Mem. Fac. Sci. Shimane Univ., 23, pp. 1–9 Dec. 23, 1989

Nonlinear Poisson Equations on an Infinite Network

Maretsugu YAMASAKI

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1989)

On a locally finite infinite network, the existence of a solution of a nonlinear Poisson equation is discussed with the aid of a flow problem on the network.

§1. Introduction

Let $N = \{X, Y, K, r\}$ be an infinite network which is locally finite and has no self-loop. Denote by L(X) the set of all real functions on X and by $L_0(X)$ the set of all $u \in L(X)$ with finite support. Let p and q be positive numbers such that 1 and <math>1/p + 1/q = 1. Let $\varphi_p(t)$ be the real function on R defined by

$$\varphi_{p}(t) = |t|^{p-1} \operatorname{sign}(t),$$

where sign(t) = 1 if $t \ge 0$ and sign(t) = -1 if t < 0.

For $u \in L(X)$, its *p*-Laplacian $\Delta_p u \in L(X)$ is defined by

 $\Delta_p u(x) = \sum_{y \in Y} K(x, y) \varphi_p(du(y)),$

where du is the discrete derivative of u, i.e.,

$$du(y) = -r(y)^{-1} \sum_{x \in X} K(x, y)u(x).$$

Given a function $\mu \in L(X)$, we study the problem of finding a solution of the following nonlinear Poisson equation:

(1.1)
$$\Delta_{\mathbf{p}} u(x) = \mu(x) \quad \text{on } X.$$

Since $\varphi_2(t) = t$, $\Delta_2 u$ is the usual discrete Laplacian of u and Δ_2 is a linear operator on L(X). Note that $\Delta_p u$ is nonlinear in u unless p = 2.

This problem has been investigated by many mathematicians in case p = 2. For instance, R. J. Duffin [1] studied this problem on the lattice domain of the 3dimensional Euclid space by using Fourier transforms. T. Kayano and M. Yamasaki [3] studied this problem on a locally finite infinite network by using a flow problem as in [2].

In the present paper, we shall prove the existence of a Dirichlet potential which satisfies the nonlinear Poisson equation (1.1) by using a flow problem as in [3].

For notation and terminology, we mainly follow [3] and [5].

Maretsugu YAMASAKI

§2. Preliminaries

To state our problem more precisely, we recall some fundamental notion. For $w \in L(Y)$, the energy $H_p(w)$ of w of order p is defined by

$$H_p(w) = \sum_{y \in Y} r(y) |w(y)|^p.$$

For w, $w' \in L(Y)$, we define the mutual energy $\langle w, w' \rangle$ of w and w' by

$$\langle w, w' \rangle = \sum_{y \in Y} r(y) w(y) w'(y)$$

if the sum is well-defined. Denote by $L_p(Y; r)$ the set of all $w \in L(Y)$ such that $H_p(w) < \infty$. Clearly $L_0(Y) \subset L_p(Y; r)$. The mutual energy is well-defined for the pair of elements in $L_p(Y; r)$ and $L_q(Y; r)$.

For $u \in L(X)$, its Dirichlet integral $D_p(u)$ of order p is defined by

$$D_p(u) = H_p(du) = \sum_{y \in Y} r(y) |du(y)|^p.$$

Denote by $D_0^{(p)}(N)$ the set of all Dirichlet functions u on X, i.e., $D_p(u) < \infty$ and by $D_0^{(p)}(N)$ the set of all Dirichlet potentials of order p. Namely, $D_0^{(p)}(N)$ is the closure of $L_0(X)$ in $D^{(p)}(N)$ with respect to the norm:

$$||u||_{p} = [D_{p}(u) + |u(x_{0})|^{p}]^{1/p},$$

where x_0 is a fixed node.

We proved in [3; Theorem 4.3]

PROPOSITION 2.1. If $\mu \in L_0(X)$ and $\sum_{x \in X} \mu(x) = 0$, then there exists $u \in D^{(2)}(N)$ such that $\Delta_2 u(x) = \mu(x)$ on X.

We say that N is of parabolic type of order p if the value of the following extremum problem vanishes for some nonempty finite subset A of X:

(2.1)
$$d_p(A, \infty) = \inf\{D_p(u): u \in L_0(X) \text{ and } u = 1 \text{ on } A\}.$$

We also say that N is of hyperbolic type of order p if it is not of parabolic type of order p.

