A Structure Theory of Freudenthal-Kantor Triple Systems III

Dedicated to Professor Nathan Jacobson on his 80th birthday

By

Noriaki Kamiya

Department of Mathematics Faculty of Science Shimane University 690 Matsue JAPAN (Received September 6, 1989)

In this paper, we give a construction of balanced Freudenthal-Kantor triple systems and investigate a structure of the Jordan triple systems associated with reduced balanced Freudenthal-Kantor triple systems.

Introduction

The triple systems studied here are a specialization of the class of Freudenthal-Kantor triple systems given in [21, 22, 13], which is called balanced by ourselves. This triple system is a variation of Freudenthal triple systems [7, 18], symplectic ternary algebras [6] and symplectic triple systems [23]. This paper is a continuation of the previous articles [13, 14]. The main purpose of this article is to give followings:

- (i) A construction of Jordan triple systems from a vector space equipped with relations of a cross product and a bilinear form.
- (ii) A construction of balanced Freudenthal-Kantor triple systems from a class of vector matrices as follows:

$$\begin{bmatrix} \alpha & a \\ b & \beta \end{bmatrix}, \quad \alpha, \beta \in \Phi, \quad a, b \in V$$

where Φ is a base field, V is the Jordan triple system defined by (i).

(iii) If a simple balanced Freudenthal-Kantor triple system \mathfrak{M} is reduced, then $\mathfrak{M} \cong \mathfrak{M}(V)$, where $\mathfrak{M}(V)$ is the balanced Freudenthal-Kantor triple system defined by (ii).

We shall be concerned with algebras and triple systems which are finite dimensional over a field Φ of characteristic different from 2 or 3, unless otherwise specified. We shall mainly employ the notation and terminology in [13, 14].

1

In this section, we shall give a construction of Jordan triple systems and consider the norm similarity.

THEOREM 1.1. Let V be a vector space over an arbitrary field Φ equipped with a bilinear form B(a, b) and a cross product $a \times b$ satisfying the following conditions:

- $(1) a \times b = b \times a$
- (2) B(a, b) = B(b, a)
- (3) $B(a, b \times d) = B(a \times b, d)$

(4)
$$((a \times b) \times e) \times d + ((b \times d) \times e) \times a + ((d \times a) \times e) \times b$$

$$= B(a \times b, d)e + B(a, e)b \times d + B(b, e)d \times a + B(d, e)a \times b$$

for all $a, b, d, e \in V$.

Then V becomes a Jordan triple system with respect to the triple product

$$\{xyz\} = B(x, y)z + B(z, y)x - (x \times z) \times y.$$

PROOF. By the definition of the triple product, it is clear that $\{xyz\} = \{zyx\}.$

We compute as follows;

$$\{uv\{xyz\}\} - \{\{uvx\}yz\} + \{x\{vuy\}z\} - \{xy\{uvz\}\}\}$$

$$= B(u, v)(B(x, y)z + B(z, y)x - (x \times z) \times y)$$

$$+ B(B(x, y)z + B(z, y)x - (x \times z) \times y, v)u$$

$$- (u \times (B(x, y)z + B(z, y)x - (x \times z) \times y)) \times v$$

$$- B(B(u, v)x + B(x, v)u - (u \times x) \times v, y)z$$

$$- B(z, y)(B(u, v)x + B(x, v)u - (u \times x) \times v)$$

$$+ ((B(u, v)x + B(x, v)u - (u \times x) \times v) \times z) \times y$$

$$+ B(x, B(v, u)y + B(y, u)v - (v \times y) \times u)z$$

$$+ B(z, B(v, u)y + B(y, u)v - (v \times y) \times u)x$$

$$- (x \times z) \times (B(v, u)y + B(y, u)v - (v \times y) \times u)$$

$$- B(x, y)(B(u, v)z + B(z, v)u - (u \times z) \times v)$$

$$- B(x, y)(B(u, v)z + B(z, v)u - (u \times z) \times v) \times y$$

$$+ (x \times (B(u, v)z + B(z, v)u - (u \times z) \times v)) \times y$$

$$+ (x \times (B(u, v)z + B(z, v)u - (u \times z) \times v)) \times v$$

$$+ B(x, v)(u \times z) \times y - (x \times z) \times B(y, u)v$$

$$- (((u \times x) \times v) \times z) \times y + (x \times z) \times ((v \times y) \times u)$$

