in a Straight Locally Inverse Semigroup whose Idempotents form a Band 15

following :

LEMMA 1.1. The congruence τ_E is a *-congruence (see[3]), and accordingly $P\phi_E$ is a *p*-system in χ .

LEMMA 1.2. Let $e = ((i, j), \alpha)$ and $f = ((i, j), \beta)$ (hence, $e, f \in E_{(i,j)}$). Then, $e \leq f$ if and only if $\alpha \leq \beta$.

PROOF. Since $((i,j),\alpha)((i,j),\beta) = ((i,j),\beta)((i,j),\alpha) = ((i,j),\alpha)$ implies $\alpha\beta = \beta\alpha = \alpha$, that is, $\alpha \leq \beta$. Conversely, $\alpha \leq \beta$ implies $((i,j),\alpha) = ((i,j),\alpha\beta) = ((i,j),\beta\alpha)$, and accordingly $e \leq f$.

LEMMA 1.3. If $e = ((i, j), \alpha) \in P$ and $\beta \leq \alpha$, then $((i, j), \beta \in P$. That is, $e \in P$, $f \in E$ and $f \leq e$ implies $f \in P$.

PROOF. Since each *R*-class contains an element of *P* and there exists an element having the form $((k, s), \beta)$, it follows that $((k, u), \beta) \in P$ for some *u*. Then, since *P* is a *p*-system, we have $((i, j), \alpha)((k, u), \beta)((i, j), \alpha) = ((i, j), \beta) \in P$.

Let
$$P_{\delta} = E_{\delta} \cap P$$
 for $\delta \in \chi$.

LEMMA 1.4. For any $e \in E_{\delta}$, there exist $p \in P_{\sigma}$ and $q \in P_{\tau}$, where $\delta L \sigma$ and $\delta R \gamma$, such that epe=e end eqe=e.

PROOF. There exists $p \in P$ such that pLe. Let $p = ((k, s), \beta)$ and $e = ((i, j), \alpha)$. Since pe = p and ep = e, $((k, s), \beta)((i, j), \alpha) = ((k, s), \beta)$ and $((i, j), \alpha)((k, s), \beta) = ((i, j), \alpha)$, and accordingly $((k, j), \alpha\beta) = ((k, s), \beta)$ and $((i, s), \alpha\beta) = (((i, j), \alpha)$. Hence, $\beta = \alpha\beta = \alpha$ and s = j.

Thus, $p = ((k, j), \alpha)$. Now, $p\phi_E = (k, j)$, and hence $p \in P_{(k,j)}$. It is easy to see that (k, j)L(i, j) in χ .

Further, it is also obvious that epe=e. Dually, there exists $q \in P_{\gamma}$, where $\gamma R\delta$, such that eqe = e.

Since $P\phi_E = Q$ is a *p*-system in the square band χ , for any ε of χ there exist a unique δ of Qand a unique σ of Q such that $\varepsilon L\delta$ and $\delta R\sigma$ respectively. Denote δ , σ by $\delta = \varepsilon_1$ and $\sigma = \varepsilon_r$. Under these notations the lemma above is rewritten as follows :

(C.1) For any $e \in E_{\varepsilon}$, there exist $p \in P_{\varepsilon_1}$ and $q \in P_{\varepsilon_r}$ such that epe=e and eqe=e.

LEMMA 1.5. For any $\varepsilon \in Q$, $P_{\varepsilon} = E_{\varepsilon}$.

PROOF. For any $\varepsilon \in Q$, $\varepsilon_1 = \varepsilon$ and $\varepsilon_r = \varepsilon$. Hence, for any $e \in E_{\varepsilon}$, there exists $p \in P_{\varepsilon}$ such that epe=e. Let $\varepsilon = (i,j), e = ((i,j), \beta)$ and $p = ((i,j), \alpha)$. Then, epe=e implies $\beta \leq \alpha$.

Miyuki YAMADA

Since $p \in P$ and $\beta \leq \alpha$, it follows from Lemma 1.3 that $e = ((i, j), \beta) \in P$.

THEOREM 1.6. Let F be a subset of E(S), where S is the above-mentioned orthodox SLI-semigroup. Then, F is a p-system in E(S) if and only if it is a p-system in S.