For a nonempty finite subset A of X, denote by $F(A, \infty)$ the set of all flows $w \in L(Y)$ from A to the ideal boundary ∞ , i.e.,

(2.2)
$$\sum_{y \in Y} K(x, y)w(y) = 0 \quad \text{on } X - A.$$

The strength I(w) of $w \in F(A, \infty)$ is defined by

$$I(w) = -\sum_{x \in A} \sum_{y \in Y} K(x, y) w(y).$$

We recall some criteria for the parabolicity of N (cf. [4]):

PROPOSITION 2.2. An infinite network N is of hyperbolic type of order p if and only if any one of the following conditions is fulfilled:

(a) $1 \notin D_0^{(p)}(N);$

(b) $D^{(p)}(N) \neq D_0^{(p)}(N);$

(c) For every nonempty finite subset A of X, there exists $w \in F(A, \infty)$ such that $H_a(w) < \infty$ and I(w) = 1.

In case N is of hyperbolic type of order p, note that

 $d_p(\{a\}, \infty) = \inf\{D_p(u); u \in D_0^{(p)}(N) \text{ and } u(a) = 1\} > 0.$

With the aid of the optimal solution of this problem, we can prove that there exists a function $g_{\alpha}^{(p)} \in L(X)$ with the following properties:

(2.3)
$$g_a^{(p)} \in \mathcal{D}_0^{(p)}(N) \text{ and } \Delta_p g_a^{(p)}(x) = -\varepsilon_a(x) \text{ on } X.$$

For $\mu \in L_0(X)$, let us put

$$G^{(p)}\mu(x) = -\sum_{x \in X} g^{(p)}_a(x)\mu(x).$$

Note that $g_a^{(2)}$ is the Green function of N with pole at a and that $G^{(2)}\mu$ is a solution of the Poisson equation: $\Delta_2 u(x) = \mu(x)$, since Δ_2 is a linear operator. However we can not expect that $G^{(p)}\mu$ is a solution of (1.1) unless p = 2.

Denote by $H^{(p)}(N)$ the set of all *p*-harmonic functions *u* on *X*, i.e., $\Delta_p u(x) = 0$ on *X* and by $HD^{(p)}(N)$ the set of all Dirichlet finite *p*-harmonic functions on *X*, i.e.,

$$H\mathcal{D}^{(p)}(N) = \mathcal{D}^{(p)}(N) \cap H^{(p)}(N).$$

For each $u \in D^{(p)}(N)$, we have

$$(2.4) D_p(u) = \langle \varphi_p(du), du \rangle = H_q(\varphi_p(du)),$$

since $|\varphi_p(t)|^q = |t|^{q(p-1)} = |t|^p$.

For $u \in L(X)$ and $f \in L_0(X)$, we obtain the following equality by interchanging the order of summation:

(2.5)
$$\langle \varphi_p(du), df \rangle = -\sum_{x \in X} [\Delta_p u(x)] f(x).$$

We have

LEMMA 2.1. Let $u \in D^{(p)}(N)$ and $v \in D^{(p)}_0(N)$. If $\{f_n\}$ is a sequence in $L_0(X)$ such that $||v - f_n||_p \to 0$ as $n \to \infty$, then

$$\langle \varphi_n(du), dv \rangle = \lim_{n \to \infty} \langle \varphi_n(du), df_n \rangle.$$

PROOF. By Hölder's inequality and (2.4),

$$\begin{aligned} |\langle \varphi_p(du), dv - df_n \rangle| &\leq H_q(\varphi_p(du))^{1/q} H_p(dv - df_n)^{1/p} \\ &\leq D_p(u)^{1/q} D_p(v - f_n)^{1/p} \\ &\leq D_n(u)^{1/q} \|v - f_n\|_p \longrightarrow 0 \end{aligned}$$

as $n \to \infty$.

Maretsugu YAMASAKI

COROLLARY. Let $h \in HD^{(p)}(N)$. Then $\langle \varphi_p(dh), dv \rangle = 0$ for every $v \in D_0^{(p)}(N)$.