$$+ B(z, v)(x \times u) \times y - (x \times ((u \times z) \times v)) \times y$$

$$= (B(x, v)(u \times z) - ((u \times x) \times v) \times z + B(z, v)(x \times u) - x \times ((u \times z) \times v)) \times y (-((v \times (x \times z)) \times u) + B(x \times z, u)v + B(v, u)x \times z) \times y$$

(by the relation (4) of the assumption, that is, $B((x \times z) \times y, v)u - (u \times ((x \times z) \times y)) \times v + (x \times z) \times B(y, u)v - (x \times z) \times ((v \times y) \times u) = ((v \times (x \times z)) \times u) \times y - B(x \times z, u)v \times y - B(v, u)y \times (x \times x)$

(by the relation (4))

This completes the proof.

If N is a cubic form on a vector space V and $c \in V$ a basepoint where N(c) = 1, then we can form the trace form

$$T(x, y) = -\partial_x \partial_y \log N|_c = (\partial_x N|_c)(\partial_y N|_c) - \partial_x \partial_y N|_c$$

of N at c. We say N is nondegenerate at c if its trace form is nondegenerate. For nondegenerate forms we have a unique quadratic mapping $x \to x^*$ in V defined by $T(x^*, y) = \partial_y N|_x$. We say a nondegenerate cubic form N and basepoint c are admissible if the adjoint identity $x^{**} = N(x)x$ holds under all scalar extensions (see [17]). We denote this vector space V by $\mathfrak{F}(N, c)$. For ch $\Phi \neq 2, 3$, to apply the case of our construction, we put $2x^* = x \times x$, T(x, y) = B(x, y) and $N(x) = 1/3 T(x^*, x)$. We can easily show that if $N(x)x = x^{**}$, then $4/3 B(x \times x, x)x = (x \times x) \times (x \times x)$. Also these identities yield the relation $x \times (x^* \times y) = N(x)y + T(x, y)x^*$ (by the argument of density of V). Hence this result implies that

$$((x \times x) \times y) \times x = 1/3B(x \times x, x)y + B(x, y)x \times x,$$

which reduce the relation (4) of the assumption in Theorem 1. Thus we obtain the following corollary.

COROLLARY [17]. If the cubic form N and basepoint c are admissible then $\mathfrak{J}(N,c)$ is a Jordan triple system with respect to the triple product

$$\{xyz\} = T(x, y)z + T(z, y)x - (x \times z) \times y.$$

THEOREM 1.2. Let V be a vector space over a field Φ of characteristic $\neq 2$ or 3 equipped with a bilinear form B(a, b) and a cross product $a \times b$ satisfying the relations (1) \sim (4) of Theorem 1.1 and the following conditions;

(5)
$$(a \times b) \times (e \times d) + (b \times e) \times (d \times a) + (e \times a) \times (b \times d)$$

$$= B(a \times b, e) d + B(a \times e, d) b + B(a \times d, b) e + B(b \times e, d) a,$$

(6) there exists an element $c \in V$ such that

$$x \times c = B(x, c)c - x$$
 for all $x \in V$.

Then it holds

$$x^3 - T(x)x^2 + S(x)x - N(x)c = 0$$

and $x \times x = 2x^2 - 2T(x)x + 2S(x)c$ for all $x \in V$, where $x^3 = 1/2\{xxx\}, x^2 = 1/2\{xcx\}, T(x) = B(x, c), S(x) = 1/2B(x \times x, c)$ and $N(x) = 1/6B(x \times x, x)$.

