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Several extremum problems will be studied with the constraint qualification related to 

ideal boundary components of an infinite network. We shall give a generalized inverse 

relation between the extremal length and the extremal width of the network relative to 

ideal boundary components 

S 1. Introduction 

In the previous paper [2] , we introduced a notion of ideal boundary 
components of an infinite network N = {X, Y, K, r} . For a set F of paths in N, the 

extremal length ~p(F) of order p (1 

Ap(F)~ I = inf {Hp(W) ; We Ep(F)}, 

where Hp(w) = ~y~Y r(y)Iw(y)IP and Ep(F) is the set of all WeL+(Y) such that 

Hp(W) 

~p r(y) W(y) := ~y=c.(p) r(y) W(y) ~ 1 

for all P e F. For a set A of cuts in N, the extremal width pq(A) of A of order q (1 

/lq(A)~ i = inf {Hq(W) ; We E~(A)}, 

where E*(A) rs the set of all We L+(Y) such that Hq(W) 

~Q W(y) := ~y=Q W(y) ~ 1 

for all Q e A. In the preceding paper, we proved the following generalized inverse 

relation : 

[~p(F)]l/P[/lq(A)]l/q = I with 1/p + 1/q = I (1 (*) 

for F = PA,. (the set of paths from a finite subset A of X to an ideal boundary 

component oc of N) and A = QA,* (the set of cuts between A and Qc). In this paper, 

for two ideal boundary components cc and p of N, we shall prove the relation (*) m 
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the case where F is the set P.,p of paths from cc to p and A is the set Q.,p of cuts 

between oc and p. The definitions of P*,p and Q.,p Will be given in S 2. We shall 

discuss the duality between the min-work piroblem with respect to P*,p and the 

related max-potential problem. Several convex programming problems will be 
studied with the constraints related to Qc and p 

For notation and terminology, we mainly follow [2] 

S 2. Prelimimaries 

Let p and q be positive numbers such that 1/p + I /q = I and I 

finite and has no self-loop with the countable set X of nodes, the countable set Y of 

arcs and the node-arc incidence function K. Let r be a strictly positive real valued 

function on Y We call the pair N = { G, r} an infinite network. Fdr a subset A of 

X, denoted by i(A) the set of interior nodes of A and by b(A) := A - i(A) the set of 

boundary nodes of A. Recall that a e i(A) if and only if all neighboring nodes of a 

belong to A, i.e., X(a) c A. 

Denote by ibc(N) the set of all ideal bundary components of N as in [2] . A 

sequence {N~*} (N~ = 
) of infinite subnetworks of N is called a determining sequence of oc e ibc(N) if each N~ is an end (cf. [2] ) of N and the 

following conditions hold 

(2.1) N~*+ I is a subnetwork of N~ and X~*+ I c i(X~*) ; 

(2.2) n""= I X~ = ip. 

It should be noted that each b(X~) is a finite set by definition 

Denote by Z the set of all integers, by Z + the set of all non-negative integers 

and put Z~ = - Z+ = { _ n ; n e Z+}. We regard them directed sets with respect 

to the natural order if we take them as index sets of paths 

To introduce a notion of paths from oc e ibc(N) to P e ibc(N), we begin with 

DEFlNITION 2. I . Let J be any one of directed sets Z, z + and Z ~ . An infinite 

path P in N is a triple {q', ~, p} of mappings q) and ~ from J into X and Y 

respectrvely and a function p on Y satisfying the conditions 

(P. 1) (p ~ I (x) is a finite set (possibly, empty set) ; 

(P.2) ~ is one-to-one and e(~(i)) = {q)(i), q)(i + 1)} for each i; 

(P.3) p(~(i)) = - K(q)(i), ~(i)) for each ieJ, 

p(y) = O for ye Y- ~(J). 