PROOF. The "if" part is obvious. The "only if" part : We have already seen that S is isomorphic to a subdirect product $\chi \rtimes \Gamma(\Lambda)$ under the isomorphism θ defined by $x\theta = (x\phi, x\Psi)$ since $\tau \cap \xi = \iota_s$. Hence, we can assume that $S \rtimes \Gamma(\Lambda)$ by identifying x and $(x\phi, x\Psi)$. Let $F \subset E(S) = \chi \rtimes \Lambda \subset \chi \rtimes \Gamma(\Lambda)$ be a *p*-system in E(S). Let $x \in S$. There exists an inverse x° of x. Since $xx^\circ \in E(S)$, there exists $p \in F$ such that $pRxx^\circ$. Since $xRxx^\circ$, it follows that xRp. Similary, there exists $q \in F$ such that xLq.

Now, there exists a unique inverse x^* of x such that x^*Lp , x^*Rq , $xx^*=p$ and $x^*x=q$. Let $x = ((i, j), \alpha)$ and $x^* = ((k, s), \beta)$. Then, $\alpha = \beta$. Take any $h = ((u, v), \gamma)$ from F. Then, $xhx^* = ((i, j), \alpha)((u, v), \gamma)((k, s), \alpha) = ((i, s), \alpha\gamma\alpha)$. Since $p = xx^* = ((i, s), \alpha) \in F$ and $\alpha\gamma\alpha \leq \alpha$, it follows from Lemma 1.3 that $((i, s), \alpha\gamma\alpha) \in F$. Hence, $xhx^* \in F$. Similarly, we have $x^*Fx \subset F$. Finally, $F^2 \subset E(S)$ is obvious. Thus, F is a p-system in S.

§ 2. The *p*-systems in S.

In this section, we shall determine all the *p*-systems in the above-mentioned orthodox SLIsemigroup $S = \chi \rtimes \Gamma(\Lambda) = (I \times J) \rtimes \Gamma(\Lambda)$, where |I| = |J|.

By Theorem 1.6, we need only to find out the *p*-systems in $E(S) = E = \chi \times \Lambda$. Let $P \subset E$ be a *p*-system in *E*. Then, it follows from the results above that there exists a *p*-system *Q* of $\chi = I \times J$ such that

- (C.2) (1) $P = \sum \{E_{\delta} : \delta \in Q\}$ (disjoint union), and
 - (2) for any $e \in E_{\varepsilon}$, where $\varepsilon \in \chi$, there exist $p \in E_{\varepsilon_1}$ and $q \in E_{\varepsilon_r}$ (where $\varepsilon_1 [\varepsilon_r]$ is the element of Q such that $\varepsilon_1 L \varepsilon [\varepsilon_r R \varepsilon]$) satisfying epe=e and eqe=e.

Conversely, let Q be a p-system in $\chi = I \times J$. Let $P = \sum \{E_{\delta} : \delta \in Q\}$. Then, if P satisfies (2) of (C.2), then P is a p-system in E. In fact : $p^2 \subset E(S)$ is obvious. First, we shall show that if $e = ((i, j), \alpha) \in E_{\mu}$, where $\mu = (i, j)$, then there exists $((k, j), \alpha) \in E_{\mu_1}$ and $((i, v), \alpha) \in E_{\mu_r}$, where $(k, j) = \mu_1$ and $(i, v) = \mu_r$. By (2) of (C.2), there exist $p \in E_{\mu_1}$ and $q \in E_{\mu_r}$ such that e = epe and e = eqe.

Let $p = ((k, j), \beta)$, where $(k, j) = \mu_1$. Then, $((i, j), \alpha) = ((i, j), \alpha)((k, j), \beta)((i, j), \alpha)$ implies $\alpha \leq \beta$. Now, consider $pep = ((k, j), \beta)((i, j), \alpha)((k, j), \beta) = ((k, j), \alpha)$. Since $pep \in E_{\mu_1}$, it follow that $((k, j), \alpha) \in E_{\mu_1}$. Similarly, there exists $((i, v), \alpha) \in E_{\mu_r}$. Now, let $e = ((i, j), \alpha) \in E_{\mu}$, where $\mu = (i, j)$. There exists $p \in E_{\mu_1}$ and $q \in E_{\mu_r}$ such that $p = ((k, j), \alpha)$ and $q = ((i, v), \alpha)$. Then, eLp and eRq. Therefore, there exists an inverse e^* of e such that $ee^* = q$ and $e^*e = p$. Hence, of course ee^* , $e^*e \in P$. Now, let $h = ((w, t), \gamma)$ be an element of $E_{(w,t)}$, where $(w, t) \in Q$. Put $e^* = ((a, b), \alpha)$. Since $ee^* = q$ and $e^*e = p$, $((i, j), \alpha)((a, b), \alpha) = (((i, v), \alpha)$ and $((a, b), \alpha)(((i, j), \alpha) = ((k, j), \alpha)$, and accordingly b = v and a = k. Thus, On the *p*-Systems in a Straight Locally Inverse Semigroup whose Idempotents form a Band 17

 $e^* = ((k, v), \alpha)$. Therefore, $ehe^* = ((i, j), \alpha)((w, t), \gamma)((k, v), \alpha) = ((i, v), \alpha \gamma \alpha)$. Since $((i, v), \alpha) \in E_{\mu r}$, we have $((i, v), \alpha \gamma \alpha) \in E_{\mu r}$. That is, $ehe^* \in P$. Similarly, $e^*he \in P$.