PROOF. From $x^3 = 1/2\{xxx\}$ and $x^2 = 1/2\{xcx\}$, we have

$$x^{3} - B(x, c) x^{2} = 1/2\{xxx\} - 1/2B(x, c)\{xcx\}$$

$$= B(x, x) x - 1/2(x \times x) \times x - 1/2B(x, c)(2B(x, c) x - (x \times x) \times c)$$

$$= (B(x, x) - B(x, c)^{2}) x - 1/2(x - B(x, c) c) \times (x \times x).$$
(1-1)

On the other hand, we have

$$B(x \times y, c) = B(x, y \times c)$$

= $B(y, c)B(x, c) - B(x, y)$ (by the relation (6) of the assumption).

If we put y = x, then this implies that

$$B(x \times x, c) = B(x, c)^2 - B(x, x).$$

Combining this with the identity (1-1), we get

$$x^{3} - B(x, c)x^{2} = -B(x \times x, c)x + (x \times c) \times (x \times x). \tag{1-2}$$

By the relation (5) of the assumption, we have

$$(x \times c) \times (x \times x) = 1/3B(x \times x, x)c + B(x \times c, x)x. \tag{1-3}$$

From (1-2) and (1-3), it follows that

$$x^3 - B(x, c)x^2 + 1/2B(x \times x, c)x - 1/6B(x \times x, x)c = 0.$$

Hence this yields that

$$x^3 - T(x)x^2 + S(x)x - N(x)c = 0$$
.

where T(x) = B(x, c), $S(x) = 1/2B(x \times x, c)$ and $N(x) = 1/6B(x \times x, x)$. Also, it follows from $x \times c = B(x, c)c - x$ that

$$(x \times x) \times c = B(x \times x, c)c - x \times x.$$

From this identity and the identity $x^2 - T(x)x = -1/2(x \times x) \times c$, we obtain

$$x^2 - T(x)x = -1/2(B(x \times x, c)c - x \times x),$$

which implies $x \times x = 2x^2 - 2T(x)x + 2S(x)c$. This completes the proof.

THEOREM 1.3. Let V(resp. V') be a vector space over an infinite field Φ of characteristic $\neq 2$ or 3 equipped with a nondegenerate bilinear form B(a, b) (resp. B(a, b)') and a cross product $a \times b(\text{resp. }a' \times b')$ satisfying the relations (1), (2),

(3) and (5) of Theorem 1.2 (resp. (1)', (2)', (3)' and (5)'). If a mapping g is invertible (= linear and bijective) from V onto V', then the followings are equivalent:

- (i) $B(ga \times ga, ga)' = \lambda B(a \times a, a)$ $\lambda \in \Phi^*$, for all $a \in V$
- (ii) g is an isotopy of the Jordan triple system with respect to the triple product

$$\{xyz\} = B(x, y)z + B(z, y)x - (x \times z) \times y.$$

Furthermore, in the case of (ii), we have

$$g(x \times y) = \lambda \hat{g}x \times \hat{g}y, \quad \hat{g}(a \times b) = \lambda^{-1}ga \times gb$$

and $B(\hat{g}a, gb)' = B(a, b)$, where $B(g^*a', b) = B(a', gb)'$ and $\hat{g} = g^{*-1}$.

PRROF. (i) \Rightarrow (ii) If g is a bijective linear mapping, one may define a bijective linear mapping g^* of V' onto V by

$$B(g^*a', b) = B(a', gb)'.$$

Hence we have

$$B(qa \times qa, qa)' = B(q^*(qa \times qa), a). \tag{1-4}$$

From the assumption that $B(ga \times ga, ga)' = \lambda B(a \times a, a)$ and B(.) is nondegenerate, we get

$$g^*(ga \times ga) = \lambda a \times a$$

and so
$$\hat{g}(a \times a) = \lambda^{-1} ga \times ga$$
, where $\hat{g} = g^{*-1}$. (1-5)

Using (1-5), we obtain

$$(ga \times ga) \times (ga \times ga) = \lambda^2 \hat{g}(a \times a) \times \hat{g}(a \times a). \tag{1-6}$$

By relation (5)' of the assumption, we have

$$4B(ga \times ga, ga)' ga = 3(ga \times ga) \times (ga \times ga).$$

The left-hand side of equation (1-6) is equal to

$$4/3 B(ga \times ga, ga)' ga$$

= $4/3 \lambda B(a \times a, a) ga$.

