Extremal Problems with respect to Ideal Boundary Components of an Infinite Network III

Atsushi Murakami and Maretsugu Yamasaki
Department of Mathematics, Hiroshima Institute of Technology, Hiroshima, Japan
and
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 5, 1990)

Abstract

Several extremum problems will be studied with the constraint qualification related to ideal boundary components of an infinite network. We shall give a generalized inverse relation between the extremal length and the extremal width of the network relative to ideal boundary components.

§ 1. Introduction

In the previous paper [2], we introduced a notion of ideal boundary components of an infinite network $N=\{X, Y, K, r\}$. For a set Γ of paths in N, the extremal length $\lambda_{p}(\Gamma)$ of order $p(1<p<\infty)$ is defined by

$$
\lambda_{p}(\Gamma)^{-1}=\inf \left\{H_{p}(W) ; W \in E_{p}(\Gamma)\right\}
$$

where $H_{p}(w)=\sum_{y \in Y} r(y)|w(y)|^{p}$ and $E_{p}(\Gamma)$ is the set of all $W \in L^{+}(Y)$ such that $H_{p}(W)<\infty$ and

$$
\sum_{P} r(y) W(y):=\sum_{y \in C_{Y}(P)} r(y) W(y) \geq 1
$$

for all $P \in \Gamma$. For a set Λ of cuts in N, the extremal width $\mu_{q}(\Lambda)$ of Λ of order $q(1$ $<q<\infty$) is defined by

$$
\mu_{q}(\Lambda)^{-1}=\inf \left\{H_{q}(W) ; W \in E_{q}^{*}(\Lambda)\right\}
$$

where $E_{q}^{*}(\Lambda)$ is the set of all $W \in L^{+}(Y)$ such that $H_{q}(W)<\infty$ and

$$
\sum_{Q} W(y):=\sum_{y \in Q} W(y) \geq 1
$$

for all $Q \in \Lambda$. In the preceding paper, we proved the following generalized inverse relation:

$$
\begin{equation*}
\left[\lambda_{p}(\Gamma)\right]^{1 / p}\left[\mu_{q}(\Lambda)\right]^{1 / q}=1 \quad \text { with } 1 / p+1 / q=1(1<p<\infty) \tag{*}
\end{equation*}
$$

for $\Gamma=\mathbb{P}_{A, \alpha}$ (the set of paths from a finite subset A of X to an ideal boundary component α of N) and $\Lambda=\mathbf{Q}_{A, \alpha}$ (the set of cuts between A and α). In this paper, for two ideal boundary components α and β of N, we shall prove the relation (*) in
the case where Γ is the set $\mathbb{P}_{\alpha, \beta}$ of paths from α to β and Λ is the set $\mathbb{Q}_{\alpha, \beta}$ of cuts between α and β. The definitions of $\mathbb{P}_{\alpha, \beta}$ and $\mathbf{Q}_{\alpha, \beta}$ will be given in $\S 2$. We shall discuss the duality between the min-work problem with respect to $\mathbb{P}_{\alpha, \beta}$ and the related max-potential problem. Several convex programming problems will be studied with the constraints related to α and β.

For notation and terminology, we mainly follow [2].

§2. Preliminaries

Let p and q be positive numbers such that $1 / p+1 / q=1$ and $1<p$ $<\infty$. Assume that $G=\{X, Y, K\}$ is an infinite graph which is connected, locally finite and has no self-loop with the countable set X of nodes, the countable set Y of arcs and the node-arc incidence function K. Let r be a strictly positive real valued function on Y. We call the pair $N=\{G, r\}$ an infinite network. For a subset A of X, denoted by $i(A)$ the set of interior nodes of A and by $b(A):=A-i(A)$ the set of boundary nodes of A. Recall that $a \in i(A)$ if and only if all neighboring nodes of a belong to A, i.e., $X(a) \subset A$.

Denote by $\operatorname{ibc}(N)$ the set of all ideal bundary components of N as in [2]. A sequence $\left\{N_{n}^{*}\right\}\left(N_{n}^{*}=\left\langle X_{n}^{*}, Y_{n}^{*}\right\rangle\right)$ of infinite subnetworks of N is called a determining sequence of $\alpha \in \operatorname{ibc}(N)$ if each N_{n}^{*} is an end (cf. [2]) of N and the following conditions hold:
(2.1) $\quad N_{n+1}^{*}$ is a subnetwork of N_{n}^{*} and $X_{n+1}^{*} \subset i\left(X_{n}^{*}\right)$;

$$
\begin{equation*}
\bigcap_{n=1}^{\infty} X_{n}^{*}=\phi \tag{2.2}
\end{equation*}
$$

It should be noted that each $b\left(X_{n}^{*}\right)$ is a finite set by definition.
Denote by \mathbb{Z} the set of all integers, by \mathbb{Z}^{+}the set of all non-negative integers and put $\mathbb{Z}^{-}=-\mathbb{Z}^{+}=\left\{-n ; n \in \mathbb{Z}^{+}\right\}$. We regard them directed sets with respect to the natural order if we take them as index sets of paths.