P. Thus, P is a p-system in E(S).

Accordingly, we have the following :

THEOREM 2.1. Let S be an orthodox SLI-semigroup. Then, S is a rectangular band χ of subsemigroups $\{S_{\delta} : \delta \in \chi\}$, where $E(S_{\delta})$ is commutative $: S = \sum \{S_{\delta} : \delta \in \chi\}$. Let $\chi = I \times J$, where I is a left zero semigroup and J is a right zero semigroup.

- (1) If S is involutive, then χ is a square band, that is, |I| = |J|.
- (2) Every possible p-system in E(S) is also a p-system in S, and vice-versa.
- (3) In case |I| = |J|, take a *p*-system Q in χ , and put $P = \sum \{E_{\delta} : \delta \in Q\}$. For any $\varepsilon \in \chi$, let ε_1 , ε_r be the elements of Q such that $\varepsilon L \varepsilon_1$ and $\varepsilon R \varepsilon_r$ respectively. Then, if P satisfies the condition (2) of (C.2) then P is a *p*-system in E(S) (accordinfly in S). Further, every *p*-system in S can be obtained in this way.

REMARK. Let I, J be a left zero semigroup and a right zero semigroup respectively such that |I| = |J|. Let $\chi = I \times J$ be the direct product of I and J. Of course, χ is a square band. Let η be a 1-1 mapping of I onto J. Then, $\{[a, a\eta) : a \in I\}$ becomes a p-system in χ . Further, every p-system in χ is constructed in this way.

EXAMPLES. Let *I* be a set consisting of two elements *a* and *b*; that is, $I = \{a, b\}$. Then $\chi = I \times I$ becomes a square band under the multiplication defined by (i, j) (k, s) = (i, s) for $(i, j), (k, s) \in I \times I = \chi$. Let $\Lambda = \{0, 1\}$ be a semilattice in which multiplication is given by $0 \cdot 0 = 0 \cdot 1 = 1 \cdot 0 = 0$ and $1 \cdot 1 = 1$. Consider the direct product $\chi \times \Lambda = (I \times I) \times \Lambda$ of χ and Λ .

- (I) Let E = {((a, a), 0), ((a, b), 0), ((b, a), 0), ((b, b), 0, ((b, b), 1)}. Then, E is a subdirect product χ * Λ of χ and Λ. Since the p-systems in χ are (1) {(a, a), (b, b)} and (2) {(a, b), (b, a)}, the possible p-systems in E are (1) {((a, a), 0), (b, b), 0), (b, b), 1)} and (2) {(a, b), 0), (b, a), 0), (b, a), 0}. The first one is a p-system in E, but the second one is not a p-system in E since the set does not satisfy (2) of (C.2).
- (II) Let $E = \{((a, a), 0), (a, b), 0), (b, a), 0), (b, b), 0), (b, a), 1), (b, b), 1)\}$. Then E is a subdirect product $\chi \not\approx A$ of χ and A. It is easy to see that the possible *p*-systems in E are (1) $\{((a, a), 0), (b, b), 0), (b, b), 1)\}$ and (2) $\{((a, b), 0), ((b, a), 0), ((b, a), 1)\}$. However, each of them does not satisfy the condition (2) of (C.2). Therefore, in this E there is no *p*-system.

References

- [1] J. M. Howie, An introduction to semigroup theory, Academic Press, L. M. S. Monographs, 1976.
- [2] F. J. Pastijn and M. Petrich, Straight locally inverse semigroups, Proc. London Math. Soc. (3), 49

(1984), 307-328.

- [3] M. Yamada, On the structure of fundamental regular * -semigroups, Studia Scientiarum Mathematicarum Hungarica 16 (1981), 281-288.
- [4] —, P-systems in regular semigroups, Semigroup Forum 24 (1982), 173-187.
 [5] —, Some remarks on straight locally inverse semigroups, Mathematica Japonica, to appear.

18