Consequently, we get

$$4/3 \ B(a \times a, a) ga = \lambda \hat{g}(a \times a) \times \hat{g}(a \times a).$$

Replacing a by $a \times a$, we have

$$4/3 \ B((a \times a) \times (a \times a), \ a \times a) \ g(a \times a)$$
$$= \lambda \hat{g}((a \times a) \times (a \times a)) \times \hat{g}((a \times a) \times (a \times a)).$$

Using the relation $(a \times a) \times (a \times a) = 4/3 \ B(a \times a, a) a$, we get

$$(4/3)^2 (B(a \times a, a))^2 g(a \times a) = \lambda (4/3 B(a \times a, a))^2 \hat{g}a \times \hat{g}a.$$

By using a density argument, that is, $B(a \times a, a) \neq 0$ for all $a \neq 0$ in V, we obtain

$$g(a \times a) = \lambda \hat{g}a \times \hat{g}a.$$

In $B(g^*a', b) = B(a', gb)'$, putting $a = g^*a'$, we have

$$B(a, b) = B(\hat{g}a, gb)'$$
.

From the definition of the triple product

$$\{xyz\} = B(x, y)z + B(z, y)x - (x \times z) \times y,$$

we can see that

$$g\{xyz\} = B(x, y)gz + B(z, y)gx - g((x \times z) \times y)$$

$$= B(gx, \hat{g}y)'gz + B(gz, \hat{g}y)'gx - \lambda(\hat{g}(x \times z) \times \hat{g}y)$$

$$= B(gx, \hat{g}y)'gz + B(gz, \hat{g}y)'gx - (gx \times gz) \times \hat{g}y$$

$$= \{gx\hat{g}ygz\}'.$$

Similarly we have

$$\hat{g}\{xyz\} = \{\hat{g}xgy\hat{g}z\}'.$$

(ii) \Rightarrow (i). Let g be an isotopy satisfying $\hat{g}(x \times y) = \lambda^{-1}(gx \times gy)$ and $g(x \times y) = \lambda \hat{g}x \times \hat{g}y$. From $g\{xyz\} = \{gx\hat{g}ygz\}'$ and the definition of the triple product, we have

$$B(x, y) gz + B(z, y) gx - (gx \times gz) \times \hat{g}y$$

$$= B(gx, \hat{g}y)' gz + B(gz, \hat{g}y)' gx - (gx \times gz) \times \hat{g}y.$$
(1-7)

Putting x = z in the identity (1-7), we get

$$B(x, y) = B(gx, \hat{g}y)'.$$
 (1-8)

Replacing y by $x \times x$ in the equation (1–8), we have

$$B(x \times x, x) = \lambda^{-1} B(gx \times gx, gx)'$$
(by $\hat{g}(x \times x) = \lambda^{-1} (gx \times gx)$).

This completes the proof.

Theorem 1.3 can be regarded as a generalization of the following proposition for a Jordan triple system.

PROPOSITION 1.4. [12] Let V and V' be reduced simple exceptional Jordan algebras. Then the following conditions are equivalent:

- (1) V and V' are isotopic,
- (2) V and V' are norm similar.

