日本の中・後期古生代放散虫生層序

石 賀 裕 明*

Middle and Late Paleozoic Radiolarian Biostratigraphy of Japan.

Hiroaki ISHIGA

1. はじめに

古生代放散虫特にデボン紀新世ーペルム紀放散虫化石 の研究は,最近目まぐるしく進歩してきた(HoLDS-WORTH & JONES, 1980; ISHIGA, 1986, 1987; NAZA-ROV & ORMISTON, 1987 など参照). 放散虫の研究と いっても,

- 1) 放散虫の産出を報告したもの
- 2)年代の明らかな地層から産出した放散虫を記載したもの
- 3)連続した地層の中(層序断面)で種構成の変化を 調べたもの
- 4) 広範囲にわたる地域で多数の層序断面を調べ化石 帯の設定を行ったもの
- 5) 1-4をもとに系統(古典的進化, クラディズム) を論じたもの
- 6) 1-5をもとに古生物地理を論じたもの
- などいくつかの段階がある.

本論では最近の中・後期古生代放散虫研究について これらの点に着目していくつかの研究を簡単にレビュ ーするとともに、日本のシルルーデボン紀放散虫研究 および最近の成果を紹介する.

2. 日本のデボン紀ーペルム紀放散虫研究

古生代放散虫は19世紀末から記載されてきたが、その生層序学的意義が深まり、走査型電子顕微鏡による 詳しい検討結果が公表されたのは1979年である。日本 では1980年代にはいると化石の記載と生層序学的研究 が急速に進んだ。石炭紀後期-ペルム紀の放散虫化石 は西南日本のジュラ紀付加体中に含まれる層状チャー ト岩体や舞鶴帯・秋吉帯・黒瀬川構造帯の泥岩から報 告があり,層状チャート中では化石の記載が行われ, 詳細な化石層序が確立されている。シルルーデボン紀 のものは飛驒外縁帯・黒瀬川構造帯から産出が報告さ れ,四国横倉山の黒瀬川構造帯からは FURUTANI(1983) により詳しい記載がされている。

古生代放散虫化石は殼構造,とくに内部構造にもとづいて分類が進められているが、その体系はまだ確立されていない. 古生代の主な放散虫のグループとしては Spumellaria, Stauraxon, Albaillellariaの3グルー プがある.

Spumellaria については Entactinia, Entactinosphaera など球形の殻の内部に1本の median bar と4本 もしくは6本の spicule をもった放散虫が FOREMAN (1963)によって北米の中部デボン系から報告されてい るが, 日本では SASHIDA & TONISHI (1985, 1986)に よって関東山地の上部ペルム系層状チャートから報告 された.

Palaeoscenidiidae は1本の median bar の両側に2 本以上の apical spine と basal spine をもつもので, 球形の殻がこれらの骨格をおおうようになる. Palaeoscenidiinae では, basal spine をおおう殻の発達の状 態により古谷 (1982), FURUTANI (1983) は5 属を識 別し記載している. Palaeoscenidiidae は最近シルル 系からも報告され (GOODBODY, 1987; ORMISTON & NAZAROV, 1986), ジュラ系からも報告がある (TA-KEMURA, 1986). なお Palaeoscenidiidae は Albaillellaria に含められているが分類上問題があり今後の 課題である.

シルル系-石岩系下部の生層序に重要な Ceratoikiscidae は a-, b-, i (c)-(intersecter) の3本の spicule からなる.後期には a-, i-の2本の spicule を無孔 の殻がおおうようになった Holoeciscus FOREMAN も 出現した. Ceratoikiscum DEFLANDRE はデボン紀以

^{*} 島根大学理学部地質学教室

Department of Geology, Faculty of Science, Shimane University, Matsue 690, Japan.

Fig. 1 Evolutionary lineages of some bilaterally symmetrical radiolarians. Lineage of Palaeoscenidiinae and Pentactinocarpinae, after FURUTANI (1982).