We need the following discrete analogue of Royden's decomposition of a Dirichlet function (cf. [5]):

PROPOSITION 2.3. Assume that N is of hyperbolic type of order p. Then every $u \in \mathbf{D}^{(p)}(N)$ can be decomposed uniquely in the form: u = v + h, where $v \in \mathbf{D}^{(p)}_0(N)$ and $h \in H\mathbf{D}^{(p)}(N)$.

We prepare

LEMMA 2.2. Assume that N is of hyperbolic type of order p and let $u \in D^{(p)}(N)$. If $\langle \varphi_p(dh), du \rangle = 0$ for every $h \in HD^{(p)}(N)$, then there exists a constant c such that $u - c \in D_0^{(p)}(N)$.

PROOF. By Proposition 2.3, u can be decomposed in the form: u = v + f with $v \in D_0^{(p)}(N)$ and $f \in HD^{(p)}(N)$. It follows from the corollary of Lemma 2.1 and our assumption that

$$D_p(f) = \langle \varphi_p(df), df \rangle = \langle \varphi_p(df), du - dv \rangle = 0,$$

so that f(x) = c on X. Therefore $u - c = v \in D_0^{(p)}(N)$.

We have by [5; Lemma 2.1]

LEMMA 2.3. $\langle \varphi_p(w_1) - \varphi_p(w_2), w_1 - w_2 \rangle \ge 0$ for every $w_1, w_2 \in L_p(Y; r)$. The equality holds only if $w_1 = w_2$.

§3. Main results

For $\mu \in L(X)$, denote by $PSD^{(p)}(\mu)$ the set of all Dirichlet finite solutions of the nonlinear Poisson equation (1.1) of order p, i.e.,

$$\boldsymbol{PSD}^{(p)}(\mu) = \{ u \in \boldsymbol{D}^{(p)}(N); \Delta_p u = \mu \},\$$

and put

$$\mathbb{P}SD_{0}^{(p)}(\mu) = \mathbb{P}SD^{(p)}(\mu) \cap D_{0}^{(p)}(N).$$

Our problem is to study when $PSD_0^{(p)}(\mu)$ or $PSD_0^{(p)}(\mu)$ is nonempty.

For $w \in L(Y)$, define its nodal current excess $\partial w \in L(X)$ by

$$\partial w(x) = \sum_{y \in Y} K(x, y) w(y).$$

Denote by $KL_q(N)$ the image of $L_q(Y; r)$ under the mapping ∂ (i.e., the linear transformation associated with the incidence matrix K):

$$KL_{a}(N) = \{ \partial w; w \in L_{a}(Y; r) \}.$$

For $w \in L(Y)$ and $f \in L_0(X)$, we have the following fundamental relation by interchanging the order of summation:

4

Nonlinear Poisson Equation

(3.1)
$$\langle w, df \rangle = -\sum_{x \in X} f(x) [\partial w(x)].$$

Let us consider the following flow problem on N:

 $(FP(\mu))_q$ Given $\mu \in L(X)$, find a function (called a flow) $w \in L(Y)$ which satisfies $w \in L_q(Y; r)$ and $\partial w = -\mu$, i.e.,

$$\sum_{y \in Y} K(x, y)w(y) = -\mu(x) \quad \text{on } X.$$

Clearly, $(FP(\mu))_q$ has a slution if and only if $-\mu \in KL_q(N)$.

We say that $\omega \in L(Y)$ is a cycle if $\partial \omega = 0$, i.e.,

(3.2)
$$\sum_{y \in Y} K(x, y)\omega(y) = 0 \text{ on } X.$$

Denote by $C_q(Y)$ (resp. $C_0(Y)$) the set of all cycles ω such that $\omega \in L_q(Y; r)$ (resp. $L_0(Y)$).

We shall prove

THEOREM 3.1. $\{ \Delta_p u; u \in \mathbb{D}^{(p)}(N) \} \subset KL_q(N).$

PROOF. Let $u \in D^{(p)}(N)$ and put $w = \varphi_p(du)$. Since $H_q(w) = D_p(u) < \infty$ by (2.4), $w \in L_q(Y; r)$. By definition,

$$\partial w(x) = \sum_{y \in Y} K(x, y) \varphi_p(du(y)) = \Delta_p u(x).$$

Hence $\Delta_p u \in KL_q(N)$.

