Mem. Fac. Sci. Shimane Univ., 24, pp. 17-20 Dec. 24, 1990

Conformal Compactification of $R^3 \times S^1$

Dedicated to Professor Akio Hattori on his sixtieth birthday

Hiromichi MATSUNAGA

Department of Mathematics, Shimane University, Matsue, Japan (Received September 5, 1990)

A conformal compactification of $R^3 \times S^1$ is obtained and we discuss removable singularities.

§1. Introduction

In this article a conformal compactification of the space $R^3 \times S^1$ is obtained, (§2). In §3 a decay property of the curvature is given, and in §4 the maximum principle is applied and we discuss removable singularities. In §3, 4 we depend heavily on the elaborated works by Uhlenbeck, [2], [4]. The result of this article is used to study symmetry breaking at infinity [3].

§2. Compactification

Let B_1^3 be the open kernel of the unit disc B_1^3 in the euclidean space R^3 . Denote by $I: (B_1^3 - O) \times S^1 \to (R^3 - B_1^3) \times S^1$ the product of the inversion and the identity mapping. Then $I(x, t) = (x/|x|^2, t)$ for $(x, t) \in (B_1^3 - O) \times S^1$, and

$$I^*(dy_1^2 + dy_2^2 + dy_3^2 + dt^2) = (dx_1^2 + dx_2^2 + dx_3^2)/|x|^4 + dt^2,$$

which is conformally equivalent to the metric $dx_1^2 + dx_2^2 + dx_3^2 + |x|^4 dt^2$. Using the polar coordinates (r, θ, ϕ) in R^3 we have metrics $dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$ $+ r^4 dt^2$, and $dr^2/r^2 + d\theta^2 + \sin^2\theta d\phi + r^2 dt^2$. The substitution $r = e^{-\tau}$ gives the coordinates in which the metric is given by $d\tau^2 + d\theta^2 + \sin^2\theta d\phi^2 + e^{-2\tau} dt^2$. Thus the space $(R^3 - B_1^3) \times S^1$ is conformally equivalent to the warped product space S^2 $\times ([0, \infty) \times {}_fS^1)$, where $f(\tau) = e^{-\tau}$ [1]. Denote by \langle , \rangle and \langle , \rangle_{τ} the inner products in the space S^1 and $(\tau) \times S^1 \subset S^2 \times ([0, \infty) \times {}_fS^1)$ respectively. Then $\langle \partial/\partial t, \partial/\partial t \rangle_{\tau} = e^{-\tau} \langle \partial/\partial t, \partial/\partial t \rangle$. Therefore $\langle \partial/\partial t, \partial/\partial t \rangle_{\tau}$ tends to zero as $\tau \to \infty$ and hence $S^2 \times (\tau) \times {}_fS^1$ tends to the 2-sphere, say S^2_{∞} . Thus the space S^2 $\times ([0, \infty) \times {}_fS^1) \cup S^2_{\infty}$ gives a conformal compactification, but the limit set S^2_{∞} is possibly singularities. By Mayer-Vietoris exact sequence of homology groups we can see that the compactification is homotopically a 4-sphere.

Hiromichi MATSUNAGA

§3. $\lim_{\tau\to\infty} |F(\theta, \phi, \tau, t)|_f = 0$

Denote by $| |_f$ the norm in the space $S^2 \times ([0, \infty) \times {}_f S^1)$. Consider a dilation $\pi: r \to r/\sigma$ for $\sigma > 0$, then the metric tensor is a diagonal matrix with entries $(\sigma^{-4}r^4, \sigma^{-2}, \sigma^{-2}, \sigma^{-2})$. Let $F = F_1 + F_2$ be the curvature of a connection A, where $F_1 = \sum a_{0j} dt_{\wedge} dx_j$ and $F_2 = \sum b_{ij} dx_{i\wedge} dx_j$. Then by the dilation π , their norms and the volume form are transformed as

$$|F_1|_f^2 \longrightarrow \sigma^6 |F_1|_f^2, |F_2|_f^2 \longrightarrow \sigma^4 |F_2|_f^2 \text{ and } \omega_f \longrightarrow \sigma^{-5} \omega_f.$$

Now we need several lemmas for Coulomb gauge (Hodge gauge). Let $||F||_{\infty}$, $||A||_{\infty}$ denote max |F|, max |A| respectively.

LEMMA 1 [4]. Let η be a bundle ober $S^2 \times S^1$ with a covariant derivative D, curvature F. There exists $\gamma_0 > 0$ such that if $||F||_{\infty} < \gamma_0$ then there exists a gauge in which D = d + A, $d^*A = 0$, and $||A||_{\infty} < K ||F||_{\infty}$.

PROOF. We have a modified form of Proposition 9.33 in [2], then follow the proof of Theorem 2.5 in [4].

Similarly to Theorem 2.8 in [4] we have

LEMMA 2. Let D be a covariant derivative in a bundle over $U = \{x \in (B^3 - 0) \times {}_{f}S^1; 1 \leq r \leq 2\}$, where the diameter of $B^3 \geq 2$. There exists $\gamma' > 0$ such that if $||F||_{\infty} \leq \gamma'$, then there exists a gauge in which D = d + A, $d^*A = 0$.

PROPOSITION 3. Let D be a connection on B_1 in U, self-dual with respect to a metric and assume $||F_D||_{L^2} < \varepsilon$. Then there exists an L_2^2 -gauge such that D = d + A, A is C^{∞} in the half sinzed ball $B_{1/2}$ and the estimate

$$\|A\|_{C^{k}(B_{1/2})} \leq C \|F\|_{L^{2}(B_{1})}.$$

PROOF. By Lemma 2 we have a Coulomb gauge and follow the proof of Proposition 8.3 in [2].

