Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science **40** (2007), pp. 1–5

DIRICHLET PROBLEM AND DIRICHLET SEMI-NORM

K. ABODAYEH AND V. ANANDAM

Communicated by J. Sugie

(Received: March 10, 2005)

ABSTRACT. On a finite set of vertices E in a Cartier tree, using the Green's formula, the Dirichlet semi-norm is defined and the Dirichlet solution on E is obtained as the projection on the closed subspace of harmonic functions on E.

1. INTRODUCTION

In the context of the classical potential theory in \mathbf{R}^n , $n \geq 2$, let Ω be a bounded domain; let P_0 be the class of finite continuous functions on Ω , with a square summable finite continuous gradient. For f, g in P_0 , denote by $(f,g) = \int_{\Omega} (\operatorname{grad} f, \operatorname{grad} g) dx$ the inner product and by $||f||_{\Omega}$ the corresponding Dirichlet semi-norm. Suppose $f \in P_0$ is a continuous function on $\overline{\Omega}$. Then the classical Dirichlet Principle states (see Brelot [3, pp. 122-127]) the generalized Dirichlet solution H_f^{Ω} is the unique (up to an additive constant) harmonic function in P_0 which minimizes $||u - f||_{\Omega}$, for $u \in P_0$.

In the context of a Cartier tree T [4], we know that if E is a finite set and if f is a real function on ∂E , then the (classical) Dirichlet solution exists on E (see [1]); we also know that the Dirichlet norm can be defined on E (see Yamasaki [7] in the context of an infinite network and Urakawa [6] in the context of an infinite graph).

In this note, we prove: Let E be a finite set of vertices in a Cartier tree. Let f be a finite-valued function on ∂E and h be the Dirichlet solution on E with boundary values f. Then, for any finite-valued function g on E such that g = f on ∂E , we have $||h||_E \leq ||g||_E$ and $||h||_E = ||g||_E$ if and only if $h \equiv g$. (See Murakami and Yamasaki [5] for a version of this Dirichlet Principle in the context of an infinite network.) Conversely, the (classical) Dirichlet solution on E always comes out as a projection.

2. Preliminaries

In a graph, two vertices x and y are said to be neighbours, $x \sim y$, if there exists an edge joining them; a graph is said to be locally finite if any vertex has a finite

²⁰⁰⁰ Mathematics Subject Classification. 31C20.

Key words and phrases. Green's formula, Dirichlet Principle, Cartier tree.

number of neighbours; a graph is said to be connected if any two vertices can be joined by a finite number of edges; a path $\{x = s_0, s_1, \ldots, s_{n-1}, s_n = x\}$ with distinct vertices s_i , $1 \le i \le n$, and $n \ge 3$ is called a circuit. A Cartier tree T [4, p. 208] is an infinite graph which is connected and locally finite and has no circuit.

A vertex x_0 in T is said to be terminal, if it has only one neighbour in T. Given a subset E of vertices in $T, x \in E$ is said to be an interior point if x is not terminal and if all the neighbours of x are in E. Let $\stackrel{o}{E}$ denote the collection of all the interior points of E; let $\partial E = E \setminus \stackrel{o}{E}$. On a tree T, it is assumed that a transition probability is given: that is, with any two vertices x and y is associated a real number $p(x, y) \ge 0$ such that p(x, y) > 0 if and only if $x \sim y$ and $\sum_{y \in T} p(x, y) = 1$ for any $x \in T$.

Fix a vertex e in T. For a vertex x, let $\{e, x_1, \ldots, x_n, x\}$ be a path joining e and x. Write $\phi(x) = \frac{p(e,x_1)p(x_1,x_2)\dots p(x_n,x)}{p(x,x_n)p(x_n,x_{n-1})\dots p(x_1,e)}$; take $\phi(e) = 1$. Since there are no circuits in T, it is easy to see that $\phi(x)$ remains the same for any path joining e and x; note $\phi(x)p(x,y) = \phi(y)p(y,x)$ for any pair of vertices x and y. Set $\psi(x,y) = \phi(x)p(x,y)$. Then $\psi(x,y) = \psi(y,x) \ge 0$ and $\psi(x,y) > 0$ if and only if $x \sim y$.

If u is a real-valued function on T, the Laplacian Δu at a vertex x is defined as $\Delta u(x) = \sum_{y \in T} p(x, y)[u(y) - u(x)]$. The function u is said to be harmonic at x if $\Delta u(x) = 0$. Suppose v is a real function defined on a subset E of T. Then we define the inner normal derivative of v at a point $s \in \partial E$ as

$$\frac{\partial v}{\partial n^-}(s) = \sum_{x \in E} p(s, x) [v(x) - v(s)].$$

3. Dirichlet semi-norm

Theorem 1. [1, Theorem 2] Let f be a real function on the boundary ∂E of a finite subset of vertices E in a Cartier tree. Then there exists unique bounded function u on E such that u is harmonic on $\stackrel{o}{E}$ and u = f on ∂E .