THEOREM 3.2. If problem $(FP(\mu))_q$ has a solution, then there exists a Dirichlet potential u of order p which satisfies the nonlinear Poisson equation (1.1), i.e., $PSD_0^{(p)}(\mu) \neq \emptyset$.

PROOF. Consider the following extremum problem:

(3.3) Minimize $H_q(w)$ subject to

 $w \in L_q(Y; r)$ and $\sum_{y \in Y} K(x, y)w(y) = -\mu(x)$ on X.

Let α be the value of this problem and $\{w_n\}$ be a sequence of feasible solutions such that $H_q(w_n) \rightarrow \alpha$ as $n \rightarrow \infty$. Recall the following Clarkson's inequality (cf. [5]):

(1) $H_q(w + w') + H_q(w - w') \le 2^{q-1} [H_q(w) + H_q(w')]$ in case $q \ge 2$;

(2) $[H_q(w+w')]^{p-1} + [H_q(w-w')]^{p-1} \le 2[H_q(w) + H_q(w')]^{p-1}$ in case $1 < q \le 2$. It follows from Clarkson's inequality that $H_q(w_n - w_m) \to 0$ as $n, m \to \infty$ (cf. the proof of Theorem 2.1 in [5]). Thus there exists $w^* \in L_q(Y; r)$ such that $H_q(w_n - w^*) \to 0$ as $n \to \infty$. Since N is locally finite, we see that w^* is an optimal solution of problem (3.3). Let $\omega \in C_q(Y)$. For any $t \in R$, $w^* + t\omega$ is a feasible solution of problem (3.3), so that $H_q(w^*) \le H_q(w^* + t\omega)$. Therefore the derivative of $H_q(w^* + t\omega)$ with respect to t vanishes at t = 0. It follows that

(3.4)
$$\sum_{y \in Y} r(y)\varphi_q(w^*(y))\omega(y) = 0$$

for every $\omega \in C_q(Y)$. Let $x_0 \in X$ be fixed. For any $x \neq x_0$, let P_1 and P_2 be paths

from x_0 to x and p_1 and p_2 be path indices of P_1 and P_2 respectively. Then $\omega = p_1 - p_2 \in C_0(Y) \subset C_q(Y)$, and hence

$$\sum_{y \in Y} r(y)p_1(y)\varphi_q(w^*(y)) = \sum_{y \in Y} r(y)p_2(y)\varphi_q(w^*(y))$$

by (3.4). Namely, the above sum does not depend on the choice of paths from x_0 to x. Thus we can define $u^* \in L(X)$ by

$$u^{*}(x_{0}) = 0$$
 and $u^{*}(x) = \sum_{y \in Y} r(y)p(y)\phi_{q}(w^{*}(y))$ for $x \neq x_{0}$,

where p is the path index of a path P from x_0 to x. Now we show the equality:

(3.5)
$$du^*(y) = -\varphi_q(w^*(y))$$
 on Y.

Let $y' \in Y$ with $e(y') = \{a, b\}$ and let P' be a path from x_0 to b such that

$$C_X(P') = \{x_0, x_1, \dots, x_n\}$$
 with $x_{n-1} = a$ and $x_n = b$
 $C_Y(P') = \{y_1, \dots, y_n\}$ with $y_n = y'$.

Furthermore, let P'' be the subpath of P' from x_0 to x_{n-1} and let p' and p'' be the path indices of P' and P'' respectively. Then

$$u^{*}(b) = \sum_{y \in Y} r(y)p'(y)\varphi_{q}(w^{*}(y))$$

= $\sum_{y \in Y} r(y)p''(y)\varphi_{q}(w^{*}(y)) + r(y')p'(y')\varphi_{q}(w^{*}(y'))$
= $u^{*}(a) + r(y')[-K(a, y')]\varphi_{a}(w^{*}(y')),$

so that

$$du^*(y') = -r(y')^{-1} [K(a, y')u^*(a) + K(b, y')u^*(b)]$$

= -\varphi_a(w^*(y')),

since K(a, y') + K(b, y') = 0. This shows (3.5). Noting that the inverse function of $\varphi_q(t)$ is equal to $\varphi_p(t)$, we have by (3.5)