If A is a linear mapping of a vector space V equipped with a bilinear form B(x, y) and a cross product $x \times y$ into itself satisfying

$$B(Ax, x \times x) = \rho B(x \times x, x) \text{ for all } x \in V$$
 (1-9)

where $\rho \in \Phi^*$ is fixed and satisfying (1-9) for all field extensions of Φ , then A is said to be a Lie similarity of V. Then we have the following;

THEOREM 1.5. Let V be as in Theorem 1.3. If A is a linear mapping of V into itself, then the followings are equivalent;

- (i) A is a Lie similarity of V.
- (ii) There exists a linear mapping A of V into itself satisfying

$$A\{xyz\} = \{Axyz\} + \{xA^*yz\} + \{xyAz\}$$

where A^* is the linear mapping of V into itself defined by $B(A^*x, y) = -B(x, Ay)$.

REMARK. The above theorem implies that the notion of structure algebra of the Jordan triple system V coincides that of Lie similarity. (for the definition of structure algebra, see [13]). In particular, if the cross product is zero, then an arbitrary linear mapping A of V is a Lie similarity, hence if V has a nondegenerate bilinear form, the mapping A is a structure algebra of V.

2

In this section, we shall study a construction of the prototype of a balanced Freudenthal-Kantor triple system with $\varepsilon = 1$.

For $\varepsilon = \pm 1$, a triple system $U(\varepsilon)$ with the triple product $\langle -, -, - \rangle$ is called a Freudenthal-Kantor triple system if

(U1)
$$[L(a, b), L(c, d)] = L(\langle abc \rangle, d) + \varepsilon L(c, \langle bad \rangle)$$
 (2-1)

(U2)
$$K(K(a, b)c, d) - L(d, c)K(a, b) + \varepsilon K(a, b)L(c, d) = 0,$$
 (2-2)

where $L(a, b)c = \langle abc \rangle$ and $K(a, b)c = \langle acb \rangle - \langle bca \rangle$.

DEFINITION. A Freudenthal-Kantor triple system is balanced if there exists an anti-symmetric bilinear form \langle , \rangle such that $K(x, y) = \langle x, y \rangle$ Id, $\langle x, y \rangle \in \Phi^*$.

REMARK. From results in [14], we note the following:

- (i) The case of $\varepsilon = -1$ does not occur in a balanced Freudenthal-Kantor triple system.
- (ii) A balanced Freudenthal-Kantor triple system is simple if and only if the anti-symmetric bilinear form \langle , \rangle is nondegenerate.
- (iii) The derivation of semisimple Freudenthal-Kantor triple systems over a field of characteristic 0 is a finite sum of inner derivations of $L(a, b) + \varepsilon L(b, a)$ (denoted by S(a, b)).

Let V be a vector space over an arbitrary field Φ equipped with a bilinear form B(a, b) and a cross product $a \times b$ satisfying the following conditions:

- (1) $a \times b = b \times a$
- (2) B(a, b) = B(b, a)
- (3) $B(a, b \times d) = B(a \times b, d)$

(4)
$$((a \times b) \times e) \times d + ((b \times d) \times e) \times a + ((d \times a) \times e) \times b$$

$$= B(a \times b, d) e + B(a, e) b \times d + B(b, e) d \times a + B(d, e) a \times b$$

(5)
$$(a \times b) \times (e \times d) + (b \times e) \times (d \times a) + (e \times a) \times (b \times d)$$

= $B(a \times b, e)d + B(a \times e, d)b + B(a \times d, b)e + B(b \times e, d)a$

for all $a. b. d. e \in V$.

In particular, for ch $\Phi \neq 2$, 3, $3(a \times a) \times (a \times a) = 4B(a, a \times a)a$ holds under two conditions that " $a \times b = 0 \Rightarrow a = 0$ or b = 0" (division property) and $((a \times a) \times b) \times a = 1/3B(a \times a, a)b + B(a, b)a \times a$.

Example. $\Im(N, c)$ satisfies the conditions (1) \sim (5).