Proof. Since ∂E is finite, we can find constants α and β such that $\beta \leq f \leq \alpha$ on ∂E . Since we can consider f^+ and f^- separately, we can assume $\beta \geq 0$. Then

$$v(x) = \begin{cases} \alpha & \text{if } x \in \stackrel{o}{E} \\ f(x) & \text{if } x \in \partial E \end{cases}$$

is a superharmonic function on E.

Let \mathcal{F} be the family of all subharmonic functions u on $\stackrel{o}{E}$, such that $u \leq v$ on E. Then as in [1], $h(x) = \sup_{\mathcal{F}} u(x)$ is the Dirichlet solution on E, with boundary values f.

The uniqueness is proved using the minimal principle, similar to the one given in Yamasaki [7, Lemma 2.1] for the case of infinite networks. \Box

Let *E* be a (possibly infinite) set of vertices in *T*. Let *u* and *v* be two real functions on *E* such that $\sum_{x,y\in E} \psi(x,y)u(x)[v(y)-v(x)]$ is absolutely convergent.

Then write

$$(u, v)_E = -\sum_{x,y \in E} \psi(x, y)u(x)[v(y) - v(x)]$$

and note, by rearranging the terms in this double sum, we can write in this case

$$(u,v)_E = \sum_{x,y \in E} \psi(x,y) [u(y) - u(x)] [v(y) - v(x)].$$

Remark that if E is finite, the above condition on absolute convergence is redundant; for any two functions u, v on the finite set $E, (u, v)_E$ is always defined.

The following form of the Green's formula is given in [1], which is a variant of the results given in Urakawa [6] and Bendito et al. [2].

Theorem 2. Let u and v be two real-valued functions on a finite set E of vertices in T. Then

$$\sum_{x \in E} \phi(x)u(x)\Delta v(x) + (u,v)_E = -\sum_{s \in \partial E} \phi(s)u(s)\frac{\partial v}{\partial n^-}(s).$$

Definition. Let u be a real-valued function on a subset of vertices E. Write

$$||u||_E^2 = (u, u)_E = \sum_{x, y \in E} \psi(x, y) [u(y) - u(x)]^2,$$

if the double sum is finite.

In the following, we shall consider only connected subsets E with a finite number of vertices. Since $||u||_E = 0$ implies that u is a constant on E, $||u||_E$ is a semi-norm which is called the *Dirichlet semi-norm* on E. Let \mathcal{F} denote the equivalence classes \tilde{f} of real-valued functions on E, so that two finite functions on E are in the same class if and only if they differ by a constant. Note that \mathcal{F} is an inner product space; if f and g are any two finite functions on E and if \tilde{f} and \tilde{g} are the equivalence classes defined by f and g, then $||\tilde{f}|| = ||f||$ and $||\tilde{f} - \tilde{g}|| = ||f - g||$.

Let \mathcal{H} denote the subspace of \mathcal{F} , determined by the harmonic functions on E. (Recall, h is harmonic on E when h is defined on E and $\Delta h(x) = 0$ at every $x \in \overset{o}{E}$.)

Proposition 3. \mathcal{H} is a closed subspace of \mathcal{F} .

Proof. Let $h_n \in \mathcal{H}$ be a Cauchy sequence in \mathcal{F} . For each equivalence class h_n , extract a harmonic function h_n from the class \tilde{h}_n so that $h_n(e) = 0$ where e is a fixed vertex in E. Since $||h_n - h_m|| = ||\tilde{h}_n - \tilde{h}_m|| \to 0$ when $n, m \to \infty$, for any $x \in E$,

$$\psi(x,e)[(h_n - h_m)(e) - (h_n - h_m)(x)]^2 \le ||h_n - h_m|| \to 0$$

when $n, m \to \infty$. Since $(h_n - h_m)(e) = 0$, we deduce that the sequence $h_n(x)$ converges at every $x \sim e$. Then we show that there is convergence at all the neighbours of each $x \sim e$. Thus proceeding, we see that h_n converges on E. If we write $h(x) = \lim_n h_n(x)$, h(x) is harmonic on E and $||h_n - h|| \to 0$. Hence $\tilde{h}_n \to \tilde{h} \in \mathcal{H}$; that is \mathcal{H} is closed in \mathcal{F} .

Consequence For every $\tilde{f} \in \mathcal{F}$, there exists a unique $\tilde{h} \in \mathcal{H}$ such that $\|\tilde{h} - \tilde{f}\|$ is minimum; \tilde{h} is the projection of \tilde{f} on \mathcal{H} , so that $\|\tilde{h}\| \leq \|\tilde{f}\|$ and $\|\tilde{h}\| = \|\tilde{f}\|$ if and only if $\tilde{f} \in \mathcal{H}$.

Notation Let \mathcal{F}_0 be the subspace of \mathcal{F} such that $\tilde{f} \in \mathcal{F}_0$ if and only if the equivalence class represented by \tilde{f} contains a function f on E, which is 0 on ∂E .