降の重要な示準化石であり黒瀬川構造帯における検討 結果の一部を紹介する. Ceratoikiscids は石炭紀後 期ーペルム紀の Albaillella 属さらには Pseudoalbaillella 属放散虫に進化した (第1図).

3. デボン紀ーペルム紀放散虫の推移

3.1 デボン系ー石炭系下部放散虫層序

日本では黒瀬川構造帯や飛驒外緑帯の泥岩や酸性凝 灰岩から産出報告されているだけで詳しい化石層序は 確立されていない.FURUTANI (1983)はPalaeoscenidiidaeの内部構造の観察からPalaeoscenidium, Parentactiniaの系統関係を考察したがそれらの層序 学的位置づけはなされていない.若松 (1985)は黒瀬川 構造帯の砕屑岩から得たいくつかの放散虫群集を示して いるが、そのうちのデボン紀のものをしめした(第2 図).この図には北米での検討とオーストラリア東部のニ ユーイングランド褶曲帯での結果も合わせて示している. 日本では石岩紀古世の放散虫群集は報告されていな い.東北の南部北上産地の下部石岩系の珪質凝灰岩は 多数の放散虫を含むが、保存は不良で詳しい検討には

3.2 上部石炭系ーペルム系放散虫化石層序

たえない。

丹波帯・美濃帯に分布する上部古生界の層状チャートは断層によって変位されたり、ジュラ系オリストストローム中に含まれることが多い.そこで、化石層序

は層状チャートの露頭(層序断面)においてチャート の単層毎に含まれる放散虫の種構造の垂直変化を検討 し、いくつかの露頭における記録を総合して組立てら れる.

ペルム紀-石炭紀の放散虫化石帯は、主に Albaillellariaに属する放散虫にもとづいて、属レベルでは、 Pseudoalbaillella 属(石炭紀新世,おそらくモロー世 に出現), Follicucullus 属 (ペルム紀中世後期に出現 した),および Neoalbaillella 属 (ペルム紀新世前期) の特徴種を用いて設定されている(ISHIGA, 1986). Pseudoalbaillella 属の種については石炭紀新世後期の ものは相先の Albaillella と類似のものも認められる。 ペルム紀古世後期から中世前期には Pseudoalbaillella 属放散虫は産出がやや少なくなるが、中世中期から 後期には P. longtanensis SHENG & WANG や P. fusiformis (HOLDSWORTH & JONES) など翼が長く開口 部付近から水平にのびる spine と結びあう特徴的な骨針 をもつ Pseudoalbaillella がみられる. Pseudoalbaillella はその後衰退して、化石群集は Follicucullus や Neoalbaillella 属の諸種で代表される.

4. デボン紀鴻ノ森放散虫群集

黒瀬川構造帯の鴻ノ森レンズ状部の凝灰質泥岩から の放散虫群集は鴻ノ森群集と名付けられ、デボン紀中 世をしめすとされている(若松,1986). この群集には 単純な3対の caveal rib をもった Ceratoikiskum がふ

			Holdsworth & Jones (1980)	Wakamatsu (1986)	Modified from Ishiga et al. (1988)
Devonian	Upper		Albaillella-1		 Popofskvellum sp.
			Holoeciscus-3		
		Famennian	Holoeciscus-2		Ho. foremanae
			Holoeciscus-1		
		Frasnian	Pre-Holoeciscus		P. hastingensis
			not given	Tlecerina horrida	He. laticlavium
	Middle	Givetian		<i>Parentactinia</i> sp. 1 Kounomori	
		Eifelian			

Fig. 2 Middle and Late Devonian radiolarian zonation and assemblages.

Fig. 3 Sketch of outcrop of acidic tuff sequence examined for Devonian radiolarian faunas in the Kounomori lenticular body of the Kurosegawa Tectonic Zone, north Kochi City, Shikoku. Numbers show horizons where radiolarians were examined.