For simplicity, we set 

q)(k) = xk, ~(k) = yk, ~(J) Cx(P) and ~(J) C (P) 
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and call the triple {Cx(P), CY(P), p} a path as in [2] . In case J = Z + , p is called a 

path from ep(O) = xo (the initial node) to the point at infinity oo. 'Deriote by P*o'* 

the set of all paths from xo to oo. In case J = Z~, P is called a path from oo to 

ep(O) = xo (the terminal node). Denote by P*,*o the set of all paths from oo to 

xo' In case J = Z, P is called a path from oo to oo. Denote by P*,* the set of all 

paths from oo to co. 

For a path P = {q), ~, p} e P we define the opposite path P~ of P by P~ 
*o' " ' 

= {qy, ~', p'} such that ep'(- n) = (p(n) for neZ+, ~'(- n) = ~(n) and p'(~(- n)) -= 

- p(~(n)) for neZ+. . Note that P~ eP*,*o and Cx(P~) and CY(P~) are equal to 

Cx(P) and CY(P) respectively as sets ignoring the order. We define the opposite 

path P~ of P eP*,** U P*,* similarly 

For two paths P1 and P2, the sum P1 + p2 is well-defined in case the terminal 

node of P1 coincides with the initial nodes of P2 (cf. [2]). If PleP*,*o and 

P eP then P1 + p2eP*,*. 2 *o' " ' 
Hereafter, Iet oc, peibc(N), oc ~ p and {N~}(N~ = 

) and {JV.*}(JV~ ) be determining sequences of o( and p respectrvely such that X n X 

= ip. 

A path P e P is called a path from , x to oc if Cx(P) - X~ is a finite set 
*' * 

(possibly, empty set) for each n. Denote by P the set of all paths from x to oc and 
*, " 

put PA,. = U*~AP*,. for a subset A of X. Let P. = Px,.' 

DEFlNITION 2.2. A path P e P is called a path from c( to p if there exrst 
"' " 

xo e X and paths Pl and P2 Such that 

P = Pr + p2, pl eP**,. and P2 eP*o'P' 

Denote by P.,p the set of all paths from c( to p. 

For a finite nonempty subset A of X such that A n X~ = ip the set of cuts 

between A and p is defined by 

-1* n QA,P - v~=1 ¥~A,x~'", 

where QA,x' is the set of all cuts between A and X~ (cf. [2]). Notice that {Qx~ x'} 

is increasing with respect to both m and n. So we set 

Q. P U~ I (U""=1 Yx~,x~¥ ~ n n ) = v,,.=1 ¥zx~,p' 

and call rts element a cut between c( and p. Clearly, 

Q.,p = U"~= i Qx' x' 

Needless to say, these definitions do not depend on the chcuce of determmmg 

sequences of oc and p. 
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S 3･ Max-potential and mim-work problems 

Let oc and p be distinct ideal boundary components of N and let c e L+(Y). We 

shall study the duality between the following min-work problem (MWP) and max-

potential problem (MPP) related to oc, p and c 

(MWP) Minimize ~pc(y) subject to P e P.,p 

(MPP) Maximize 8.(u ; oc, p) 

mf{u(P) P e r.(oc)} - sup {u(P) ; P e F.(p)} 

subject to u e St 

:= {ueL(X); I~.~xK(x, y)u(x)1 ~ c(y) on Y}. 

Here F (oc) {P e P. ; ~pc(y) 

u(x) as x tends to oc along P if it exists. It is clear that u(P) exists for any u e S~ and 

P e r.(oc) U F.(p) . Note that 5.(u ; oc, P) is the potential drop of u between oc and p 

relative to c. Denote by N(P.,p; c) and N*(oc, p ; c) the values of (MWP) and 

(MPP) respectively. 

For a subset A of X, p and c, Iet N(PA,P; c) be the value of the min-work 

problem as in [2], i.e., 

N(PA,P ; c) = inf {~p c(y) ; P e PA P} 

By the same argument as in the proof of [2; Lemma 2. I], we obtain 

LEMMA 3.1. {N(Pb(x~),P; c)} converges increasingly to N(P.,p; c) as n ~' oo. 

