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A protein molecule can be regarded as a set of rigid units and rotatable bonds. We 

present here a parallel algorithm of calculations for second derivative matrix with respect 

to dihedral angles around bonds for proteins with any branched side chains. The basic 

idea of the algorithm for processor array type computers is the introduction of the nearest 

outside units and related quantities. A method of initial setting and transfer of bond data 

rs also presented in simple mathematical expressions which are easily coded in the 

computer program. 

S 1. llmtroductiom 

We assume here the bond lengths and the bond angles in the protein molecule 

as fixed and treat only the dihedral angles as independent variables. The second 

derivative matrix of conformational energy with respect to dihedral angles is an 

rmportant physical quantity in the stage of minimization of energy and also in the 

stage of conformational fluctuation computations 

The calculation of the second derivative matrix is, however, a time consuming 

step. A straightforward approach needs n4 operations for the second derivative 

matnx of conformational energy where n is the number of dihedral angles. This 

rapid increase of the number of operations makes this approach prohibitive for large 

molecules. By using a conventional (sequantial processing) computer, fast 

algorithms have been developed to calculate the second derivatives (cf 
[1], [8]). These algorithms require a number of operations proportional to n2. A 

recent mcrease in speed has been also achieved on the pipe-line type supercomputer 

by modifying the algorithms to be well vectorized (cf. [9] ) ･ The pipe-line type 

supercomputer rs an SIMD (single mstruction stream / multiple data stream) 

computer 
Another option is the use of processor array type (or parallel) computers which 

are generally superior in high performance compared with cost. ILLIAC-IV (Univ 

of lllinois) is the most famous prototype of the processor array type computer, but it 
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is specified as SIMD. After the pioneermg proJect of ILLIAC-IV, vanous type 

processor array computers have been developed for scientific applications : BSP 

(Burroughs), DAP (ICL), MPP (NASA), HEP (Denelcor) and MiPAX. MiPAX was 
originally developed in Univ. of Tsukuba [6] , and is now being improved for 

commercial use by Mitsui E & S [4] , [5], [7] . MiPAX has a nearest-neighbor-

connected array and is specified as MIMD (multiple instruction stream / multiple 

data stream) 

In our previous papers [2] , [3] , a new parallel algorithm was presented to 

calculate the second derivatives by using the processor array type computer which 

has the nearest-neighbor-connected array. The basic idea of the algorithm is the 

introduction of the concepts of the nearest outside units and related quantities. In 

the previous papers, however, the mathematical expressions were restricted to 

proteins without side chains for easy understanding. The purpose of this paper is to 

present the general expressions for the proteins with any branched side chains 

S 2. Second derivative matrix 

We treat here only dihedral angles as independent variables. As a result of this 

assumption a protein molecule can be regarded as a set of rigid units and rotatable 

bonds. The units are rigid in the sense that there are no rotatable bonds within 

them. Each unit consists of one or more atoms 

The second derivative Fij of the conformational energy E with respect to the 

dihedral angle 6i around bond i and the dihedral angle ej around bond j is specified 

as follows (cf. [1]): 

e2E 
Fij E: aeia6j 

= - Sij ･ (ei, ei X r.(i)) ･ ~ ~ (c.p C.p + d.pD.p) -

P=Mj "=1~=(j) ej x r*(j) 
(1 ~ i ~ j ~ n), (1) 

where ei is a unit vector along the bond i pointing to the positive direction. The 

posrtive direction of bond is defined as the further direction from the amino terminus 

of the protein molecule. r.(i) rs a position vector of a certain point properly chosen 

on bond i. Mi is a set of units on the outside of bond i. The outside of bond i is 

defined as the side of positive direction of bond i. Mi(j) rs a set of unrts on the "J 

outside " of bond I which rs dependmg on the mutual relationship of set Mi and Mj 

(Fig. 1): 

' (Mi :D Mj), Mi 
i (Mi n Mj = ~), 
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Mutual relationship of set Mi and Mj 

where M~ is the complement of set Mi and ~ is the empty set. Sij is a sign defined 

as : 

