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Abstract. On a finite set of vertices E in a Cartier tree, using the Green’s
formula, the Dirichlet semi-norm is defined and the Dirichlet solution on E is
obtained as the projection on the closed subspace of harmonic functions on E.

1. Introduction

In the context of the classical potential theory in Rn, n ≥ 2, let Ω be a
bounded domain; let P0 be the class of finite continuous functions on Ω, with
a square summable finite continuous gradient. For f , g in P0, denote by (f, g) =∫
Ω
(gradf, gradg)dx the inner product and by ‖f‖Ω the corresponding Dirichlet

semi-norm. Suppose f ∈ P0 is a continuous function on Ω. Then the classical
Dirichlet Principle states (see Brelot [3, pp. 122-127]) the generalized Dirichlet
solution HΩ

f is the unique (up to an additive constant) harmonic function in P0

which minimizes ‖u − f‖Ω, for u ∈ P0.
In the context of a Cartier tree T [4], we know that if E is a finite set and if f is

a real function on ∂E, then the (classical) Dirichlet solution exists on E (see [1]);
we also know that the Dirichlet norm can be defined on E (see Yamasaki [7] in the
context of an infinite network and Urakawa [6] in the context of an infinite graph).

In this note, we prove: Let E be a finite set of vertices in a Cartier tree. Let f be
a finite-valued function on ∂E and h be the Dirichlet solution on E with boundary
values f . Then, for any finite-valued function g on E such that g = f on ∂E, we
have ‖h‖E ≤ ‖g‖E and ‖h‖E = ‖g‖E if and only if h ≡ g. (See Murakami and
Yamasaki [5] for a version of this Dirichlet Principle in the context of an infinite
network.) Conversely, the (classical) Dirichlet solution on E always comes out as
a projection.

2. Preliminaries

In a graph, two vertices x and y are said to be neighbours, x ∼ y, if there exists
an edge joining them; a graph is said to be locally finite if any vertex has a finite
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number of neighbours; a graph is said to be connected if any two vertices can
be joined by a finite number of edges; a path {x = s0, s1, . . . , sn−1, sn = x} with
distinct vertices si, 1 ≤ i ≤ n, and n ≥ 3 is called a circuit. A Cartier tree T [4, p.
208] is an infinite graph which is connected and locally finite and has no circuit.

A vertex x0 in T is said to be terminal, if it has only one neighbour in T . Given
a subset E of vertices in T , x ∈ E is said to be an interior point if x is not terminal

and if all the neigbours of x are in E. Let
o

E denote the collection of all the

interior points of E; let ∂E = E\
o

E. On a tree T , it is assumed that a transition
probability is given: that is, with any two vertices x and y is associated a real
number p(x, y) ≥ 0 such that p(x, y) > 0 if and only if x ∼ y and

∑
y∈T p(x, y) = 1

for any x ∈ T .
Fix a vertex e in T . For a vertex x, let {e, x1, . . . , xn, x} be a path joining e and

x. Write φ(x) = p(e,x1)p(x1,x2)...p(xn,x)
p(x,xn)p(xn,xn−1)...p(x1,e)

; take φ(e) = 1. Since there are no circuits in

T , it is easy to see that φ(x) remains the same for any path joining e and x; note
φ(x)p(x, y) = φ(y)p(y, x) for any pair of vertices x and y. Set ψ(x, y) = φ(x)p(x, y).
Then ψ(x, y) = ψ(y, x) ≥ 0 and ψ(x, y) > 0 if and only if x ∼ y.

If u is a real-valued function on T , the Laplacian ∆u at a vertex x is defined
as ∆u(x) =

∑
y∈T p(x, y)[u(y) − u(x)]. The function u is said to be harmonic at x

if ∆u(x) = 0. Suppose v is a real function defined on a subset E of T . Then we
define the inner normal derivative of v at a point s ∈ ∂E as

∂v

∂n− (s) =
∑
x∈E

p(s, x)[v(x) − v(s)].

3. Dirichlet semi-norm

Theorem 1. [1, Theorem 2] Let f be a real function on the boundary ∂E of a finite
subset of vertices E in a Cartier tree. Then there exists unique bounded function

u on E such that u is harmonic on
o

E and u = f on ∂E.

Proof. Since ∂E is finite, we can find constants α and β such that β ≤ f ≤ α on
∂E. Since we can consider f+ and f− separately, we can assume β ≥ 0. Then

v(x) =

{
α if x ∈

o

E
f(x) if x ∈ ∂E

is a superharmonic function on E.

Let F be the family of all subharmonic functions u on
o

E, such that u ≤ v on
E. Then as in [1], h(x) = supF u(x) is the Dirichlet solution on E, with boundary
values f .

The uniqueness is proved using the minimal principle, similar to the one given
in Yamasaki [7, Lemma 2.1] for the case of infinite networks. ¤

Let E be a (possibly infinite) set of vertices in T . Let u and v be two real
functions on E such that

∑
x,y∈Eψ(x, y)u(x)[v(y) − v(x)] is absolutely convergent.
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Then write

(u, v)E = −
∑

x,y∈E

ψ(x, y)u(x)[v(y) − v(x)]

and note, by rearranging the terms in this double sum, we can write in this case

(u, v)E =
∑

x,y∈E

ψ(x, y)[u(y) − u(x)][v(y) − v(x)].

Remark that if E is finite, the above condition on absolute convergence is redun-
dant; for any two functions u, v on the finite set E, (u, v)E is always defined.