By the relation : N(Pb(x~),p; c) = N(Px~~'P; c), we have 

COROLLARY 3.2. N(Px~,p; c)} -> N(P.,p; c) as n ~> co 

Now we show the following duality theorem for (MWP) and (MPP) 

THEOREM 3.3. If F.(oc) ~ ip and F.(p) ~ ip, then N(P.,p; c) = N*(oc, P ; c) holds 

and (MPP) has an optimal solution. 

PROOF. Let u e S~ and P e P.,p With ~pc(y) 

P eP and P eP such that P = P~ + p . Let Cx(P1) = {x x x2""} *~ p o' 1' 
Cx(P2) = {x x' x' ...} CY(P1) = {yo'yl'y2""}' CY(P2) = {y' y' y' ...}, e(yi) 

o' 1' 2' o' 1' 2' 
{x,, xi+1} and e(yj) = -{x,',x,+1} for each leZ+ wrth x = xo' Then 

~pc(y) = ~p, c(y) + ~p, c(y) 

~ ~:= I { Iu(xi) - u(xi_ 1)1 + Iu(xj) - u(x;_ 1)1 } 

~ u(x~) - u(x~) 
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for every n, so that 

~pc(y) ~ u(P1) ~ u(P2) ~~ ~.(u ; oc, P). 

Hence N(P.,p; c) ~: N*(oc, p ; c) 

To prove the converse inequality, define a e L(X) by 

a(x) = inf {~p c(y) ; P e P* p , } = N(P*,p; c) 

for x e X. Notice that ~(x) 

in the proof of [2 ; Theorem 2. I], we see that a e S~ , a(p) = O for every P e F.(p) and 

mf fu(x) x e b(X~)} = N(Pb(x~) p ' , 'c) 

for every m. We shall prove that N(P.,p; c) ~ 6.(a ; c(, P). Let P e F.(oc) with Cx(P) 

= {xo' xl' x2""}' Then a(p) = Iim~+*a(x.). For t > a(p), there exists no Such 

that a(x*) 

 no) such that xj_ e b(X~), since P e P., so that 

t > a(xj~) ~: inf {a(x) ; x e b(X~)} = N(Pb(x~),p ; c). 

By Lemma 3.1, t ~ N(P.,p; c) and hence a(p) ~ N(P.,p; c). Therefore, 

N*(cc, P ; c) ~ 6.(a ; Qc, p) = infp=r.(.) a(p) ;Z N(P.,p ; c). 

It follows that N(P.,p; c) = N*(c(, p ; c) and that u rs an optimal solutron of (MPP) 

S 4. The extrernal lemgth ~p(P*,p) 

Related to the extremal length ~p(P.,p) of P*,p of order p we consider the 

followmg convex programming problem on L(X) 

(4. 1) Mnumize Dp(u) : = Hp(du) 

subject to u eL(X), u(oc) = I and u(P) = O. 

Here du(y) = - r(y) ~ I ~*=x K(x, y) u(x) is a discrete derivative of u and u(oc) = t 

implies that u(P) exists and is equal to t for p-almost every P e P., i.e., ~p(P. - F) 

= oo with F = {P e P. ; u(P) exists and u(P) = t} . Denote by dp(cc, P) the value of 

Problem (4. 1). Notice that dp(oc, P) 

We have 

THEOREM 4. 1. If ~p(P.,p) 

PRooF. First we shall prove that ~p(P.,p)~1 ~ dp(cc, p). Let u e L(X) such that 

Dp(u) 