- I (M. :D Mj), 

'J + I (Mi n Mj = ~i). ' 

c.p and d.p m Eq. (1) are scalars, C.p and D.p are 6 x 6 matrices with respect to atom 

pair (oe, P)･ n is the number of bonds 

Fij m Eq. (1) can be simply wrrtten by 
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Fij = - s,Jb, ~ ~ L.p.bj (1 ~ i ~j~ n), (4) 
p~Mj *=1~*(j) 

where b and b are 6 dimensronal column vectors. L.p rs a 6 x 6 matnx 

S 3･ Parallell algorithm for secomd derivative matrix 

We introduce here a set of new variables concerned with the nearest outside 
units : 

Tkl = ~ ~ L.p' (5) p=v, *=7*(,) 

G~l _ _ sij b; Tkl bj. (6) ,j -

In Eq (5) V rs the nearest outside umt of bond I and '~ is the nearest "I-
' k(1) outside" unit of bond k (Fig. 2) : 

M~ (Mk ~) Ml)' 
k (Mk n Ml = ~)' 

Bond i and bond j in Eq. (6) should satisfy the following relationship with bond 

k and bond l: 

k (Mk :D Ml)' M' 
k (Mk n Ml = ~)' 

Note that Tm in Eq. (5) is a 6 x 6 matrix and G,~J! in Eq. (6) is a scalar 

Now Fij in Eq. (4) can be rewritten as : 

kl 

l=Mj k=1~*(j) 

=~ l ~ G,~J~1.~)1 (1 ~ i ~j ~ n). (12) 
l = j ~= 1 

The expression of Eq. (12) is obtained by introducmg an mdex m and a function k 

depending on I and m 

k = k(1, m), (13) 
which is given explicitly in S 5, and nj is defined by 

n . = max l. 

J I =Mj ( 1 4) 
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Frg 2 Nearest outside unrts Vk(1) and Vl 

NoW Eq. (12) can be aISO expreSSed by uSing the recurrent equattonS 

inner 100n, F! . := F! . + G~~1,m)1 _ 
f o r r v t J I J 

(F!. = O if m = I (15) 
m 1, . . , , l), 

t J 

l - 1 for Outer 100p, F{j := F;j + Fij 

FJi-1 = O; I = j,,.,, (16) l j 

Where : =: means ,the substitutiOn Of data from right hand Side tO Ieft hand side, ･ In 

Eq (16) Fl~J IS equal tO the reSulting sum FIJ' In Eq, (12) 
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If the indices I and m are referred to the processing unit number (PU No.) and 

step No, respectively, the following parallel algorithm can be introduced 

(i) Processing units are linked as 1-dimensional chains : PUl (1 = 1,...,n). Data 

of bonds and units for the calculation of Tu(1 = 1,...,n) are initially loaded in 

each PUl' 
(ii) Step m : Calculate Tk(1,~)1 and G,~J~1,~)1 (1 ~ i ~ j ~ l) at each PUl (,1 = m, 

m + 1,...,n). ' (iii) Transfe.r the data of bond k and unit ~Vk(1) m PUl into PUl+ I (1 = 1,... , n - 1). 

(iv) Repeat (ii) and (iii) for m = 1,...,1. When step No. m reaches to I at PUl 

(1 = j, . . . , nj), F{j in each PUl(1 = j, . . . , nj) should be summed recurrently by 

Eq. (16). At the step m = nj, F,~j in PU~j is the resulting sum Fij. 

The parallel algorithm proposed above calculates all elements of the second 

derivative matrix, Fij (1 ~ i ~ j ~ n), in n steps of data transfer between neighboring 

processmg umts 

S 4. Introduction of order of bramch and related sets 

To emphasize the merit of our parallel algorithm which can be applied to 

polymer chains with side chains of any complexity, we assume that polypeptide has a 

series of branches which are discriminated as "order of branches" 

~ = O : O-th order branch (back bone), 

~ = I : 1-st order branch (side chain), 

~ = v : v-th order branch (highest order branch) 

Let SA (~ = O, . . . , v) be the set of bonds on the ~-th order branch. ~-th order 

branch (~ = O, ...,v-1) is divided into two parts by the (A + 1)-th order 
branch. The sub-branch which is nearer to the amino terminus is distinguished by 

subscnpt A, and another sub-branch is distinguished by subscript B. Since the v-th 

order branch is not divided, the subscripts A and B of v-th order branch are 

regarded as equivalence. Therefore, the set of bonds on the ~-th order branch can 

be expressed as : 

A {S~, S~} (O ~ ~ ~ v - 1), 
{S~} = {S~} (~ = v). 

