Conformal Compactification of $\boldsymbol{R}^{\mathbf{3}} \times \boldsymbol{S}^{1}$

Dedicated to Professor Akio Hattori on his sixtieth birthday

Hiromichi Matsunaga
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 5, 1990)

Abstract

A conformal compactification of $R^{3} \times S^{1}$ is obtained and we discuss removable singularities.

§1. Introduction

In this article a conformal compactification of the space $R^{3} \times S^{1}$ is obtained, (§2). In $\S 3$ a decay property of the curvature is given, and in $\S 4$ the maximum principle is applied and we discuss removable singularities. In $\S 3,4$ we depend heavily on the elaborated works by Uhlenbeck, [2], [4]. The result of this article is used to study symmetry breaking at infinity [3].

§2. Compactification

Let B_{1}^{3} be the open kernel of the unit disc B_{1}^{3} in the euclidean space R^{3}. Denote by $I:\left(B_{1}^{3}-O\right) \times S^{1} \rightarrow\left(R^{3}-B_{1}^{3}\right) \times S^{1}$ the product of the inversion and the identity mapping. Then $I(x, t)=\left(x /|x|^{2}, t\right)$ for $(x, t) \in\left(B_{1}^{3}-O\right) \times S^{1}$, and

$$
I^{*}\left(d y_{1}^{2}+d y_{2}^{2}+d y_{3}^{2}+d t^{2}\right)=\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right) /|x|^{4}+d t^{2}
$$

which is conformally equivalent to the metric $d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+|x|^{4} d t^{2}$. Using the polar coordinates (r, θ, ϕ) in R^{3} we have metrics $d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$ $+r^{4} d t^{2}$, and $d r^{2} / r^{2}+d \theta^{2}+\sin ^{2} \theta d \phi+r^{2} d t^{2}$. The substitution $r=e^{-\tau}$ gives the coordinates in which the metric is given by $d \tau^{2}+d \theta^{2}+\sin ^{2} \theta d \phi^{2}+e^{-2 \tau} d t^{2}$. Thus the space $\left(R^{3}-B_{1}^{3}\right) \times S^{1}$ is conformally equivalent to the warped product space S^{2} $\times\left([0, \infty) \times{ }_{f} S^{1}\right)$, where $f(\tau)=e^{-\tau}$ [1]. Denote by \langle,$\rangle and \langle,\rangle_{\tau}$ the inner products in the space S^{1} and $(\tau) \times S^{1} \subset S^{2} \times\left([0, \infty) \times{ }_{f} S^{1}\right)$ respectively. Then $\langle\partial / \partial t, \partial / \partial t\rangle_{\tau}=e^{-\tau}\langle\partial / \partial t, \partial / \partial t\rangle$. Therefore $\langle\partial / \partial t, \partial / \partial t\rangle_{\tau}$ tends to zero as $\tau \rightarrow \infty$ and hence $S^{2} \times(\tau) \times{ }_{f} S^{1}$ tends to the 2 -sphere, say S_{∞}^{2}. Thus the space S^{2} $\times\left([0, \infty) \times{ }_{f} S^{1}\right) \cup S_{\infty}^{2}$ gives a conformal compactification, but the limit set S_{∞}^{2} is possibly singularities. By Mayer-Vietoris exact sequence of homology groups we can see that the compactification is homotopically a 4 -sphere.
§3. $\lim _{\tau \rightarrow \infty}|\mathcal{F}(\theta, \phi, \tau, t)|_{f}=0$
Denote by $|\quad|_{f}$ the norm in the space $S^{2} \times\left([0, \infty) \times{ }_{f} S^{1}\right)$. Consider a dilation $\pi: r \rightarrow r / \sigma$ for $\sigma>0$, then the metric tensor is a diagonal matrix with entries $\left(\sigma^{-4} r^{4}, \sigma^{-2}, \sigma^{-2}, \sigma^{-2}\right)$. Let $F=F_{1}+F_{2}$ be the curvature of a connection A, where $F_{1}=\sum a_{0 j} d t_{\wedge} d x_{j}$ and $F_{2}=\sum b_{i j} d x_{i \wedge} d x_{j}$. Then by the dilation π, their norms and the volume form are transformed as

$$
\left|F_{1}\right|_{f}^{2} \longrightarrow \sigma^{6}\left|F_{1}\right|_{f}^{2},\left|F_{2}\right|_{f}^{2} \longrightarrow \sigma^{4}\left|F_{2}\right|_{f}^{2} \quad \text { and } \quad \omega_{f} \longrightarrow \sigma^{-5} \omega_{f} .
$$