F(cc; u) = {PeP.; u(P) = 1}, 
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　　　1「（β；・）＝｛P∈Rβ；・（P）＝O｝，

　　　r（α，β；・）＝｛P∈P、，β；P＝町十P。，P。∈R、，P。∈疋β，・（P。）＝1，・（P。）＝O｝．

Thenλp（正、一r（α，〃））＝λρ（甲β一r（β，〃））＝oO　by　our　assumpt1on，so　thatλp（P、，β

一r（α，β，ω））＝oo　by［1，Lemma23］　Let　W＝1刺　　Then　Hp（W）くoo　and・

Σ〆（γ）剛γ）≧1わ・a11P∈r（α，β，〃）by　the・ame・ea・on1ng　a・m　the　p・oof　of

Theorem33　Name1y，〃∈亙ρ（1「（α，β，〃））　Thus　by［1，Lemma22］

　　　　　　　　　　　λ。（正、，β）一㌧λ。（r（α，β；・））一1≦H。（W）＝抄、（・），

・・th・tλ、（正、，β）■1≦∂、（α，β）．

　　Next　we　prove　the　converse　inequa11ty　Let豚∈亙ρ（P、，β）　Then

　　　　　　　　　　Σ〆（γ）㎜（γ）くoo　fo・ρ一a1㎜o・t　eve・y　P∈疋、UPβ

（cf　［2，Le皿［ma　11］）　　Take　c：ア附　　Then　r、（α）≠φ　and　r。（β）≠φ　by　our

assumpt1onλρ（R、，β）くoO　We　can　ind〃∈L（X）such　thatω（β）＝O，〃∈跡and

δ、（〃，α，β）＝1V（正、，β，c）≧1by　Theorem33　De丘ne　o∈L（X）by〃（x）＝mm（〃（x），1）

Then〃（P）＝1一・for　every　P∈r。（α），o（β）：o　and1伽（γ）1≦1∂〃（γ）1≦閉（γ）on　x　since

λp（R、一r。（α））＝oo，we　have　o（α）＝1and

　　　　　　　　　　　　　　　　　∂ρ（α，β）≦1）ρ（・）≦H。（W）・

Therefore，ら（α，β）≦λp（㌍、，β）一1．

　　By　the　same　reason1ng　as　m　the　proof　of［2，Theorem24］w1th　Lemma31，we

obtam　the　fonowmg　property（stab111ty）of　extrema11ength

　　THE0REM　42　　月oグ　ωぴγ　庇胞グ閉醐卿σ　8θg〃θ肌θ　｛！V才｝（1V才＝〈X才，K＊〉）　ρブ

α，λρ（R蝋），β）→λ。（P、，β）ωη→…

　　§∫EXt鵬醐1W鮒μ唖（Q、，β）

　　We　prepare

　　LEMlM［A　5．1．　ムぴλ　o〃6β　わθ肋〃肋α〃γ　励功oゴ〃〃oηθ榊μγ　〃わ8θな　ψX　oη♂

β∈めc（！V）　8〃oん　肋〃　λ∩Xf＝φ・　τ乃θ〃　五享（Qλ，B）＝E享（Qb（λ），週）　αη♂　E享（Qλ，B）

＝五茅（Q蝸），β）・

　　PR00F　By　the　obv1ous　re1at1ons　Qλ，”⊂Qb（λ），B　and　Qλ，β⊂Qb（λ），β，we　have

E芽（Q■，B）⊃E8（Qb（λ），B）and　E芽（Qλ，β）⊃E芽（Qb（λ），β）．　For　the　proof　of　the　converse

re1at1on，1t・・舐・e・ton・t・th・te・e・yg∈Q榊，。（…pQ舳，β）・・ntam・ρ’∈Qλ，。

（resp．Qλ，β）．Forg∈Q岬），Bwithρ＝ρ（わ（λ））θ2（届），1etg’（λ）＝g（わ（λ））Uλand．

ρ’（週）＝g（週）＿λ．Then　g’＝g’（λ）θρ’（週）∈Qλ，B　and　g’⊂ρ．For2∈Qb（λ），β，

there　ex1stsη　such　that　g∈Qb（λ），踊　　1By　the　above　observat1on，we　can丘nd

ρ”∈軌，・覧（⊂Qλ，β）…hth・tg”⊂g・
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　　　C0R0LLARY52　Z加力〃ow卿σε〃α肋昭8んo〃