(3.6)
$$w^*(y) = \varphi_p(-du^*(y)) = -\varphi_p(du^*(y)).$$

It follows from (3.6) that

$$\begin{aligned} \Delta_p u^*(x) &= \sum_{y \in Y} K(x, y) \varphi_p(du^*(y)) \\ &= -\sum_{y \in Y} K(x, y) w^*(y) = \mu(x), \\ D_n(u^*) &= H_n(du^*) = H_n(\varphi_a(w^*)) = H_a(w^*) < \infty. \end{aligned}$$

Namely $u^* \in \mathbb{PSD}^{(p)}(\mu)$. By (3.4) and (3.5), we have

$$(3.7) \qquad \langle du^*, \omega \rangle = 0$$

for every $\omega \in C_q(Y)$. Now we show that there exists a constant c such that $u^* - c \in D_0^{(p)}(N)$. Let $h \in HD^{(p)}(N)$ and $\omega_h(y) = \varphi_p(dh(y))$. Then $H_q(\omega_h) = D_p(h) < \infty$ by (2.4) and

$$\sum_{y \in Y} K(x, y)\omega_h(y) = \sum_{y \in Y} K(x, y)\varphi_p(dh(y)) = \Delta_p h(x) = 0,$$

namely $\omega_h \in C_q(Y)$. By (3.7), we have

$$\langle \varphi_n(dh), du^* \rangle = \langle \omega_h, du^* \rangle = 0.$$

On account of Lemma 2.2, there exists a constant c such that $v^* = u^* - c \in D_0^{(p)}(N)$. Since $dv^* = du^*$, we see that $v^* \in PSD_0^{(p)}(\mu)$.

As for the uniqueness of the solution of the nonlinear Poisson equation, we have

THEOREM 3.3. Assume that N is of hyperbolic type of order p. If u_1 and u_2 belong to $PSD_0^{(p)}(\mu)$, then $u_1 = u_2$.

PROOF. By our assumption, $u_1, u_2 \in D_0^{(p)}(N)$ and $\Delta_p u_1(x) = \Delta_p u_2(x) = \mu(x)$ on X. For any $v \in L_0(X)$, we have by (2.5)

$$\begin{aligned} \langle \varphi_p(du_1), \, dv \rangle &= -\sum_{x \in X} [\varDelta_p u_1(x)] v(x) \\ &= -\sum_{x \in X} [\varDelta_p u_2(x)] v(x) = \langle \varphi_p(du_2), \, dv \rangle. \end{aligned}$$

By Lemma 2.1,

$$\langle \varphi_p(du_1), dv \rangle = \langle \varphi_p(du_2), dv \rangle$$

for every $v \in \mathcal{D}_0^{(p)}(N)$. Since $v = u_1 - u_2 \in \mathcal{D}_0^{(p)}(N)$, we have

$$\langle \varphi_p(du_1) - \varphi_p(du_2), du_1 - du_1 \rangle = 0,$$

and hence $du_1 = du_2$ by Lemma 2.3. It follows that $u_1 - u_2 = c$ for some constant c. By Proposition 2.2, c = 0. Therefore $u_1 = u_2$.

§4. Sufficient conditions

Now we discuss the feasibility of the flow problem $(FP(\mu))_q$, or equivalently, sufficient conditions which assure $PSD_0^{(p)}(\mu) \neq \emptyset$.

THEOREM 4.1. Assume that N is of hyperbolic type of order p. Then $L_0(X) \subset KL_q(N)$ and $PSD_0^{(p)}(\mu) \neq \emptyset$ for every $\mu \in L_0(X)$.

PROOF. Let $\mu \in L_0(X)$ and let *a* be any node of *X*. Since *N* is of hyperbolic type of order *p*, there exists $w_a \in L_q(Y; r)$ by Proposition 2.2 which satisfies the conditions: $w_a \in F(\{a\}, \infty)$ and $I(w_a) = 1$, or equivalently,

$$\sum_{y \in Y} K(x, y) w_a(y) = -\varepsilon_a(x)$$
 on X.