To introduce a notion of paths from $\alpha \in i b c(N)$ to $\beta \in i b c(N)$, we begin with
Definition 2.1. Let J be any one of directed sets $\mathbb{Z}, \mathbb{Z}^{+}$and \mathbb{Z}^{-}. An infinite path P in N is a triple $\{\varphi, \psi, p\}$ of mappings φ and ψ from J into X and Y respectively and a function p on Y satisfying the conditions:
(P.1) $\quad \varphi^{-1}(x)$ is a finite set (possibly, empty set);
(P.2) $\quad \psi$ is one-to-one and $e(\psi(i))=\{\varphi(i), \varphi(i+1)\}$ for each i;
(P.3) $\quad p(\psi(i))=-K(\varphi(i), \psi(i))$ for each $i \in J$,

$$
p(y)=0 \text { for } y \in Y-\psi(J) .
$$

For simplicity, we set

$$
\varphi(k)=x_{k}, \psi(k)=y_{k}, \varphi(J)=C_{X}(P) \text { and } \psi(J)=C_{Y}(P)
$$

and call the triple $\left\{C_{X}(P), C_{Y}(P), p\right\}$ a path as in [2]. In case $J=\mathbb{Z}^{+}, P$ is called a path from $\varphi(0)=x_{0}$ (the initial node) to the point at infinity ∞. Denote by $\mathbb{P}_{x_{0}, \infty}$ the set of all paths from x_{0} to ∞. In case $J=\mathbb{Z}^{-}, P$ is called a path from ∞ to $\varphi(0)=x_{0}$ (the terminal node). Denote by $\mathbb{P}_{\infty, x_{0}}$ the set of all paths from ∞ to x_{0}. In case $J=\mathbb{Z}, P$ is called a path from ∞ to ∞. Denote by $\mathbf{P}_{\infty, \infty}$ the set of all paths from ∞ to ∞.

For a path $P=\{\varphi, \psi, p\} \in \mathbb{P}_{x_{0}, \infty}$, we define the opposite path P^{-}of P by P^{-} $=\left\{\varphi^{\prime}, \psi^{\prime}, p^{\prime}\right\}$ such that $\varphi^{\prime}(-n)=\varphi(n)$ for $n \in \mathbb{Z}^{+}, \psi^{\prime}(-n)=\psi(n)$ and $p^{\prime}(\psi(-n))=$ $-p(\psi(n))$ for $n \in \mathbb{Z}^{+}$. Note that $P^{-} \in \mathbb{P}_{\infty, x_{0}}$ and $C_{X}\left(P^{-}\right)$and $C_{Y}\left(P^{-}\right)$are equal to $C_{X}(P)$ and $C_{Y}(P)$ respectively as sets ignoring the order. We define the opposite path P^{-}of $P \in \mathbb{P}_{\infty, x_{0}} \cup \mathbb{P}_{\infty, \infty}$ similarly.

For two paths P_{1} and P_{2}, the sum $P_{1}+P_{2}$ is well-defined in case the terminal node of P_{1} coincides with the initial nodes of P_{2} (cf. [2]). If $P_{1} \in \mathbb{P}_{\infty, x_{0}}$ and $P_{2} \in \mathbb{P}_{x_{0}, \infty}$, then $P_{1}+P_{2} \in \mathbb{P}_{\infty, \infty}$.

Hereafter, let $\alpha, \beta \in \operatorname{ibc}(N), \alpha \neq \beta$ and $\left\{N_{n}^{*}\right\}\left(N_{n}^{*}=\left\langle X_{n}^{*}, Y_{n}^{*}\right\rangle\right)$ and $\left\{\bar{N}_{n}^{*}\right\}\left(\bar{N}_{n}^{*}\right.$ $=\left\langle\bar{X}_{n}^{*}, \bar{Y}_{n}^{*}\right\rangle$) be determining sequences of α and β respectively such that $X_{1}^{*} \cap \bar{X}_{1}^{*}$ $=\phi$.

A path $P \in \mathbb{P}_{x, \infty}$ is called a path from x to α if $C_{X}(P)-X_{n}^{*}$ is a finite set (possibly, empty set) for each n. Denote by $\mathbb{P}_{x, \alpha}$ the set of all paths from x to α and put $\mathbb{P}_{A, \alpha}=\bigcup_{x \in A} \mathbb{P}_{x, \alpha}$ for a subset A of X. Let $\mathbb{P}_{\alpha}=\mathbb{P}_{X, \alpha}$.

Definition 2.2. A path $P \in \mathbb{P}_{\infty, \infty}$ is called a path from α to β if there exist $x_{0} \in X$ and paths P_{1} and P_{2} such that

$$
P=P_{1}^{-}+P_{2}, P_{1} \in \mathbb{P}_{x_{0}, \alpha} \text { and } P_{2} \in \mathbb{P}_{x_{0}, \beta}
$$