Now we proceed to get our main result in this section. By using the dilation for $0 < \sigma < 1$ we have

$$\begin{split} \sigma^{6}(|F_{1}|_{f}^{2}+|F_{2}|_{f}^{2}) &\leq \sigma^{6}|F_{1}|_{f}^{2}+\sigma^{4}|F_{2}|_{f}^{2} \leq \int_{\overline{\tau}-1 \leq \tau \leq \overline{\tau}+1} (\sigma|F_{1}|_{f}^{2}+\sigma^{-1}|F_{2}|_{f}^{2})\omega_{f} \\ &\leq \sigma^{-1}\int_{\overline{\tau}-1 \leq \tau \leq \overline{\tau}+1} (|F_{1}|_{f}^{2}+|F_{2}|_{f}^{2})\omega_{f}. \end{split}$$

Then for a sufficiently large $\bar{\tau}$,

$$|F|_f^2 \leq (1/\sigma^7) \int_{\overline{\tau} - 1 \leq \tau \leq \overline{\tau} + 1} |F|_f^2 \omega_f \longrightarrow 0 \text{ as } \tau \longrightarrow \infty,$$

where we have assumed that $\int_{R^3 \times S^1} |F|^2 < \infty$ and the connection is self-dual.

Thus we have

THEOREM 4. If
$$\int_{\mathbb{R}^3 \times S^1} |F|^2 < \infty$$
 and the connection is self-dual, then

$$\lim_{\tau\to\infty}|F(\theta,\,\phi,\,\tau,\,t)|_f=0.$$

§4. Maximal principle and removable singularities

First we calculate the scalar curvature of a funnel shaped cylinder with metric $d\theta^2 + \sin^2 \theta d\phi^2 + d\tau^2 + e^{-2\tau} dt^2$. The curvature of the funnel shaped surface with metric $d\tau^2 + e^{-2\tau} dt^2$ is

$$\{e^{\tau} \cdot e^{-\tau} (1 + e^{-\tau})^{-3/2}\}^{-1} = (1 + e^{-\tau})^{3/2} \equiv 1 \mod e^{-2\tau}.$$

Then the required scalar curvature is $2 \times 1 + 2 \times 1 = 4 \mod e^{-2\tau}$. The space $R^3 \times S^1$ is conformally flat and if the curvature is self-dual, then by Weitzenböck formula, for any $\gamma < 2/\sqrt{3}$

$$|F(\theta, \phi, \tau, t)|_{f} \leq \max_{(\theta, \phi, t)} |F(\theta, \phi, \bar{\tau}, t)|_{f} e^{\gamma(\bar{\tau} - \tau)} + \max_{(\theta, \phi, t)} |F(\theta, \phi, \tau_{n}, t)|_{f} e^{\gamma(\tau - \tau_{n})}$$

for $\bar{\tau} \leq \tau \leq \tau_n$ (see Appendix D in [2]). On a subspace $S^2 \times (\tau) \times {}_f S^1$ we choose an exponential gauge and a transverse gauge $A_{\tau} = 0$, then as in Lemma D in [2],

$$|A(\theta, \phi, \tau, t)|_{t} \leq C e^{\gamma(\overline{\tau} - \tau)}$$
 on $\tau \geq \overline{\tau}$ for a sufficiently large $\overline{\tau}$ (*).

By (*) above if $e^{\gamma \overline{\tau}} \leq e^{\tau}$, then $|A(x, t)|_f \leq Cr^{\gamma - 1}$ for r = |x|. For $\overline{r} = e^{-\overline{\tau}}$, $1 \geq \overline{r} \geq r$ and $(\overline{r})^{-\gamma} \leq r^{-\gamma} \leq r^{-2}$, then

$$|F(x, t)|_f \leq Cr^{\gamma - 2}.$$

The volume element is $\omega_f = r^4 \sin \theta dr d\theta d\phi dt$, then F is bounded in L^p for $p < 5/(2-\gamma)(>4)$. Then the assumption in Theorem 4.6 in [4] is satisfied. Using the construction of the broken Hodge gauge we have a Coulomb gauge, and obtain an elliptic system as in the final part of the appendix in [2].

Now we need to define a 'smooth structure' on the limit set S_{∞}^2 . For $y \in S_{\infty}^2$, the operator $\partial/\partial r$ is defined by

$$\partial/\partial r A(y) = \lim_{r \to 0} \partial/\partial r A(y, r, t)$$
 and similarly for $\partial/\partial \theta$, $\partial/\partial \phi$.

These operators are indetendent of t because by the relation $\langle \partial/\partial t, \partial/\partial t \rangle_{\tau} \to 0$ as τ

Hiromichi MATSUNAGA

 $\rightarrow \infty$, $(\partial/\partial t)_{\tau}$ and $\partial/\partial t(A(y, r, t))$ tends to zero. Using the method of Proposition 8.3 in [2] the regularity follows and the extention of the connection to the compactification is obtained.

References

- [1] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math Soc. 145 (1969), 1–49.
- [2] D. S. Freed and K. K. Uhlenbeck, Instantons and four manifolds, Springer, 1984.
- [3] H. Matsunaga, Note on periodic instantons, in preparation.
- [4] K. K. Uhlenbeck, Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11–29.