（1）　μ。（軌，。）＝μ。（Q舳，。）＝μ勿（Q榊，岬））；

（2）　　　μq（Qλ，β）＝μ2（Qb（λ），β）・

　　　In　ord．er　to　study　some　properties　ofμg（Q、，β）、we　need　the　notion　of且ows．For

w∈ム（γ）and　a　subsetλ　of　X，1et

　　　　　　　　　　　　　　　　　∫（w；x）＝Σγ、。K（x，γ）w（y），

　　　　　　　　　　　　　　　　　1（W；λ）＝Σ、、パ（W；X）

P・ovid・ed・thatΣ工、λ1∫（w；x）1くoo．

　　　For　mutua11y　d呵01nt　nonempty　subsetsλand。βof　X，the　set亙（λ，β）of刮ows

杜omλtoβis　the　set　of　w∈一L（γ）such　that

　　　　　　　∫（w；x）＝O　for　a11x∈X一ノ乱一週and∫（w；λ）十1てw；眉）＝O．

Denote　by　Lo（y）the　set　of　w∈L（γ）w並h丘mte　support　and　by　F勿（λ，万）the

・1・・・…fF。（4β）：＝F（λ，週）∩L。（γ）i・th・昆・…h・p…Lク（γ；・）：＝｛w∈L（γ）；

H、（w）くoo｝with　the　norm［H。（．）］1／4．

　　　In　case　there　existsηo　such　thatλ∩X差＝φ，we　have

　　　　　　　　　　　　　　　　　　F4（4X才）⊃へ（λ，X烹十1），

so　we　put　F、（λ，β）＝∩二、。F、（4X才）and　ca111ts　e1ement　a且ow　fromλtoβ　Th1s

set　does皿ot　depend　on　the　ch01ce　of　the　determmmg　sequence　ofβ

　　　Letダbe　any　one　of　Fo（λ，遍），㌔（λ，β）and一㌔（λ，β）and　cons1der　the　fo11ow1ng

extremum　prob1em：

　　　　　　　　　Find∂夕（ダ）：＝inf｛H4（w）；w∈ダand1（w；λ）＝＿1｝．

　　　LEMMA5．3．　五θな1V＊＝〈X＊，γ＊〉oη∂W＊＝〈X＊，γ＊〉わθθηゐgブ1V〃6ん肋α

X＊∩X＊＝φ・　Z乃θ〃∂夕（Fo（X＊，X＊））＝∂ざ（Fo（わ（X＊），X＊））・

　　　PR00F．　Since　Fo（X＊，X＊）⊃Fo（5（X＊），X＊），

　　　　　　　　　　　　　　伽F。（X＊，X＊））≦刷F。（わ（X＊），X＊））・

On　the　other　hand，1et　w∈Fo（X＊，X＊）w1th∫（w，X＊）＝＿1　Deine　w’∈L（γ）by

　　　　　　　　　　　　　　　w’（γ）＝Oonf（γ＊）：＝∪工、榊y（x）；

　　　　　　　　　　　　　　　W’（γ）＝W（γ）Onγ一（γ＊）．

Then　w’∈Fo（わ（X＊），X＊）a二nd∫（w’，わ（X＊））＝＿1　In　fact，c1ear1y

　　　　　　　　　　　　　　　　1（w’；x）＝O　　forx∈ゴ（X＊）．
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For x e X - (X* U X*), Y(x) n i(Y*) = ip and I(w' ; x) = I(w; x) = O. By the .relation 

. K (x, y) w(y) = ~y=i(Y･) w(y) ~.=x' K(x y) O ~ .=x' ~ y=,(Y･) 

we have 

1
 

I(w'; b(X*)) = ~*~x'~y=Y-i(Y･)K(x, y)w(y) = I(w; X*) = - . 

Therefore w' is a feasible solution for dq*(Fo(b(X*), X*)), and hence 

d~(Fo(b(X*), X*)) ~ Hq(w') ~ Hq(w). 