Denote by $\mathbb{P}_{\alpha, \beta}$ the set of all paths from α to β.
For a finite nonempty subset A of X such that $A \cap \bar{X}_{1}^{*}=\phi$, the set of cuts between A and β is defined by

$$
\mathbf{Q}_{A, \beta}=\bigcup_{n=1}^{\infty} \mathbf{Q}_{A, X_{n}^{*}},
$$

where $\mathbf{Q}_{A, \bar{X}_{n}^{*}}$ is the set of all cuts between A and \bar{X}_{n}^{*} (cf. [2]). Notice that $\left\{\mathbf{Q}_{X_{m}^{*}, \bar{X}_{n}^{*}}\right\}$ is increasing with respect to both m and n. So we set

$$
\mathbb{Q}_{\alpha, \beta}=\bigcup_{m=1}^{\infty}\left(\bigcup_{n=1}^{\infty} \mathbb{Q}_{X_{m}^{*}, X_{n}^{*}}\right)=\bigcup_{m=1}^{\infty} \mathbb{Q}_{X_{m}^{*}, \beta} .
$$

and call its element a cut between α and β. Clearly,

$$
\mathbf{Q}_{\alpha, \beta}=\bigcup_{n=1}^{\infty} \mathbf{Q}_{X_{n}^{*}, X_{n}^{*}} .
$$

Needless to say, these definitions do not depend on the choice of determining sequences of α and β.

§3. Max-potential and min-work problems

Let α and β be distinct ideal boundary components of N and let $c \in L^{+}(Y)$. We shall study the duality between the following min-work problem (MWP) and maxpotential problem (MPP) related to α, β and c :
(MWP) Minimize $\sum_{P} c(y)$ subject to $P \in \mathbb{P}_{\alpha, \beta}$.
(MPP) Maximize $\delta_{c}(u ; \alpha, \beta)$

$$
:=\inf \left\{u(P) ; P \in \Gamma_{c}(\alpha)\right\}-\sup \left\{u(P) ; P \in \Gamma_{c}(\beta)\right\}
$$

subject to $u \in S_{c}^{*}$

$$
:=\left\{u \in L(X) ;\left|\sum_{x \in X} K(x, y) u(x)\right| \leq c(y) \text { on } Y\right\} .
$$

Here $\Gamma_{c}(\alpha)=\left\{P \in \mathbb{P}_{\alpha} ; \sum_{P} c(y)<\infty\right\}$ and $u(P)$ for $P \in \mathbb{P}_{\alpha}$ denotes the limit value of $u(x)$ as x tends to α along P if it exists. It is clear that $u(P)$ exists for any $u \in S_{c}^{*}$ and $P \in \Gamma_{c}(\alpha) \cup \Gamma_{c}(\beta)$. Note that $\delta_{c}(u ; \alpha, \beta)$ is the potential drop of u between α and β relative to c. Denote by $N\left(\mathbb{P}_{\alpha, \beta} ; c\right)$ and $N^{*}(\alpha, \beta ; c)$ the values of (MWP) and (MPP) respectively.

For a subset A of X, β and c, let $N\left(\mathbf{P}_{A, \beta} ; c\right)$ be the value of the min-work problem as in [2], i.e.,

$$
N\left(\mathbf{P}_{A, \beta} ; c\right)=\inf \left\{\sum_{P} c(y) ; P \in \mathbf{P}_{A, \beta}\right\} .
$$

By the same argument as in the proof of [2; Lemma 2.1], we obtain
Lemma 3.1. $\left\{N\left(\mathbb{P}_{b\left(X_{n}^{*}\right), \beta} ; c\right)\right\}$ converges increasingly to $N\left(\mathbb{P}_{\alpha, \beta} ; c\right)$ as $n \rightarrow \infty$.
By the relation: $N\left(\mathbf{P}_{b\left(X_{m}^{*}\right), \beta} ; c\right)=N\left(\mathbf{P}_{X_{m}^{*}, \beta} ; c\right)$, we have
Corollary 3.2. $\left.\quad N\left(\mathbb{P}_{X_{m}^{*}, \beta} ; c\right)\right\} \rightarrow N\left(\mathbb{P}_{\alpha, \beta} ; c\right)$ as $n \rightarrow \infty$.
Now we show the following duality theorem for (MWP) and (MPP):
Theorem 3.3. If $\Gamma_{c}(\alpha) \neq \phi$ and $\Gamma_{c}(\beta) \neq \phi$, then $N\left(\mathbb{P}_{\alpha, \beta} ; c\right)=N^{*}(\alpha, \beta ; c)$ holds and (MPP) has an optimal solution.

Proof. Let $u \in S_{c}^{*}$ and $P \in \mathbb{P}_{\alpha, \beta}$ with $\sum_{P} c(y)<\infty$. Then there exist $x_{0} \in X$, $P_{1} \in \mathbf{P}_{x_{0}, \alpha}$ and $P_{2} \in \mathbb{P}_{x_{0}, \beta}$ such that $P=P_{1}^{-}+P_{2}$. Let $C_{X}\left(P_{1}\right)=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$, $C_{X}\left(P_{2}\right)=\left\{x_{0}, x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right\}, C_{Y}\left(P_{1}\right)=\left\{y_{0}, y_{1}, y_{2}, \ldots\right\}, C_{Y}\left(P_{2}\right)=\left\{y_{0}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right\}, e\left(y_{i}\right)$ $=\left\{x_{i}, x_{i+1}\right\}$ and $e\left(y_{i}^{\prime}\right)=\left\{x_{i}^{\prime}, x_{i+1}^{\prime}\right\}$ for each $i \in \mathbb{Z}^{+}$with $x_{0}^{\prime}=x_{0}$. Then

$$
\begin{aligned}
\sum_{P} c(y) & =\sum_{P_{1}} c(y)+\sum_{P_{2}} c(y) \\
& \geq \sum_{i=1}^{n}\left\{\left|u\left(x_{i}\right)-u\left(x_{i-1}\right)\right|+\left|u\left(x_{i}^{\prime}\right)-u\left(x_{i-1}^{\prime}\right)\right|\right\} \\
& \geq u\left(x_{n}\right)-u\left(x_{n}^{\prime}\right)
\end{aligned}
$$

for every n, so that

$$
\sum_{P} c(y) \geq u\left(P_{1}\right)-u\left(P_{2}\right) \geq \delta_{c}(u ; \alpha, \beta) .
$$