Now we introduce the numbering rule of bonds. Bond I should be the bond 
attached to the amino terminus. Bonds 2, 3, . . . , n are sequentially given for the 

bonds which are listed in the following set of bond sets (Fig. 3) : 
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Fig. 3. Numbering rule of bonds 

where S~t (~ = O, . 

S~ , S~ respectrvely 

We also define 

order branch 

{S~T , S~t " " ' S~T I , S~t ' S~T l, ･ ･ ･ , S~t ' Sgt}' 

, v) and S~t (~ = O, . ..,v - 1) are the ordered sets of bond 

in the sequence of nearness to the amino terminus 

the minimum. bond No. and maximum bond No. on the 

(18) 

sets 

A-th 

Unit 
l (1 = 1,. 

bond l. 

numbers 
.,n) is the 

m~ = Im=~~ l, nA 1~;sa~ I (19) 

are defined such that unit O is the amino terminus, and unit 

further unit from the amino terminus, which is attached to 
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S 5. Imitiall setting amd transfer of data 

We present here the theory of initial setting and transfer of data on processing 

unrts for our new parallel algorithm 

Let S~A be the set of ordered bond sets (Fig. 4) : 
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S~A = {SB~, S~~1,...,SAt ' S~t' SBT ,...,S~~1, S;L .-1 ~-1 {SBl} {SA~} (~ = v). A~} (O 

In this equation, the subscript T means, the increasing Qrder in bond number 

sequence, and the subscript ~ means the decreasing order 

Let kA(1, m) be the bond of A-th order branch stored in the processing unit I at 

step m. kA(1, m) is defined by 
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S~"A^_1+1 

kA(1, m) - (m = 1), 
~ kA(1 - 1, m - 1) (2 ~ m ~ n); 

(O ~ ~ ~ v, IeS~ (~ ~ ~ ~ v)), (21) 

where S~"h^_1+1 is the (nA - I + 1)-th element of bond number set S~A, and nA is the 

maximum bond number on the ~-th order branch defined in Eq. (19). If S'~~"h _1+1 

= ~, then we set that kh(1, In) = O. From Eqs. (19), (20) and (21), the following 

equations can be derived : 

kA(mA 1) mA, kA(nA, 1) = nA. , (22) 
We also define the nearest Qutside unit of bond kA(1, m) as ~ which is 

T
~
 
k^(1 , ~) 

further unit from bond nA. 

Finally we can obtain k(1, m) in Eq. (13) : 

k(1, m) = ku(1, m) (1 ~ m ~ I ~ n), (23) 

where 

,1 = mA=aKX ~, 

K = {~l O ~ ~ ~ v, kA(1, m) ~ O} . 

(24) 

(25) 

S 6. ConcEusions 

We have presented here a parallel algorithm of calculations for second 

derivative matrix for proteins with any branched side chains. The important 

problems to be solved in our approach ,were how to define the "nearest outside" 

units and related quantities, and how to store and transfer the unit and bond data 

on processing units connected as 1-dimensional chains whereas highly branched side 

chains exist in actural proteins 

In this paper, a new concept of nearest outside units Vk(1) and Vl is 
introduced. We also introduce Tkl and G,~J! which are partial contributions to the 

second derivative Fij. 

To make our mathematical expressions correspond with algorithm on parallel 

computer which has 1-dimenslonal processing unit (PU) chains, indices I and m are 

referred to PU No. and step No. respectively. By using new quantities and indices 

proposed above, our parallel algorithm can calculate all elements of the second 

derivatrve matrix, Fij (1 ~ i ~ j ~ n), in n steps of data transfer between neighboring 

processmg umts 
To deal with highly branched side chains, an idea of "order of branch" is also 

introduced. A method of initial setting and transfer of bond data, kA(1, m) for ~-th 
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order branch and k(1, m) for actual computation, rs presented m simple mathematical 

expressions which are easily coded m the computer program 

We would like to thank Dr. Masahiko Kishi, Mitsui E & S Co. Ltd., for his 

encouragement to this work 
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