Let us put

$$w(y) = \sum_{a \in X} \mu(a) w_a(y).$$

Then $w \in L_q(Y; r)$ and

Maretsugu YAMASAKI

$$\sum_{y \in Y} K(x, y)w(y) = \sum_{a \in X} \mu(a) \sum_{y \in Y} K(x, y)w_a(y) = -\mu(x)$$

for each $x \in X$. Therefore $-\mu \in KL_q(N)$ and $PSD_0^{(p)}(\mu) \neq \emptyset$ by Theorem 3.2. Since $KL_q(N)$ is a linear space, $\mu \in KL_q(N)$.

As a generalization of [3; Lemma 3.1], we have

THEOREM 4.2. Let N be of parabolic type of order p and let $u \in \mathbf{D}^{(p)}(N)$. If $\sum_{x \in X} |\Delta_p u(x)| < \infty$, then $\sum_{x \in X} \Delta_p u(x) = 0$.

PROOF. Since $1 \in D_0^{(p)}(N)$, there exists a sequence $\{f_n\}$ in $L_0(X)$ such that $0 \leq f_n \leq 1$ on X and $||f_n - 1||_p \to 0$ as $n \to \infty$. Put $w = \varphi_p(du)$. Since $\{df_n\}$ converges weakly to 0 in $L_p(Y; r)$ and $w \in L_q(Y; r)$, $\langle w, df_n \rangle \to 0$ as $n \to \infty$. We may assume that $c = \sum_{x \in X} |\Delta_p u(x)| > 0$. For any $\varepsilon > 0$, there exists a finite subset X' of X such that $\sum_{x \in X - X'} |\Delta_p u(x)| < \varepsilon$. Since $\{f_n\}$ converges pointwise to 1, we can find n_0 such that $|f_n(x) - 1| < \varepsilon/c$ on X' for all $n \geq n_0$. It follows that

$$\begin{aligned} |\sum_{x \in X} \Delta_p u(x) + \langle w, df_n \rangle| &= |\sum_{x \in X} [\Delta_p u(x)] [1 - f_n(x)]| \\ &\leq \sum_{x \in X'} |\Delta_p u(x)| |1 - f_n(x)| + \sum_{x \in X - X'} |\Delta_p u(x)| \\ &\leq \sum_{x \in X'} |\Delta_p u(x)| \varepsilon/c + \varepsilon < 2\varepsilon \end{aligned}$$

for all $n \ge n_0$. Therefore $\sum_{x \in X} \Delta_p u(x) = 0$.

COROLLARY. Let N be of parabolic type of order p. Then $PSD^{(p)}(\mu) = \emptyset$ for every nonzero $\mu \in L^+(X)$.

As a generalization of Proposition 2.1, we have

THEOREM 4.3. If $\mu \in L_0(X)$ satisfies $\sum_{x \in X} \mu(x) = 0$, then $PSD_0^{(p)}(\mu) \neq \emptyset$. Therefore, $KL_q(N) \supset \{\mu \in L_0(X); \sum_{x \in X} \mu(x) = 0\}.$

PROOF. Let $\mu \in L_0(X)$ and $A = \{x \in X; \mu(x) \neq 0\}$ and take $b \notin A$. Define $\dot{w}_b \in L(Y)$ by

$$\dot{w}_b(y) = -\sum_{x \in A} \mu(x) p_x(y),$$

where p_x is the path index of a path P_x from b to $x (x \neq b)$. Observing that p_x is a flow from b to x with unit strength, i.e.,

$$\sum_{y \in Y} K(z, y) p_x(y) = -\varepsilon_b(z) + \varepsilon_x(z) \text{ on } X,$$

we have

$$\sum_{y \in Y} K(z, y) \dot{w}_b(y) = -\sum_{x \in A} \mu(x) \sum_{y \in Y} K(z, y) p_x(y) = -\mu(z).$$

Since $H_q(p_x) = \sum_{P_x} r(y) < \infty$ and A is a finite set, we conclude that \dot{w}_b is a solution of $(FP(\mu))_q$ and $PSD_0^{(p)}(\mu) \neq \emptyset$ by Theorem 3.2.

THEOREM 4.4. Let μ , v, $\sigma \in L(X)$. If μ , $v \in KL_q(N)$ and if $\mu \leq \sigma \leq v$ on X, then $\sigma \in KL_q(N)$.