Hence $N\left(\mathbb{P}_{\alpha, \beta} ; c\right) \geq N^{*}(\alpha, \beta ; c)$.
To prove the converse inequality, define $\hat{u} \in L(X)$ by

$$
\hat{u}(x)=\inf \left\{\sum_{P} c(y) ; P \in \mathbb{P}_{x, \beta}\right\}=N\left(\mathbb{P}_{x, \beta} ; c\right)
$$

for $x \in X$. Notice that $\hat{u}(x)<\infty$ by our assumption $\Gamma_{c}(\beta) \neq \phi$. By the same way as in the proof of $\left[2\right.$; Theorem 2.1], we see that $\hat{u} \in S_{c}^{*}, \hat{u}(P)=0$ for every $P \in \Gamma_{c}(\beta)$ and

$$
\inf \left\{\hat{u}(x) ; x \in b\left(X_{m}^{*}\right)\right\}=N\left(\mathbb{P}_{b\left(X_{m}^{*}\right), \beta} ; c\right)
$$

for every m. We shall prove that $N\left(\mathbb{P}_{\alpha, \beta} ; c\right) \leq \delta_{c}(\hat{u} ; \alpha, \beta)$. Let $P \in \Gamma_{c}(\alpha)$ with $C_{X}(P)$ $=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. Then $\hat{u}(P)=\lim _{n \rightarrow \infty} \hat{u}\left(x_{n}\right)$. For $t>\hat{u}(P)$, there exists n_{0} such that $\hat{u}\left(x_{n}\right)<t$ for all $n \geq n_{0}$. For each m large enough, there exists $j_{m}\left(>n_{0}\right)$ such that $x_{j_{m}} \in b\left(X_{m}^{*}\right)$, since $P \in \mathbb{P}_{\alpha}$, so that

$$
t>\hat{u}\left(x_{j_{m}}\right) \geq \inf \left\{\hat{u}(x) ; x \in b\left(X_{m}^{*}\right)\right\}=N\left(\mathbb{P}_{b\left(X_{m}^{*}\right), \beta} ; c\right)
$$

By Lemma 3.1, $t \geq N\left(\mathbb{P}_{\alpha, \beta} ; c\right)$ and hence $\hat{u}(P) \geq N\left(\mathbb{P}_{\alpha, \beta} ; c\right)$. Therefore,

$$
N^{*}(\alpha, \beta ; c) \geq \delta_{c}(\hat{u} ; \alpha, \beta)=\inf _{P \in \Gamma_{c}(\alpha)} \hat{u}(P) \geq N\left(\mathbb{P}_{\alpha, \beta} ; c\right)
$$

It follows that $N\left(\mathbb{P}_{\alpha, \beta} ; c\right)=N^{*}(\alpha, \beta ; c)$ and that \hat{u} is an optimal solution of (MPP).
§4. The extremal length $\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)$
Related to the extremal length $\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)$ of $\mathbb{P}_{\alpha, \beta}$ of order p we consider the following convex programming problem on $L(X)$:

$$
\begin{equation*}
\text { Minimize } D_{p}(u):=H_{p}(d u) \tag{4.1}
\end{equation*}
$$

subject to $u \in L(X), u(\alpha)=1$ and $u(\beta)=0$.
Here $d u(y)=-r(y)^{-1} \sum_{x \in X} K(x, y) u(x)$ is a discrete derivative of u and $u(\alpha)=t$ implies that $u(P)$ exists and is equal to t for p-almost every $P \in \mathbb{P}_{\alpha}$, i.e., $\lambda_{p}\left(\mathbb{P}_{\alpha}-\Gamma\right)$ $=\infty$ with $\Gamma=\left\{P \in \mathbb{P}_{\alpha} ; u(P)\right.$ exists and $\left.u(P)=t\right\}$. Denote by $d_{p}(\alpha, \beta)$ the value of Problem (4.1). Notice that $d_{p}(\alpha, \beta)<\infty$.