Fig. 4 List of radiolarians form the Kounomori lenticular body of the Kurosegawa Tectonic Zone, north Kochi City, Shikoku.

くまれる.最近筆者は鴻ノ森群集を産するとされていた露頭において珪質凝灰岩を系統的に採集し、その中に含まれる放散虫の種構成の変化を調べた.なお Appendix において化石の記載を行う.

検討を行ったのは高知県高知市鴻ノ森(133°31'3"E, 33°35'30"N)の灰緑色珪質凝灰岩から凝灰岩・泥岩互層 にいたる層厚約 30 m の露頭で約 20 cm おきに 54 個の サンプルを採集した(第3図).地層は堆積構造から判断すると逆転していると思われる.露頭の下位は灰緑 色の塊状凝灰岩からなり、中・上位では珪質凝灰岩・ 頁岩互層、酸性凝灰岩に移化する.放散虫はほとんど のサンプルに含まれているが、Ko-41、Ko-33、Ko-22 などには比較的保存の良好な放散虫が含まれる.

放散虫はほとんどが球形の殻をもつ Spumellaria か

らなるが Palaeoscenidium, Parentactinia, Ceratoikiscum なども含まれ, それらの諸種の垂直変化を調 べた (第4図).

Parentactinia は Ko-33, Ko-25, Ko-22 など比較的 上位の層準に産出がみられる。Ceratoikiscum につい ては caveal rib の発達の弱いもの (Pl. 1, Figs. 1, 2) や3対の caveal rib を持つもの(Fig.5, Pl. 1, Figs. 1-3)があり,後者は Ko-46, Ko-41, Ko-33, Ko-31, な どから産するのに対して,多数の対をなす caveal rib をもつ Ceratoikiscum (Pl. 1, Figs. 4, 5) は Ko-53 か ら Ko-4 などの多くの層準から産する。これらの放散 虫の形態の特徴とそれらの産出状況を考慮すると、鴻 ノ森群集は2群集 (下位のものから群集 A, B と呼ん でおく)に細分できる。

群集 A は3 対の caveal rib で特徴づけられる Ceratoikiscum をふくむもので,群集 B は Parentactinia と多数の対をなす caveal rib をもつ Ceratoikiscum か らなる群集である。群集 A はこれまで報告のないもの であるが,群集 B は横倉山南西の珪質泥岩から産する Parentactinia sp. 1 群集 (若松, 1986) に対比される。 古谷氏から供与された Parentactinia sp. 1 群集を産す る不溶残査からは群集 B に含まれる Parentactiniaの ほかに caveal rib をもたない単純な骨格をもつ Ceratoikiskum がふくまれる。今回の検討によりデボン紀 珪質凝灰岩中でも放散虫群集の推移が認められることが 確実となり,黒瀬川構造帯や飛驒外縁構造帯において も放散虫層序が確立されるものと期待できる。

謝辞:名古屋大学古谷 裕氏には黒瀬川構造帯のシル ルーデボン系からの放散虫について色々と御教示頂く と共に放散虫化石抽出様の残査を頂いた。島根大学桑 原希世子氏には鴻ノ森レンズ状部において試料採集に

Fig. 5 Terminology of basal skeleton of *Ceratoikiscum* DEFLANDRE.

協力頂くと共に放散虫について討論頂いた.放散虫化 石の走査電子顕微鏡写真撮影については大阪市立大学 八尾昭先生及び島根大学大島朗伸先生に便宜を計って いただいた.以上の方々に記して感謝する.