Theorem 4. \mathcal{F}_0 is the orthogonal complement of \mathcal{H} in \mathcal{F} ; that is, $\mathcal{F} = \mathcal{F}_0 \oplus \mathcal{H}$, and $\mathcal{F}_0 \perp \mathcal{H}$.

Proof. Remark that if $\tilde{f}_1, \tilde{f}_2 \in \mathcal{F}$, and if we take some f_1 (respectively f_2) from the equivalence class \tilde{f}_1 (respectively \tilde{f}_2), then $(f_1, f_2)_E$ is independent of the choice of the functions f_1 and f_2 . We define $(\tilde{f}_1, \tilde{f}_2)_E = (f_1, f_2)_E$. Now $\mathcal{F}_0 \perp \mathcal{H}$. For let $\tilde{f} \in \mathcal{F}_0$ and $\tilde{h} \in \mathcal{H}$. Choose f from the class \tilde{f} such that f = 0 on ∂E ; choose a harmonic function h from the class \tilde{h} . Note that $(h, f)_E = 0$ (by taking v = h and u = f in Theorem 2). Hence $(\tilde{h}, \tilde{f})_E = 0$.

Suppose $\tilde{f} \in \mathcal{F}_0 \cap \mathcal{H}$. If f is harmonic on E and 0 on ∂E , then $f \equiv 0$, so that $\tilde{f} = \tilde{0}$.

Let now $\tilde{f} \in \mathcal{F}$. Choose some f in the class \tilde{f} . Let h be the Dirichlet solution with boundary values f on ∂E (Theorem 1). Then $\tilde{f} - h \in \mathcal{F}_0$, $\tilde{h} \in \mathcal{H}$ and $\tilde{f} = \tilde{f} - h + \tilde{h}$.

To conclude, we shall reformulate the above result, without any reference to the equivalence classes, to obtain the Dirichlet Principle in the framework of a Cartier tree. For a similar result in an infinite network, see Murakami and Yamasaki [5, Section 2].

Theorem 5. Let f be a real-valued function on ∂E and h be the Dirichlet solution on E with boundary values f. Then, for any finite-valued function g on E such that g = f on ∂E , we have $||h||_E \leq ||g||_E$ and $||h||_E = ||g||_E$ if and only if $h \equiv g$.

Proof. From what we have proved, we deduce that \tilde{h} is the projection of $\tilde{g} \in \mathcal{F}$ onto \mathcal{H} . Hence $\|\tilde{h}\|_E \leq \|\tilde{g}\|_E$ which implies that $\|h\|_E \leq \|g\|_E$. Suppose $\|h\|_E = \|g\|_E$; then $\|\tilde{h}\|_E = \|\tilde{g}\|_E$, which shows that $\tilde{h} = \tilde{g}$ by the property of projection. This means that h - g is a constant on E; but h = f = g on ∂E , so that $h \equiv g$. \Box

Dirichlet solution as a projection. Let E be a finite set of connected vertices in a Cartier tree. Let f be a finite-valued function on ∂E . Giving arbitrary values at the vertices in $\stackrel{o}{E}$, we can assume that f is defined on E. Then (by Theorem 4) \widetilde{f} can be written uniquely as $\widetilde{f} = \widetilde{g} + \widetilde{h} \in \mathcal{F}_0 \oplus \mathcal{H}$.

Take a harmonic function H in the equivalence class h. Then (by the definition of \mathcal{F}_0), f - H is a function on E taking a constant value c on ∂E . Consequently, h = H + c is a harmonic function on E, with boundary values f on ∂E .

References

- [1] K. ABODAYEH, and V. ANANDAM, Dirichlet problem and Green's formulas on trees, *Hiroshima Mathematical Journal*, Accepted.
- [2] E. BENDITO, A. CARMONA and A.M. ENCINAS, Solving boundary value problems on networks using equilibrium measures, *Journal of Functional Analysis*, **171** (2000), 155-176.
- [3] M. BRELOT, Éléments de la théorie classique du potentiel, 3^e édition, CDU, Paris, 1965.
- [4] P. CARTIER, Fonctions harmoniques sur un arbre, Symposia Mathematica, 20 (1972), 203-270.
- [5] A. MURAKAMI and M. YAMASAKI, An introduction of Kuramochi boundary of an infinite network, Mem. Fac. Sci. Eng. Shimane Univ., 30 (1997), 57-89.
- [6] H. URAKAWA, The Cheeger constant, the heat kernel and the Green kernel of an infinite graph, Monatsh. Math., 138 (2003), 225-237.
- [7] M. YAMASAKI, Discrete potentials on an infinite network, Memoirs of the Faculty of Science and Engineering, Shimane University, 13 (1979), 31-44.

K. ABODAYEH: DEPARTMENT OF MATHEMATICAL SCIENCES, PRINCE SULTAN UNIVERSITY,
P.O. BOX 66833, RIYADH 11586, SAUDI ARABIA. *E-mail address*: kamal@oyp.psu.edu.sa

V. Anandam: Department of Mathematics, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

E-mail address: vanandam@ksu.edu.sa