We have
Theorem 4.1. If $\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)<\infty$, then $d_{p}(\alpha, \beta)=\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)^{-1}$.
Proof. First we shall prove that $\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)^{-1} \leq d_{p}(\alpha, \beta)$. Let $u \in L(X)$ such that $D_{p}(u)<\infty, u(\alpha)=1$ and $u(\beta)=0$. Put

$$
\Gamma(\alpha ; u)=\left\{P \in \mathbb{P}_{\alpha} ; u(P)=1\right\}
$$

$$
\begin{aligned}
& \Gamma(\beta ; u)=\left\{P \in \mathbb{P}_{\beta} ; u(P)=0\right\} \\
& \Gamma(\alpha, \beta ; u)=\left\{P \in \mathbb{P}_{\alpha, \beta} ; P=P_{1}^{-}+P_{2}, P_{1} \in \mathbb{P}_{\alpha}, P_{2} \in \mathbb{P}_{\beta}, u\left(P_{1}\right)=1, u\left(P_{2}\right)=0\right\}
\end{aligned}
$$

Then $\lambda_{p}\left(\mathbb{P}_{\alpha}-\Gamma(\alpha ; u)\right)=\lambda_{p}\left(\mathbb{P}_{\beta}-\Gamma(\beta ; u)\right)=\infty$ by our assumption, so that $\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right.$ $-\Gamma(\alpha, \beta ; u))=\infty$ by [1; Lemma 2.3]. Let $W=|d u|$. Then $H_{p}(W)<\infty$ and $\sum_{P} r(y) W(y) \geq 1$ for all $P \in \Gamma(\alpha, \beta ; u)$ by the same reasoning as in the proof of Theorem 3.3. Namely, $W \in E_{p}(\Gamma(\alpha, \beta ; u))$. Thus by [1; Lemma 2.2]

$$
\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)^{-1}=\lambda_{p}(\Gamma(\alpha, \beta ; u))^{-1} \leq H_{p}(W)=D_{p}(u)
$$

so that $\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)^{-1} \leq d_{p}(\alpha, \beta)$.
Next we prove the converse inequality. Let $W \in E_{p}\left(\mathbb{P}_{\alpha, \beta}\right)$. Then,

$$
\sum_{P} r(y) W(y)<\infty \text { for } p \text {-almost every } P \in \mathbb{P}_{\alpha} \cup \mathbb{P}_{\beta}
$$

(cf. [2; Lemma 1.1]). Take $c=r W$. Then $\Gamma_{c}(\alpha) \neq \phi$ and $\Gamma_{c}(\beta) \neq \phi$ by our assumption $\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)<\infty$. We can find $u \in L(X)$ such that $u(\beta)=0, u \in S_{c}^{*}$ and $\delta_{c}(u ; \alpha, \beta)=N\left(\mathbb{P}_{\alpha, \beta} ; c\right) \geq 1$ by Theorem 3.3. Define $v \in L(X)$ by $v(x)=\min (u(x), 1)$. Then $v(P)=1$ for every $P \in \Gamma_{c}(\alpha), v(\beta)=0$ and $|d v(y)| \leq|d u(y)| \leq W(y)$ on Y. Since $\lambda_{p}\left(\mathbb{P}_{\alpha}-\Gamma_{c}(\alpha)\right)=\infty$, we have $v(\alpha)=1$ and

$$
d_{p}(\alpha, \beta) \leq D_{p}(u) \leq H_{p}(W) .
$$

Therefore, $d_{p}(\alpha, \beta) \leq \lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)^{-1}$.
By the same reasoning as in the proof of [2; Theorem 2.4] with Lemma 3.1, we obtain the following property (stability) of extremal length:

Theorem 4.2. For every determining sequence $\left\{N_{n}^{*}\right\}\left(N_{n}^{*}=\left\langle X_{n}^{*}, Y_{n}^{*}\right\rangle\right)$ of $\alpha, \lambda_{p}\left(\mathbb{P}_{b\left(X_{m}^{*}\right), \beta}\right) \rightarrow \lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)$ as $n \rightarrow \infty$.

§5. Extremal width $\mu_{q}\left(\mathbb{Q}_{\alpha, \beta}\right)$

We prepare
Lemma 5.1. Let A and B be mutually disjoint nonempty subsets of X and $\beta \in i b c(N)$ such that $A \cap \bar{X}_{1}^{*}=\phi$. Then $E_{q}^{*}\left(\mathbb{Q}_{A, B}\right)=E_{q}^{*}\left(\mathbb{Q}_{b(A), B}\right)$ and $E_{q}^{*}\left(\mathbb{Q}_{A, B}\right)$ $=E_{q}^{*}\left(\mathbf{Q}_{b(A), \beta}\right)$.

Proof. By the obvious relations $\mathbb{Q}_{A, B} \subset \mathbf{Q}_{b(A), B}$ and $\mathbb{Q}_{A, \beta} \subset \mathbb{Q}_{b(A), \beta}$, we have $E_{q}^{*}\left(\mathbb{Q}_{A, B}\right) \supset E_{q}^{*}\left(\mathbb{Q}_{b(A), B}\right)$ and $E_{q}^{*}\left(\mathbb{Q}_{A, \beta}\right) \supset E_{q}^{*}\left(\mathbb{Q}_{b(A), \beta}\right)$. For the proof of the converse relation, it suffices to note that every $Q \in \mathbf{Q}_{b(A), B}$ (resp. $\left.\mathbf{Q}_{b(A), \beta}\right)$ contains $Q^{\prime} \in \mathbf{Q}_{A, B}$ (resp. $\mathbb{Q}_{A, \beta}$). For $Q \in \mathbf{Q}_{b(A), B}$ with $Q=Q(b(A)) \ominus Q(B)$, let $Q^{\prime}(A)=Q(b(A)) \cup A$ and $Q^{\prime}(B)=Q(B)-A$. Then $Q^{\prime}=Q^{\prime}(A) \ominus Q^{\prime}(B) \in \mathbb{Q}_{A, B}$ and $Q^{\prime} \subset Q$. For $Q \in \mathbf{Q}_{b(A), \beta}$, there exists n such that $Q \in \mathbb{Q}_{b(A), \bar{X}_{n}^{*}}$. By the above observation, we can find $Q^{\prime \prime} \in \mathbf{Q}_{A, \bar{X}_{n}^{*}}\left(\subset \mathbb{Q}_{A, \beta}\right)$ such that $Q^{\prime \prime} \subset Q$.

