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A conformal compactification of R3 x S1 is obtained and we discuss removable 
singularities 

S 1. Imtroduction 

In this article a conformal compactification of the space R3 x S1 is obtained, 

(S2) . In S 3 a decay property of the curvature is given, and in S 4 the maximum 

principle is applied and we discuss removable singularities. In S 3, 4 we depend 

heavily on the elaborated works by Uhlenbeck, [2] , [4] ･ The result of this article is 

used to study symmetry breaking at infinity [3] 

S 2. Compactificatiom 

Let B~ be the open kernel of the unit disc B~ in the euclidean space 
R3. Denote by I : (B~ - O) x S1 _> (R3 - B~) x S1 the product of the inversion and 

the identity mapping. Then I(x, t) = (x/lxl2, t) for (x, t) e(B~ - O) x S1, and 

I*(dy~ + dy~ + dy~ + dt2) (dx + dx + dx )llxl + dt 

which is conformally equivalent to the metric dx~ + dx~ + dx~ + I x 14dt2 . Using 

the polar coordinates (r, 6, ip) in R3 we have metrics dr2 + r2(d62 + sin2 6dip2) 

+ r4dt2 and dr2/r2 + de2 + sin2 6dip + r2 dt2. The substitution r = e~' gives the 

coordinates in which the metric is given by dT2 + d62 + sin2 adip2 + e~2*dt2. Thus 

the space (R3 - B~) x S1 is conformally equivalent to the warped product space S2 

x ([O, oo) x fS1), where f(1') = e~' [1]. Denote by 

 and 

, the inner 
products in the space S1 and (1') x Sl c S2 x ([O, oo) x fSl) respectively. Then 

. = e~'

. Therefore 

, tends to zero as T ~> oo 
and hence S2 x (T) x fS1 tends to the 2-sphere, say S~ ･ Thus the space S2 
x ([O, oo) x fS1) U S~ gives a conformal compactification, but the limit set S~ is 

possibly singularities. By Mayer-Vietoris exact sequence of homology groups we 

can see that the compactification is homotopically a 4-sphere 
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S3 ,li_,~~}"IF(6 c, T, t)If = O 

Denote by I If the norm in the space S2 x ([O, oo) x fS1). Consider a dilation 

7c : r -> r/a for a > O, then the metric tensor is a diagonal matrix with entries 

(a~4r4, a~2, a~2 a~2). Let F = Fl '+ F2 be the curvature of a connection A, 

where F1 = ~aoj dt^ dxj and F2 = ~bij dxi ^ dxj. Then by the dilation lz, their 

norms and the volume form are transformed as 

IFll~ -> a61Fll~, IF21~-> a41F21~ and cof~> a~5cof' 

Now we need several lemmas for Coulomb gauge (Hodge gauge). Let llFII*, IIA Il* 

del~ote max I F I , max I A I respectively 

LEMMA I [4] . Let ~ be a bundle ober S2 x S1 with a covqriant derivative D, 

curvature F. There exists yo > O such that tf 11 F Il* 

which D = d + A, d*A = O, and llAll* 

PRooF. We have a modified form of Proposition 9.33 in [2] , then follow the 

proof of Theorem 2.5 in [4] . 

Similarly to Theorem 2. 8 in [4] we have 

LEMMA 2. Let D be a covariant derivative in a bundle over U = {x e (B3 - O) 

x fS1 ; I ~ r ~ 2} , where the diameter of B3 ~ 2. There exists y' > O such that tf 

IIFll * ~ y', then there exists a gauge in which D = d + A, d*A = O. 

PROPOSITION 3. Let D be a connection on B1 in U, self-dua/ with respect to a 

metric and assume ll FD IIL･ 

+ A, A is C" in the half sinzed ball B1/2 and the estimate 

Il A Ilc'(B,/') ~ C Il F llL･(B,). 

PROOF. By Lemma 2 we have a Coulomb gauge and follow the proof of 
Proposition 8.3 in [2] . 

Now we proceed to get our main result in this section. By using the dilation 

for O 

a (IFI I~ + IF21~) ~ a61F1 I~ + a41F21~ ~ (erlF1 i~ + a~ I IF21~)cof 

7- I ~*~7+ 1 

~'a~ I (lF1 l~ + IF2 l~)cof 
7- I ~*~7+ 1 

Then for a sufficiently large ~, 

IFl~ ~ (1lcr7) IFl~cof ~> O as T -> oo, 
7- I ~'~7+ 1 



Conformal compactification 

where we have assumed that' I F 12 
R3xsl 

Thus we have 

THEOREM 4. If IF12 
R3xsl 

and the connection 

connection 

is self-dual. 

is self-dual, then 
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*li_,~~" IF(6 c, T, t)If = O. 

S 4. Maximnal primciple amd removable siEngwlarities 

First we calculate the scalar curvature of a funnel shaped cylinder with metric 

d62 + sin2 6dc2 + dT2 + e ~ 2, dt2. The curvature of the funnel shaped surface with 

metric dT2 + e~2*dt2 is 

{e"e~'(1 + e~')~3/2}-1 (1 + e ')3/2 1 mode 2. 

Then the required scalar curvature is 2 x I + 2 x I = 4 mod e ~ 2*. The space R3 

x S1 is conformally flat and if the curvature is self-dual, then by Weitzenb6ck 

formula, for any y 

IF(e ip, T, t)1 

' f = (o,c,t) f (o,c,t) 
for ~ ~ 1: ~ T~ (see Appendix D in [2]). On a subspace S2 x (T) x fSl we choose an 

exponential gauge and a transverse gauge A* = O, then as in Lemma D in [2] , 

IA(6 ip, T, t)If 

By (*) above if ev~' ~ e', then IA(x, t)If ~ Cry~1 for r = Ixl. For f = e~7, 1 ~~ f ~: r 

and (r~~v ~ r~v ~ r~2, then 

IF(x, t)If ~ Crv-2 

The volume element is cof = r4 sin 6drd6dcdt, then F is bounded in LP for p 

(2 - y) ( > 4) . Then the assumption in Theorem 4.6 in [4] is satisfied. Using the 

construction of the broken Hodge gauge we have a Coulomb gauge, and obtain an 

elliptic system as in the final part of the appendix in [2] 

Now we need to define a ' smooth structure' on the limit set S~･ For y e S~ , 

the operator a/ar is defined by 

alarA(y) = }i_..mo e/erA(y, r, t) and similarly for ale6, alac 

These operators are indetendent of t because by the relation 

, -> O as T 
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→oo，（∂／∂τ）、and∂／∂τ（λ（γ，γ，τ））tends　to　zero　Us1ng　the　method　of　Propos1t1on

83　m　［2］　the　regu1ar1ty　fo11ows　and　the　extent1on　of　the　connect1on　to　the

compact1icat1on1s　obtamed

［1］

［2］

［3］

［4］
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