We can consider the set of vector matrices with coefficients in the vector space V as follows:

$$\mathfrak{M}(V) = \left\{ \begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix} \middle| \alpha, \beta \in \Phi, a, b \in V \right\}.$$

In $\mathfrak{M}(V)$, we shall introduce an operation \circ , that is,

$$\begin{pmatrix} \alpha_1 & a_1 \\ b_1 & \beta_1 \end{pmatrix} \circ \begin{pmatrix} \alpha_2 & a_2 \\ b_2 & \beta_2 \end{pmatrix} = \begin{pmatrix} \alpha_1 \alpha_2 + B(a_1, b_2) & \alpha_1 a_2 + \beta_2 a_1 + b_1 \times b_2 \\ \alpha_2 b_1 + \beta_1 b_2 + a_1 \times a_2 & \beta_2 \beta_1 + B(a_2, b_1) \end{pmatrix}.$$

Next we shall use the following mapping to consider a triple product

$$P: \begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix} \longrightarrow \begin{pmatrix} -\alpha & a \\ -b & \beta \end{pmatrix}$$

and

$$-: \begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix} \longrightarrow \begin{pmatrix} \beta & a \\ b & \alpha \end{pmatrix}.$$

Thereby we can define a triple product on $\mathfrak{M}(V)$ as follows:

$$\langle x_1 x_2 x_3 \rangle = x_1 \circ (\overline{Px}_2 \circ x_3) + x_3 \circ (\overline{Px}_2 \circ x_1) - Px_2 \circ (\overline{x}_1 \circ x_3)$$
 (2-3)

where
$$x_i = \begin{pmatrix} \alpha_i & a_i \\ b_i & \beta_i \end{pmatrix} \in \mathfrak{M}(V)$$
.

We have the following result on this vector matrix $\mathfrak{M}(V)$.

THEOREM 2.1. Let $\mathfrak{M}(V)$ be the set of vector matrices of the above. Then $(\mathfrak{M}(V), \langle -, -, - \rangle)$ is a balanced Freudenthal-Kantor triple system with respect to the above triple product (2-3).

PROOF. From the assumptions (1), (2), (3), (4) and (5) of vector space V, we can obtain this theorem by straightforward but very long calculations and we omit it.

We call $\mathfrak{M}(V)$ the balanced Freudenthal-Kantor triple system induced from the Jordan triple system V satisfying the conditions $(1) \sim (5)$.

REMARK. For ch $\Phi \neq 2$, we note that

$$\langle x_1, x_2 \rangle = \beta_1 \alpha_2 - \alpha_1 \beta_2 + B(a_1, b_2) - B(b_1, a_2)$$
 (2-4)

and

$$\gamma(x_1, x_2) = 4\langle x_1, x_2 \rangle \tag{2-5}$$

where
$$\gamma(x_1, x_2) = 1/2[\text{tr}2(R(x_1, x_2) - R(x_2, x_1)) + L(x_1, x_2) - L(x_2, x_1)].$$

DEFINITION [7, 18]. A Freudenthal triple system is a vector space \mathfrak{M} with trilinear product $(x, y, z) \to [xyz]$ and anti-symmetric bilinear form $(x, y) \to \langle x, y \rangle_F$ such that

- (A1) $\lceil xyz \rceil$ is symmetric in all arguments;
- (A2) $q_F(x, y, z, w) = \langle x, [yzw] \rangle_F$ is a nonzero symmetric 4-linear form;
- (A3) $[[xxx]xy] = \langle y, x \rangle_F [xxx] + \langle y, [xxx] \rangle_F x$ for $x, y, z, w \in \mathfrak{M}$.

PROPOSITION 2.2. If $(\mathfrak{M}, \langle -, -, - \rangle)$ is a balanced Freudenthal-Kantor triple system equipped with $K(x, y) = \langle x, y \rangle$ Id over a field ch $\Phi \neq 2$, then $(\mathfrak{M}, [-, -, -])$ is a Freudenthal triple system satisfying $\langle x, y \rangle_F = 1/2 \langle x, y \rangle$ with respect to the triple product

$$[xyz] := 1/2(\langle xyz \rangle + \langle xyz \rangle).$$

PROOF. (i) By the balanced condition, we have

$$\langle xyz \rangle - \langle yxz \rangle = -\langle xzy \rangle + \langle yzx \rangle.$$

Hence we have

$$[xyz] = 1/2(\langle xyz \rangle + \langle xzy \rangle)$$

= 1/2(\langle yzx \rangle + \langle yxz \rangle)
= [yzx].