Corollary 5.2. The following equalities hold:

$$
\begin{align*}
& \mu_{q}\left(\mathbf{Q}_{A, B}\right)=\mu_{q}\left(\mathbf{Q}_{b(A), B}\right)=\mu_{q}\left(\mathbb{Q}_{b(A), b(B)}\right) \tag{1}\\
& \mu_{q}\left(\mathbf{Q}_{A, \beta}\right)=\mu_{q}\left(\mathbf{Q}_{b(A), \beta}\right)
\end{align*}
$$

In order to study some properties of $\mu_{q}\left(\mathbb{Q}_{\alpha, \beta}\right)$, we need the notion of flows. For $w \in L(Y)$ and a subset A of X, let

$$
\begin{aligned}
& I(w ; x)=\sum_{y \in Y} K(x, y) w(y) \\
& I(w ; A)=\sum_{x \in A} I(w ; x)
\end{aligned}
$$

provided that $\sum_{x \in A}|I(w ; x)|<\infty$.
For mutually disjoint nonempty subsets A and B of X, the set $F(A, B)$ of flows from A to B is the set of $w \in L(Y)$ such that

$$
I(w ; x)=0 \text { for all } x \in X-A-B \text { and } I(w ; A)+I(w ; B)=0 .
$$

Denote by $L_{0}(Y)$ the set of $w \in L(Y)$ with finite support and by $F_{q}(A, B)$ the closure of $F_{0}(A, B):=F(A, B) \cap L_{0}(Y)$ in the Banach space $L_{q}(Y ; r):=\{w \in L(Y)$; $\left.H_{q}(w)<\infty\right\}$ with the norm $\left[H_{q}(\cdot)\right]^{1 / q}$.

In case there exists n_{0} such that $A \cap \bar{X}_{n_{0}}^{*}=\phi$, we have

$$
F_{q}\left(A, \bar{X}_{n}^{*}\right) \supset F_{q}\left(A, \bar{X}_{n+1}^{*}\right),
$$

so we put $F_{q}(A, \beta)=\bigcap_{n=n_{0}}^{\infty} F_{q}\left(A, \bar{X}_{n}^{*}\right)$ and call its element a flow from A to β. This set does not depend on the choice of the determining sequence of β.

Let \mathscr{F} be any one of $F_{0}(A, B), F_{q}(A, B)$ and $F_{q}(A, \beta)$ and consider the following extremum problem:

Find $d_{q}^{*}(\mathscr{F}):=\inf \left\{H_{q}(w) ; w \in \mathscr{F}\right.$ and $\left.I(w ; A)=-1\right\}$.
Lemma 5.3. Let $N^{*}=\left\langle X^{*}, Y^{*}\right\rangle$ and $\bar{N}^{*}=\left\langle\bar{X}^{*}, \bar{Y}^{*}\right\rangle$ be ends of N such that $X^{*} \cap \bar{X}^{*}=\phi . \quad$ Then $d_{q}^{*}\left(F_{0}\left(X^{*}, \bar{X}^{*}\right)\right)=d_{q}^{*}\left(F_{0}\left(b\left(X^{*}\right), \bar{X}^{*}\right)\right)$.

Proof. Since $F_{0}\left(X^{*}, \bar{X}^{*}\right) \supset F_{0}\left(b\left(X^{*}\right), \bar{X}^{*}\right)$,

$$
d_{q}^{*}\left(F_{0}\left(X^{*}, \bar{X}^{*}\right)\right) \leq d_{q}^{*}\left(F_{0}\left(b\left(X^{*}\right), \bar{X}^{*}\right)\right)
$$

On the other hand, let $w \in F_{0}\left(X^{*}, \bar{X}^{*}\right)$ with $I\left(w ; X^{*}\right)=-1$. Define $w^{\prime} \in L(Y)$ by

$$
\begin{aligned}
& w^{\prime}(y)=0 \text { on } i\left(Y^{*}\right):=\bigcup_{x \in i\left(X^{*}\right)} Y(x) \\
& w^{\prime}(y)=w(y) \text { on } Y-i\left(Y^{*}\right) .
\end{aligned}
$$

Then, $w^{\prime} \in F_{0}\left(b\left(X^{*}\right), \bar{X}^{*}\right)$ and $I\left(w^{\prime} ; b\left(X^{*}\right)\right)=-1$. In fact, clearly

$$
I\left(w^{\prime} ; x\right)=0 \quad \text { for } x \in i\left(X^{*}\right)
$$