Now we need several lemmas for Coulomb gauge (Hodge gauge). Let $\|F\|_{\infty},\|A\|_{\infty}$ denote $\max |F|, \max |A|$ respectively.

Lemma 1 [4]. Let η be a bundle ober $S^{2} \times S^{1}$ with a covariant derivative D, curvature F. There exists $\gamma_{0}>0$ such that if $\|F\|_{\infty}<\gamma_{0}$ then there exists a gauge in which $D=d+A, d^{*} A=0$, and $\|A\|_{\infty}<K\|F\|_{\infty}$.

Proof. We have a modified form of Proposition 9.33 in [2], then follow the proof of Theorem 2.5 in [4].

Similarly to Theorem 2.8 in [4] we have
Lemma 2. Let D be a covariant derivative in a bundle over $U=\left\{x \in\left(B^{3}-0\right)\right.$ $\left.\times{ }_{f} S^{1} ; 1 \leqq r \leqq 2\right\}$, where the diameter of $B^{3} \geqq 2$. There exists $\gamma^{\prime}>0$ such that if $\|F\|_{\infty} \leqq \gamma^{\prime}$, then there exists a gauge in which $D=d+A, d^{*} A=0$.

Proposition 3. Let D be a connection on B_{1} in U, self-dual with respect to a metric and assume $\left\|F_{D}\right\|_{L^{2}}<\varepsilon$. Then there exists an L_{2}^{2}-gauge such that $D=d$ $+A, A$ is C^{∞} in the half sinzed ball $B_{1 / 2}$ and the estimate

$$
\|A\|_{C^{k}\left(B_{1 / 2}\right)} \leqq C\|F\|_{L^{2}\left(B_{1}\right)} .
$$

Proof. By Lemma 2 we have a Coulomb gauge and follow the proof of Proposition 8.3 in [2].

Now we proceed to get our main result in this section. By using the dilation for $0<\sigma<1$ we have

$$
\begin{aligned}
& \sigma^{6}\left(\left|F_{1}\right|_{f}^{2}+\left|F_{2}\right|_{f}^{2}\right) \leqq \sigma^{6}\left|F_{1}\right|_{f}^{2}+\sigma^{4}\left|F_{2}\right|_{f}^{2} \leqq \int_{\bar{\tau}-1 \leqq \tau \leqq \tau+1}\left(\sigma\left|F_{1}\right|_{f}^{2}+\sigma^{-1}\left|F_{2}\right|_{f}^{2}\right) \omega_{f} \\
& \leqq \sigma^{-1} \int_{\bar{\tau}-1 \leqq \tau \leqq \bar{\tau}+1}\left(\left|F_{1}\right|_{f}^{2}+\left|F_{2}\right|_{f}^{2}\right) \omega_{f} .
\end{aligned}
$$

Then for a sufficiently large $\bar{\tau}$,

$$
|F|_{f}^{2} \leqq\left(1 / \sigma^{7}\right) \int_{\bar{\tau}-1 \leqq \tau \leqq \bar{\tau}+1}|F|_{f}^{2} \omega_{f} \longrightarrow 0 \text { as } \tau \longrightarrow \infty,
$$

where we have assumed that $\int_{R^{3} \times S^{1}}|F|^{2}<\infty$ and the connection is self-dual.
Thus we have
Theorem 4. If $\int_{R^{3} \times S^{1}}|F|^{2}<\infty$ and the connection is self-dual, then