From the definition of triple product, we have

$$[xyz] = [xzy].$$

(ii) Since $L(x, y) - L(y, x) = \langle y, x \rangle Id$, we have

$$[L(x, y) - L(y, x), L(z, w)] = 0.$$

Similarly, [L(y, x), L(z, w) - L(w, z)] = 0 holds. Hence we get [L(x, y), L(z, w)] = [L(y, x), L(w, z)]. From (U1) with $\varepsilon = 1$, it follows that

$$L(\langle xyz\rangle, w) + L(z, \langle yxw\rangle) - L(\langle yxw\rangle, z\rangle - L(w, \langle xyz\rangle) = 0.$$

Therefore we obatain

$$\langle \langle xyz \rangle, w \rangle + \langle z, \langle yxw \rangle \rangle = 0.$$
 (2-6)

Similarly,
$$\langle \langle xyz \rangle, w \rangle + \langle x, \langle wzy \rangle \rangle = 0$$
 holds. (2–7)

On theother hand, we have

$$\langle z, \lceil ywx \rceil \rangle_F = 1/4(\langle z, \langle ywx \rangle \rangle + \langle z, \langle yxw \rangle \rangle)$$
 (2-8)

where $\langle a, b \rangle_F = 1/2 \langle a, b \rangle$ (i.e., \langle , \rangle_F : the anti-symmetric bilinear form induced from an anti-symmetric form \langle , \rangle of balanced Freudenthal-Kantor triple system). Combining this with (2–7), we get

$$\langle z, [ywx] \rangle_F = \langle y, [zwx] \rangle_F.$$

(iii) From (U1) with $\varepsilon = 1$, we have

$$\langle x\langle xxx\rangle y\rangle = -\langle \langle xxx\rangle xy\rangle. \tag{2-9}$$

Putting z = x in $K(y, z)x = \langle zyx \rangle - \langle yzx \rangle$, we have

$$2\langle yxx\rangle = \langle xyx\rangle + \langle xxy\rangle. \tag{2-10}$$

Linearizing this relation, we get

$$\langle yxz \rangle + \langle yzx \rangle = 1/2(\langle xyz \rangle + \langle xzy \rangle + \langle zyx \rangle + \langle zxy \rangle).$$
 (2–11)

Replacing $z = \langle xxx \rangle$, we have

$$\langle yx \langle xxx \rangle \rangle + \langle y \langle xxx \rangle x \rangle$$

$$= 1/2(\langle xy \langle xxx \rangle \rangle + \langle x \langle xxx \rangle y \rangle$$

$$+ \langle \langle xxx \rangle yx \rangle + \langle \langle xxx \rangle xy \rangle).$$

Combining this with (2-9), we have

$$\langle yx \langle xxx \rangle \rangle + \langle y \langle xxx \rangle x \rangle$$

$$= 1/2(\langle xy \langle xxx \rangle \rangle + \langle \langle xxx \rangle yx \rangle). \tag{2-12}$$

From $K(x, y)\langle xxx\rangle = -L(x, y)\langle xxx\rangle + L(y, x)\langle xxx\rangle$, we have

$$\langle xy \langle xxx \rangle \rangle - \langle yx \langle xxx \rangle \rangle = -\langle x, y \rangle \langle xxx \rangle.$$
 (2-13)

From $L(\langle xxx \rangle, y)x - L(y, \langle xxx \rangle)x = -K(\langle xxx \rangle, y)x$, we have

$$\langle \langle xxx \rangle yx \rangle - \langle y \langle xxx \rangle x \rangle = - \langle \langle xxx \rangle, y \rangle x.$$
 (2-14)