For $x \in X-\left(X^{*} \cup \bar{X}^{*}\right), Y(x) \cap i\left(Y^{*}\right)=\phi$ and $I\left(w^{\prime} ; x\right)=I(w ; x)=0$. By the relation

$$
\sum_{x \in X^{*}} \sum_{y \in i\left(Y^{*}\right)} K(x, y) w(y)=\sum_{y \in i\left(Y^{*}\right)} w(y) \sum_{x \in X^{*}} K(x, y)=0,
$$

we have

$$
I\left(w^{\prime} ; b\left(X^{*}\right)\right)=\sum_{x \in X^{*}} \sum_{y \in Y-i\left(Y^{*}\right)} K(x, y) w(y)=I\left(w ; X^{*}\right)=-1 .
$$

Therefore w^{\prime} is a feasible solution for $d_{q}^{*}\left(F_{0}\left(b\left(X^{*}\right), \bar{X}^{*}\right)\right)$, and hence

$$
d_{q}^{*}\left(F_{0}\left(b\left(X^{*}\right), \bar{X}^{*}\right)\right) \leq H_{q}\left(w^{\prime}\right) \leq H_{q}(w) .
$$

Thus $d_{q}^{*}\left(F_{0}\left(b\left(X^{*}\right), \bar{X}^{*}\right)\right) \leq d_{q}^{*}\left(F_{0}\left(X^{*}, \bar{X}^{*}\right)\right)$.
It is easily seen that

$$
d_{q}^{*}\left(F_{0}(A, B)\right)=d_{q}^{*}\left(F_{q}(A, B)\right) .
$$

Therefore we obtain
Corollary 5.4. $\quad d_{q}^{*}\left(F_{0}\left(X^{*}, \bar{X}^{*}\right)\right)=d_{q}^{*}\left(F_{q}\left(b\left(X^{*}\right), b\left(\bar{X}^{*}\right)\right)\right)$.
Now we prove a stability of extremal width:
Theorem 5.5. $\quad \mu_{q}\left(\mathbf{Q}_{X_{n}^{*}, \bar{X}_{n}^{*}}\right) \rightarrow \mu_{q}\left(\mathbf{Q}_{\alpha, \beta}\right)$ as $n \rightarrow \infty$.
Proof. Noting that $\mathbb{Q}_{X_{n}^{*}, \bar{X}_{n}^{*}} \subset \mathbf{Q}_{X_{n+1}^{*}, \bar{X}_{n+1}^{*}} \subset \mathbf{Q}_{\alpha, \beta}$, we have

$$
\mu_{q}\left(\mathbb{Q}_{X_{n}^{*}, \bar{X}_{n}^{*}}\right) \geq \mu_{q}\left(\mathbb{Q}_{X_{n+1}^{*}, \bar{X}_{n+1}^{*}}\right) \geq \mu_{q}\left(\mathbb{Q}_{\alpha, \beta}\right)
$$

so that $\lim _{n \rightarrow \infty} \mu_{q}\left(\mathbb{Q}_{X_{n}^{*}, \bar{X}_{n}^{*}}\right) \geq \mu_{q}\left(\mathbb{Q}_{\alpha, \beta}\right)$. To show the converse inequality, we may assume that $\lim _{n \rightarrow \infty} \mu_{q}\left(\mathbb{Q}_{X_{n}^{*}, \bar{X}_{n}^{*}}\right)>0$ and $\mu_{q}\left(\mathbb{Q}_{\alpha, \beta}\right)<\infty$. By [3; Theorem 4.1 and Proposition 4.2] and Corollary 5.2, there exists $w_{n} \in F_{q}\left(b\left(X_{n}^{*}\right), b\left(\bar{X}_{n}^{*}\right)\right)$ such that $I\left(w_{n} ; b\left(\bar{X}_{n}^{*}\right)\right)=-1$ and

$$
H_{q}\left(w_{n}\right)=d_{q}^{*}\left(F_{q}\left(b\left(X_{n}^{*}\right), b\left(\bar{X}_{n}^{*}\right)\right)\right)=\mu_{q}\left(\mathbf{Q}_{b\left(X_{n}^{*}\right), b\left(\bar{X}_{n}^{*}\right)}\right)^{-1}=\mu_{q}\left(\mathbb{Q}_{X_{n}^{*}, X_{n}^{*}}\right)^{-1},
$$

since $b\left(X_{n}^{*}\right)$ and $b\left(\bar{X}_{n}^{*}\right)$ are finite sets. Notice that $\left\{H_{q}\left(w_{n}\right)\right\}$ is bounded by our assumption. For each w_{n}, there exists $w_{n}^{\prime} \in F_{0}\left(b\left(X_{n}^{*}\right), b\left(\bar{X}_{n}^{*}\right)\right)$ such that $I\left(w_{n}^{\prime} ; b\left(X_{n}^{*}\right)\right)$ $=-1$ and $H_{q}\left(w_{n}-w_{n}^{\prime}\right)<1 / n$. Then $w_{n}^{\prime} \in F_{0}\left(X_{n}^{*}, \bar{X}_{n}^{*}\right), I\left(w_{n}^{\prime} ; X_{n}^{*}\right)=-1$ and

$$
1=\left|I\left(w_{n}^{\prime} ; X_{n}^{*}\right)\right| \leq \sum_{Q}\left|w_{n}^{\prime}(y)\right|
$$

for all $Q \in \mathbb{Q}_{X_{n}^{*}, \bar{X}_{n}^{*}}$. Nemely, $\left|w_{n}^{\prime}\right| \in E_{q}^{*}\left(Q_{X_{n}^{*}, \bar{X}_{n}^{*}}\right)$, and hence $\mu_{q}\left(Q_{X_{n}^{*}, \bar{X}_{n}^{*}}\right)^{-1} \leq H_{q}\left(w_{n}^{\prime}\right)$. Therefore

$$
\lim _{n \rightarrow \infty} H_{q}\left(w_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} H_{q}\left(w_{n}\right)=\lim _{n \rightarrow \infty} \mu_{q}\left(\mathbb{Q}_{X_{n}^{*}, \bar{X}_{n}^{*}}\right)^{-1}
$$