$$
\lim _{\tau \rightarrow \infty}|F(\theta, \phi, \tau, t)|_{f}=0 .
$$

§4. Maximal principle and removable singularities

First we calculate the scalar curvature of a funnel shaped cylinder with metric $d \theta^{2}+\sin ^{2} \theta d \phi^{2}+d \tau^{2}+e^{-2 \tau} d t^{2}$. The curvature of the funnel shaped surface with metric $d \tau^{2}+e^{-2 \tau} d t^{2}$ is

$$
\left\{e^{\tau} \cdot e^{-\tau}\left(1+e^{-\tau}\right)^{-3 / 2}\right\}^{-1}=\left(1+e^{-\tau}\right)^{3 / 2} \equiv 1 \bmod e^{-2 \tau}
$$

Then the required scalar curvature is $2 \times 1+2 \times 1=4 \bmod e^{-2 \tau}$. The space R^{3} $\times S^{1}$ is conformally flat and if the curvature is self-dual, then by Weitzenböck formula, for any $\gamma<2 / \sqrt{3}$

$$
|F(\theta, \phi, \tau, t)|_{f} \leqq \max _{(\theta, \phi, t)}|F(\theta, \phi, \bar{\tau}, t)|_{f} e^{\gamma(\bar{\tau}-\tau)}+\max _{(\theta, \phi, t)}\left|F\left(\theta, \phi, \tau_{n}, t\right)\right|_{f} e^{\gamma\left(\tau-\tau_{n}\right)}
$$

for $\bar{\tau} \leqq \tau \leqq \tau_{n}$ (see Appendix D in [2]). On a subspace $S^{2} \times(\tau) \times{ }_{f} S^{1}$ we choose an exponential gauge and a transverse gauge $A_{\tau}=0$, then as in Lemma D in [2],

$$
\begin{equation*}
|A(\theta, \phi, \tau, t)|_{f} \leqq C e^{\gamma(\bar{\tau}-\tau)} \text { on } \tau \geqq \bar{\tau} \quad \text { for a sufficiently large } \bar{\tau} \tag{*}
\end{equation*}
$$

By (*) above if $e^{\gamma \bar{\tau}} \leqq e^{\tau}$, then $|A(x, t)|_{f} \leqq C r^{\gamma-1}$ for $r=|x|$. For $\bar{r}=e^{-\bar{\tau}}, 1 \geqq \bar{r} \geqq r$ and $(\vec{r})^{-\gamma} \leqq r^{-\gamma} \leqq r^{-2}$, then

$$
|F(x, t)|_{f} \leqq C r^{\gamma-2}
$$

The volume element is $\omega_{f}=r^{4} \sin \theta d r d \theta d \phi d t$, then F is bounded in L^{p} for $p<5 /$ $(2-\gamma)(>4)$. Then the assumption in Theorem 4.6 in [4] is satisfied. Using the construction of the broken Hodge gauge we have a Coulomb gauge, and obtain an elliptic system as in the final part of the appendix in [2].

Now we need to define a 'smooth structure' on the limit set S_{∞}^{2}. For $y \in S_{\infty}^{2}$, the operator $\partial / \partial r$ is defined by

$$
\partial / \partial r A(y)=\lim _{r \rightarrow 0} \partial / \partial r A(y, r, t) \text { and similarly for } \partial / \partial \theta, \partial / \partial \phi
$$

These operators are indetendent of t because by the relation $\langle\partial / \partial t, \partial / \partial t\rangle_{\tau} \rightarrow 0$ as τ
$\rightarrow \infty,(\partial / \partial t)_{\tau}$ and $\partial / \partial t(A(y, r, t))$ tends to zero. Using the method of Proposition 8.3 in [2] the regularity follows and the extention of the connection to the compactification is obtained.

References

[1] R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math Soc. 145 (1969), 1-49.
[2] D. S. Freed and K. K. Uhlenbeck, Instantons and four manifolds, Springer, 1984.
[3] H. Matsunaga, Note on periodic instantons, in preparation.
[4] K. K. Uhlenbeck, Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11-29.