The following form of the Green’s formula is given in [1], which is a variant of
the results given in Urakawa [6] and Bendito et al. [2].

Theorem 2. Let u and v be two real-valued functions on a finite set E of vertices
in T . Then ∑

x∈
o
E

φ(x)u(x)∆v(x) + (u, v)E = −
∑
s∈∂E

φ(s)u(s)
∂v

∂n− (s).

Definition. Let u be a real-valued function on a subset of vertices E. Write

‖u‖2
E = (u, u)E =

∑
x,y∈E

ψ(x, y)[u(y) − u(x)]2,

if the double sum is finite.

In the following, we shall consider only connected subsets E with a finite number
of vertices. Since ‖u‖E = 0 implies that u is a constant on E, ‖u‖E is a semi-norm
which is called the Dirichlet semi-norm on E. Let F denote the equivalence classes

f̃ of real-valued functions on E, so that two finite functions on E are in the same
class if and only if they differ by a constant. Note that F is an inner product space;

if f and g are any two finite functions on E and if f̃ and g̃ are the equivalence

classes defined by f and g, then ‖f̃‖ = ‖f‖ and ‖f̃ − g̃‖ = ‖f − g‖.
Let H denote the subspace of F , determined by the harmonic functions on E.

(Recall, h is harmonic on E when h is defined on E and ∆h(x) = 0 at every x ∈
o

E.)

Proposition 3. H is a closed subspace of F .

Proof. Let h̃n ∈ H be a Cauchy sequence in F . For each equivalence class h̃n,

extract a harmonic function hn from the class h̃n so that hn(e) = 0 where e is a

fixed vertex in E. Since ‖hn − hm‖ = ‖h̃n − h̃m‖ → 0 when n,m → ∞, for any
x ∈ E,

ψ(x, e)[(hn − hm)(e) − (hn − hm)(x)]2 ≤ ‖hn − hm‖ → 0

when n,m → ∞. Since (hn − hm)(e) = 0, we deduce that the sequence hn(x)
converges at every x ∼ e. Then we show that there is convergence at all the
neighbours of each x ∼ e. Thus proceeding, we see that hn converges on E. If
we write h(x) = limn hn(x), h(x) is harmonic on E and ‖hn − h‖ → 0. Hence

h̃n → h̃ ∈ H; that is H is closed in F . ¤
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Consequence For every f̃ ∈ F , there exists a unique h̃ ∈ H such that ‖h̃ − f̃‖ is

minimum; h̃ is the projection of f̃ on H, so that ‖h̃‖ ≤ ‖f̃‖ and ‖h̃‖ = ‖f̃‖ if and

only if f̃ ∈ H.

Notation Let F0 be the subspace of F such that f̃ ∈ F0 if and only if the equiv-

alence class represented by f̃ contains a function f on E, which is 0 on ∂E.

Theorem 4. F0 is the orthogonal complement of H in F ; that is, F = F0 ⊕ H,
and F0 ⊥ H.

Proof. Remark that if f̃1, f̃2 ∈ F , and if we take some f1 (respectively f2) from the

equivalence class f̃1 (respectively f̃2), then (f1, f2)E is independent of the choice

of the functions f1 and f2. We define (f̃1, f̃2)E = (f1, f2)E. Now F0 ⊥ H. For let

f̃ ∈ F0 and h̃ ∈ H. Choose f from the class f̃ such that f = 0 on ∂E; choose a

harmonic function h from the class h̃. Note that (h, f)E = 0 (by taking v = h and

u = f in Theorem 2). Hence (h̃, f̃)E = 0.

Suppose f̃ ∈ F0

⋂
H. If f is harmonic on E and 0 on ∂E, then f ≡ 0, so that

f̃ = 0̃.

Let now f̃ ∈ F . Choose some f in the class f̃ . Let h be the Dirichlet solution

with boundary values f on ∂E (Theorem 1). Then f̃ − h ∈ F0, h̃ ∈ H and

f̃ = f̃ − h + h̃. ¤

To conclude, we shall reformulate the above result, without any reference to the
equivalence classes, to obtain the Dirichlet Principle in the framework of a Cartier
tree. For a similar result in an infinite network, see Murakami and Yamasaki [5,
Section 2].

Theorem 5. Let f be a real-valued function on ∂E and h be the Dirichlet solution
on E with boundary values f . Then, for any finite-valued function g on E such
that g = f on ∂E, we have ‖h‖E ≤ ‖g‖E and ‖h‖E = ‖g‖E if and only if h ≡ g.

Proof. From what we have proved, we deduce that h̃ is the projection of g̃ ∈ F onto

H. Hence ‖h̃‖E ≤ ‖g̃‖E which implies that ‖h‖E ≤ ‖g‖E. Suppose ‖h‖E = ‖g‖E;

then ‖h̃‖E = ‖g̃‖E, which shows that h̃ = g̃ by the property of projection. This
means that h − g is a constant on E; but h = f = g on ∂E, so that h ≡ g. ¤

Dirichlet solution as a projection. Let E be a finite set of connected vertices
in a Cartier tree. Let f be a finite-valued function on ∂E. Giving arbitrary values

at the vertices in
o

E, we can assume that f is defined on E. Then (by Theorem 4)

f̃ can be written uniquely as f̃ = g̃ + h̃ ∈ F0 ⊕H.

Take a harmonic function H in the equivalence class h̃. Then (by the definition
of F0), f − H is a function on E taking a constant value c on ∂E. Consequently,
h = H + c is a harmonic function on E, with boundary values f on ∂E.
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