If $m>n$, then $\left(w_{n}^{\prime}+w_{m}^{\prime}\right) / 2$ is a feasible solution of $d_{q}^{*}\left(F_{0}\left(X_{n}^{*}, \bar{X}_{n}^{*}\right)\right)$. By Clarkson's inequality (cf. [2]) and Corollary 5.4, we see that $\left\{w_{n}^{\prime}\right\}$ is a Cauchy sequence in $L_{q}(Y ; r)$. Thus we can find $w^{\prime} \in L_{q}(Y ; r)$ such that $H_{q}\left(w_{n}^{\prime}-w^{\prime}\right) \rightarrow 0$ as $n \rightarrow \infty$. On
the other hand, it follows from [2; Lemma 4.3] that there exist $\Lambda \subset \mathbf{Q}_{\alpha, \beta}$ and a subsequence $\left\{w_{n_{k}}^{\prime}\right\}$ of $\left\{w_{n}^{\prime}\right\}$ such that $\mu_{q}\left(\mathbb{Q}_{\alpha, \beta}-\Lambda\right)=\infty$ and

$$
\sum_{Q}\left|w_{n_{k}}^{\prime}(y)-w^{\prime}(y)\right| \rightarrow 0 \text { as } k \rightarrow \infty \quad \text { for all } Q \in \Lambda
$$

By [2; Lemma 4.2], $\mu_{q}(\Lambda)=\mu_{q}\left(\mathbf{Q}_{\alpha, \beta}\right)$. Let $Q \in \Lambda$. Then there exists n_{0} such that $Q \in \mathbb{Q}_{X_{n}^{*}, \bar{X}_{n}^{*}}$ for all $n \geq n_{0}$. By the above observation $\sum_{Q}\left|w_{n}^{\prime}(y)\right| \geq 1$. Thus,

$$
\begin{aligned}
1-\sum_{Q}\left|w^{\prime}(y)\right| & \leq \sum_{Q}\left|w_{n_{k}}^{\prime}(y)\right|-\sum_{Q}\left|w^{\prime}(y)\right| \\
& \leq \sum_{Q}\left|w_{n_{k}}^{\prime}(y)-w^{\prime}(y)\right| \longrightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$, so that $1 \leq \sum_{\varrho}\left|w^{\prime}(y)\right|$, i.e., $\left|w^{\prime}\right| \in E_{q}^{*}(\Lambda)$. Consequently,

$$
\mu_{q}\left(\mathbf{Q}_{\alpha, \beta}\right)^{-1}=\mu_{q}(\Lambda)^{-1} \leq H_{q}\left(w^{\prime}\right)=\lim _{n \rightarrow \infty} H_{q}\left(w_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} \mu_{q}\left(\mathbf{Q}_{X_{n}^{*}, X_{n}^{*}}\right)^{-1}
$$

This completes the proof.
Corollary 5.6. $\quad \mu_{q}\left(\mathbb{Q}_{X_{m}^{*}, \bar{X}_{n}^{*}}\right) \rightarrow \mu_{q}\left(\mathbf{Q}_{\alpha, \beta}\right)$ as $m \rightarrow \infty$ and $n \rightarrow \infty$.
By [2; Theorem 4.1 and Corollary 4.1], we have

$$
\begin{align*}
& \mu_{q}\left(\mathbf{Q}_{b\left(X_{m}^{*}\right), X_{n}^{*}} \longrightarrow \mu_{q}\left(\mathbf{Q}_{b\left(X_{m}^{*}\right), \beta}\right) \text { as } n \longrightarrow \infty ;\right. \tag{5.1}\\
& {\left[\lambda_{p}\left(\mathbf{P}_{b\left(X_{m}^{*}\right), \beta}\right)\right]^{1 / p}\left[\mu_{q}\left(\mathbf{Q}_{b\left(X_{m}^{*}\right), \beta}\right)\right]^{1 / q}=1 .}
\end{align*}
$$

Combining Theorems 4.2 and 5.5 with (5.1) and (5.2), we obtain
Theorem 5.7. $\quad\left[\lambda_{p}\left(\mathbb{P}_{\alpha, \beta}\right)\right]^{1 / p}\left[\mu_{q}\left(\mathbf{Q}_{\alpha, \beta}\right)\right]^{1 / q}=1$.

References

[1] T. Kayano and M. Yamasaki, Boundary limit of discrete Dirichlet potentials, Hiroshima Math. J. 14 (1984), 401-406.
[2] A. Murakami and M. Yamasaki, Extremal problems with respect to ideal boundary components of an infinite network, ibid. 19 (1989), 77-87.
[3] T. Nakamura and M. Yamasaki, Generalized extremal length of an infinite network, ibid. 6 (1976), 95-111.