文 献

- FOREMAN, H., 1963: Upper Devonian Radiolaria from the Huron Member of the Ohio Shale. *Micropale*ont., 9, 267-304, pls. 1-9.
- 古谷 裕, 1982: Palaeoscenidiidae の骨格の構造およ び系統発生について. JRS 81 Osaka 大阪微化石研 究会誌特別号, No. 5, 11-16, pl. 1.
- FURUTANI, H., 1983 : Middle Palaeozoic Palaeoscenidiidae (radiolaria) from Mt. Yokokura, Shikoku, Japan. Part 1. Trans. Proc. Palaeont. Soc. Japan, N. S., 130, 96-116, pls. 21-27.
- GOODBODY, H., 1987: Wenlock Palaeoscenidiidae and Entactiniidae (Radiolaria) from the Cape Phillips Formation of the Canadian Arctic Archipelago. *Micropaleont.*, **32**, 129-157, pls. 1-7.
- HOLDSWORTH, B. K. and JONES, D. L., 1980: Preliminary report on radiolarian zonation for Late Devonian through Permian time. *Geology*, **8**, 281-285.
- ISHIGA, H., 1986 : Late Carboniferous and Permian radiolarian biostratigraphy of Southwest Japan. Jour. Geosci., Osaka City Univ., 29, 89-100.
- ISHIGA, H., 1987 : Paleozoic radiolaria. In ICHIKA-WA, K., MIZUTANI, S. and HARA, I. (eds.), Pre-Cretaceous Terrans of Japan. IGCP Project 224 Special Pub.
- ORMISTON, A. and NAZAROV, B., 1986 : Evolutional Trends in the development of Paleozoic radiolaria. *Marine Micropaleont.*, 11, 3-32, pls. 1-7.
- SASHIDA K. and TONISHI, 1986: Upper Permian stauraxon polycystine radiolaria from Itsukaichi, western part of Tokyo Prefecture. Sci. Rep., Inst. Geosci., Univ. Tsukuba, Ser. B, 7, 1-13, pls. 1-4.
- TAKEMURA, A. 1986: Classification of Jurassic Nassellarians (radiolaria). Palaeontographica A, 195, 29-74.
- YOSHIKURA, S., 1985: Igneous and High-grade metamorphic rocks in the Kurosegawa Tectonic Zone and its tectonic significance. *Jour. Geosci., Osa*ka City Univ., 28, 45-83.

Appendix

Paleontological study of Devonian radiolaria *Ceratoikiscum* Deflandre from the siliceous tuff of the Kounomori lenticular body of the Kurosegawa Tectonic Zone (YOSHIKURA, 1985), north Kochi City, Shi-koku, Japan (133°31'3" E, 33°35'30" N) has been undertaken and two new species are described and figured in Plates 1 and 2.

Systematic Paleontology

Subclass RADIOLARIA Superorder POLYCYSTIDA EHRENBERG, 1983 Order ALBAILLELLARIA DEFLANDRE, 1953

Diagnosis. Bilaterally symmetrical Paleozoic radiolaria with or without lamellar shell having a fundamental framework of three rods arranged in a triangular fashion (CHENG, 1987).

Remarks. CHENG (1987) proposed taxonomic framework of Albaillellaria radiolarians, which are composed of superfamily Albaillellacea and Follicucullacea. The Albaillellacea is characterized by having three rods forming a closed triangular framework, and includes the Ceratoikiscidae HOLDSWORTH, the Albaillellidae DEFLANDRE and Holoeciscidae CHENG. The Follicucullacea is characterized by a central skeleton forming an open framework without b-rod (transverse bar), and includes the Follicucullidae ORMISTONE and BABCOCK, Pseudoalbaillellidae Holdsworth and Jones and Neoalbaillellidae TAKEMURA and NAKASEKO.

Superfamily ALBAILLELLACEA Cheng

Family Ceratoikiscidae HOLDSWORTH, 1969

Genus Ceratoikiscum DEFLANDRE, 1953

Type species. Ceratoikiscum avimexpectans DEFLANDRE

Ceratoikiscum lyratum ISHIGA n. sp.