Nonlinear Poisson Equation

PROOF. There exist \tilde{w}_{μ} , $\tilde{w}_{\nu} \in L_q(Y; r)$ such that $\partial \tilde{w}_{\mu} = \mu$ and $\partial \tilde{w}_{\nu} = \nu$. For every nonnegative $f \in L_0(X)$, we have by (3.1)

$$\sum_{x \in X} f(x)\sigma(x) \leq \sum_{x \in X} f(x)v(x)$$

= $\sum_{x \in X} f(x)[\partial w_v(x)] = -\langle \tilde{w}_v, df \rangle,$
 $\sum_{x \in X} f(x)\sigma(x) \geq \sum_{x \in X} f(x)\mu(x) = -\langle \tilde{w}_\mu, df \rangle.$

For any $f \in L_0(X)$, we have $f = f^+ - f^-$ with $f^+(x) = \max\{f(x), 0\}$ and $f^-(x) = \max\{-f(x), 0\}$, so that

$$\begin{split} \sum_{x \in X} f(x)\sigma(x) &= \sum_{x \in X} f^+(x)\sigma(x) - \sum_{x \in X} f^-(x)\sigma(x) \\ &\leq -\langle \tilde{w}_{\nu}, df^+ \rangle + \langle \tilde{w}_{\mu}, df^- \rangle \\ &\leq [H_q(\tilde{w}_{\nu})]^{1/q} [D_p(f^+)]^{1/p} + [H_q(\tilde{w}_{\mu})]^{1/q} [D_p(f^-)]^{1/p}. \end{split}$$

Since $D_p(f^+) \le D_p(f)$ and $D_p(f^-) \le D_p(f)$, we have

$$|\sum_{x \in X} f(x)\sigma(x)| \le M [D_p(f)]^{1/p} = M [H_p(df)]^{1/p},$$

where $M = [H_q(\tilde{w}_v)]^{1/q} + [H_q(\tilde{w}_\mu)]^{1/q}$. Therefore, the linear functional Φ on the linear subspace $dL_0(X) = \{df; f \in L_0(X)\}$ of $L_p(Y; r)$ defined by

$$\Phi(df) = \sum_{x \in X} f(x)\sigma(x)$$

is continuous. Here we note that d is a one-to-one mapping from $L_0(X)$ to $dL_0(X)$. By the well-known Hahn-Banach's theorem, there exists a continuous linear functional $\tilde{\Phi}$ on $L_p(Y; r)$ such that $\tilde{\Phi}(df) = \Phi(df)$ for all $df \in dL_0(X)$. The dual space of $L_p(Y; r)$ is isometric to $L_q(Y; r)$, so there exists $\hat{w} \in L_q(Y; r)$ such that $\tilde{\Phi}(w) = \langle \hat{w}, w \rangle$ for every $w \in L_p(Y; r)$. It follows that

$$-\sum_{x \in X} f(x) [\partial \hat{w}(x)] = \langle \hat{w}, df \rangle = \sum_{x \in X} f(x) \sigma(x)$$

for every $f \in L_0(X)$, and hence $\partial \hat{w} = -\sigma$. Put $\tilde{w}_{\sigma} = -\hat{w}$. Then $\tilde{w}_{\sigma} \in L_q(Y; r)$ and $\partial \tilde{w}_{\sigma} = \sigma$, and hence $\sigma \in KL_q(N)$.

COROLLARY. Assume that $PSD_0^{(p)}(\mu) \neq \emptyset$ and $PSD_0^{(p)}(\nu) \neq \emptyset$. If $\sigma \in L(X)$ and if $\mu \leq \sigma \leq \nu$ on X, then $PSD_0^{(p)}(\sigma) \neq \emptyset$.

References

- [1] R. J. Duffin, Discrete potential theory, Duke Math. J. 20 (1953), 233-251.
- [2] H. Flanders, Infinite networks: I-Resistive networks, IEEE Trans. Circuit Theory CT-18 (1971), 326-331.
- [3] T. Kayano and M. Yamasaki, Dirichlet finite solutions of Poisson equations on an infinite network, Hiroshima Math. J. 12 (1982), 551-561.
- [4] M. Yamasaki, Parabolic and hyperbolic infinite networks, ibid. 7 (1977), 135-146.
- [5] M. Yamasaki, Ideal boundary limit of discrete Dirichlet functions, ibid. 16 (1986), 353-360.