Thus d~(Fo(b(X*), X*)) ~ d~(Fo(X*, X*)). 

It is easily seen that 

dq*(Fo(A, B)) = d~(Fq(A, B)). 

Therefore we obtain 

COROLLARY 5.4. dq*(Fo(X*, X*)) = dq*(Fq(b(X*), b(.X*))) 

Now we prove a stability of extremal width 

THEOREM 5.5. /lq(Qx~'x~'") ~> Ilq(Q.,p) as n -> oo. 

PRooF. Noting that Qx~,x~ c Q - c Q.,p, we have 
* * x~ + *, x~+ * 

llq(Qx' x~') ~ Ilq(Qx' x~' ) ~ pq(Q. p), 

"' " "+*' "+* 
so that lim~_*/lq(Qx~,x~'") ~ uq(Q.,p). To show the converse inequality, we may 

assume that lim~+*/lq(Qx~,x~'") > o and pq(Q.,p) 

Proposition 4.2] and Corollary 5.2, there exists w~ e Fq(b(X~*), b(X~)) such that 

I(w~ ; b(X~*))= - I and 

Hq(w~) = dq*(Fq(b(X.*), b(X~))) = pe )~ I = pq(Qx~,x~'")~ 1 (n _ q ¥Yb(x~), b(x~) 

smce b(X*) and b(X~) ,are finite sets. Notice that {Hq(w~)} is bounded by our 

assumption. For each w~, there exists w~ e Fo(b(X~*), b(X~*)) such that I(w~ ; b(X~*)) 

= - I and Hq(w~ - w~) - I and 
"' " 

1 = II(w~ ; X~)1 ~ ~Q Iw~(y)I 

, . Nemely, I w~leE~(Qx~,x~'")' and hence /lq(Qx~,x~'")~1 ~ Hq(w~) for all QeQx~ x~ 
Theref ore 

lim~_ * Hq(w;) = lim~_ * Ilq(Qx~' x~'") ~ i ' Hq(w.) = Iim "~" 
If m > n, then (w~ + w~)/2 is a feasible solution of dq*(Fo(X~*, X~)). By Clarkson's 

inequality (cf. [2]) and Corollary 5.4, we see that {w~} is a Cauchy sequence in 

Lq(Y; r). Thus we can find w' eLq(Y; r) such that Hq(w~ - w') -> O as n -> oo. On 
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the other hand, it follows from [2 ; Lemma 4. 3] that there exist A c Q*,p and a 

subsequence {w~k} of {w~} such that ,lq(Q.,p ~ A) = oo and 

~Qlw~k(y) w (y)1 -> O as k -> oo for all Q eA. 

By [2 ; Lemma 4.2], Ilq(A) = Ilq(Q.,p)' Let Q e A. Then there exists no such that 

Q e Qx~,x~'" for all n ;~ no' By the above observation ~Qlw~(y)1 ~~ 1. Thus, 

1 ~QIW (y)1 

~ ~Qlw~k(y) - w'(y)1 -> O 

as k-> co, so that I ~ ~Qlw'(y)1, i.e., Iw'leE~(A). Consequently, 

/lq(Q.,p)~ I = Ilq(A)- I ~ Hq(w') = Iim~+* Hq(w~) = Iim~+co llq(Qx~. X'")~ l 

This completes the proof 

COROLLARY 5.6. /lq(Qx~,x~) ~> ,lq(Q.,p) as m ~' oo and n -> oo 

By [2 ; Theorem 4. I and Corollary 4. I], we have 

(5.1) /lq(Qb(x~),x~) ~> Ilq(Qb(x~),p) as n -> co ; 

(5.2) [~ (p )]l/P[,lq(Qb(x~) p)]l/q = 1 

p b(x~),p , ' 
Combining Theorems 4.2 and 5.5 with (5.1) and (5.2), we obtam 

THEOREM 5.7. [Ap(P.,p)]l/P[/lq(Q.,p)]l/q = 1 
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