Pl. 1, Figs. 4 and 5

Materaial. Ten specimens from siliceous tuff from horizon Ko-41 in the Konomori lenticular body of the Kurosegawa Tectonic Zone, north Kochi City, Japan.

Specific diagnosis. Ceratoikiscum DEFLANDRE, emend. Cheng with seven or more pairs of fine caveal ribs carried by anterior a.t. and b.t. rods. Three junction and surrounding parts of the main rods ornamented by cage-like cavea on the outer side of it.

Measurements.

Length of aa 35-40 um (av. 37)

Length of ap 36-75 (av. 55)

Length of vi 28-50 (av. 35)

Length of di 36-60 (av. 58)

Length of bd 30-43 (av. 38)

Descriptive remarks. This species is characterized by fine caveal ribs prolong over i-rod. The Kounomori specimens of this species have a lined small nods on the outer side of the caveal ribs.

Occurrence. This species occurs from siliceous tuff from horizons Ko-4, 18, 22, 41, 48, 53 in the Kounomori lenticular body of the Kurosegawa Tectonic Zone, north Kochi City, Shikoku, Japan. Ceratoikiscum konomoriense ISHIGA n. sp.

Pl. 2, Figs. 1, 2 and 3

Materaial. Twenty specimens from siliceous tuff from horizon Ko-33 in the Konomori lenticular body of the Kurosegawa Tectonic Zone, north Kochi City, Shikoku, Japan.

Specific diagnosis. Ceratoikiscum DEFLANDRE, emend. CHENG with blade-like b- and i-rods, and three pairs of fine caveal ribs carried by anterior a.t. and b.t. rods.

Measurements.

Length of aa 35-40 um (av. 37)

Length of ap 36-75 (av. 55)

Length of vi $28\!-\!50$ $(av.\,35)$

Length of di $36\!-\!60$ (av. 58)

Length of bd 30-43 (av. 38)

Descriptive remarks. This species is characterized by three pairs of fine, blade-like caveal ribs prolong over i-rod. Central pair of caveal rib, extending from the junction of the a- and b-rods, is longest and thickest among the three pairs of caveal ribs. Small spines extending from the outer side of the b.t. rod.

Occurrence. This species occurs from siliceous tuff from horizons Ko-31, 33, 41, 46 in the Kounomori lenticular body of the Kurosegawa Tectonic Zone, north Kochi City, Shikoku, Japan.

Additional Reference

CHENG, YEN-NIEN, 1986: Taxonomic studies on Upper Paleozoic radiolaria. Natsural Museum of Natural Science, Special Publication 1, 311 pp. Taichung, Taiwan.

図版の説明

Plate 1

Figs. 1-3, 6 Ceratoikiscum sp. A

Fig. 1; DGSU PR 1020, Fig. 2; 1021, Fig. 3; 1022. Figs. 4, 5 *Ceratoikiscum lyratum* n. sp. ISHIGA

Fig. 4; Holotype DGSU PR 1023, Fig. 5; paratype 1024. Figs. 1-5 from Ko-41.

Magnification : Figs. 1, 5; x 240, Figs. 2, 3 and 6; x 210, Fig. 4; x 300. Figs. 4, 5 and 6; stereoscopic pairs.

Plate 2

Figs. 1-3 Ceratoikiscum konomoriense n. sp. ISHIGA
Fig. 1; Holotype DGSU 1025, Fig. 2; paratype DGSU 1026,
Fig. 3; paratype DGSU 1026.
Fig. 4 Parentactinia sp. DGSU 1027.
Figs. 5, 6 Palaeoscenidium spp.
Fig. 5; DGSU 1028, Fig. 6; 1029.
Occurrence : Figs. 1-3 from Ko-33, Figs. 4 and 5 from Ko-22,
Fig. 6 from Ko-25.
Magnification : Figs. 1 and 2; x 20, Fig. 3; x 300, Figs. 4 and

6; x 240, Fig. 5; x 420.