Therefore by (2-13) and (2-14), we have

$$\langle xy \langle xxx \rangle \rangle + \langle \langle xxx \rangle yx \rangle - \langle yx \langle xxx \rangle \rangle - \langle y \langle xxx \rangle x \rangle$$

$$= -\langle x, y \rangle \langle xxx \rangle - \langle \langle xxx \rangle, y \rangle x. \tag{2-15}$$

From (2-12) and (2-15), we obtain

$$\langle yx \langle xxx \rangle \rangle + \langle y \langle xxx \rangle x \rangle$$

$$= -\langle x, y \rangle \langle xxx \rangle - \langle \langle xxx \rangle, y \rangle x.$$

Consequently, by means of $[xyz] = 1/2(\langle xyz \rangle + \langle xyz \rangle)$ and $\langle x, y \rangle_F = 1/2\langle x, y \rangle$, we have

$$[yx [xxx]] = \langle y, x \rangle_F [xxx] + \langle y, [xxx] \rangle_F x.$$

This completes the proof.

PROPOSITION 2.3. If $(\mathfrak{M}, [-, -, -], \langle,\rangle_F)$ is a Freudenthal triple system over a field of ch $\Phi \neq 2$, then $(\mathfrak{M}, \langle -, -, - \rangle)$ is a balanced Freudenthal-Kantor triple system with respect to the triple product

$$\langle xyz \rangle := [xyz] + \langle y, z \rangle_F x + \langle x, z \rangle_F y + \langle y, x \rangle_F z.$$

In this case, it holds $K(x, y) = 2\langle x, y \rangle_F$ Id.

PROOF. From the definition of triple system. we have

$$\langle xyz \rangle - \langle yxz \rangle = 2 \langle y, x \rangle_F z$$

and

$$\langle xzy \rangle - \langle yzx \rangle = 2 \langle x, y \rangle_F z.$$

Hence we get

 $K(x, y) = -L(x, y) + L(y, x) = 2\langle x, y \rangle_F$ Id (balanced property). Consequently, this yiels that

$$K(K(x, y) a, b) - L(b, a) K(x, y) + K(x, y) L(a, b) = 0.$$

We shall next show that the following equality holds,

$$\langle xy \langle abz \rangle \rangle = \langle \langle xyz \rangle bz \rangle + \langle a \langle yxb \rangle z \rangle + \langle ab \langle xyz \rangle \rangle.$$

This is verified by using (A2) and the following relation, which can be obtained from linearizations of (A3):

$$\begin{aligned} & [[xaz]by] - [[byz]ax] - [[bya]zx] - [[byx]za] \\ &= -\langle b, [xaz] \rangle_F \ y - \langle y, [xaz] \rangle_F \ u + \langle y, a \rangle_F \ [xbz] + \langle y, z \rangle_F \ [xba] \\ &+ \langle y, x \rangle_F \ [baz] + \langle b, z \rangle_F \ [yax] + \langle b, a \rangle_F \ [xyz] + \langle b, x \rangle_F \ [yza]. \end{aligned}$$

This completes the proof.

The Freudenthal triple system $(\mathfrak{M}, [-, -, -])$ defined above is called the Freudenthal triple system associated with a balanced Freudenthal-Kantor triple system.

Let $V = \mathfrak{J}(N, c)$, and let the base field be characteristic zero. Then combining the above propositions with Satz 8, 4 in [18], we have dimensional formulas as follows;

THEOREM. 2.4. Under the assumption of above, let $T(\mathfrak{M}(V))$ be the Lie triple system associated with $\mathfrak{M}(V)$ and $L(\mathfrak{M}(V))$ be the standard imbedding Lie algebra. If dim $\mathfrak{M}(V) = n$, then we have

dim Der
$$\mathfrak{M}(V) = 3n(n+1)/(n+16)$$
.
dim Anti-Der $\mathfrak{M}(V) = 1$,
dim $T(\mathfrak{M}(V)) = 2n$ and
dim $L(\mathfrak{M}(V)) = (5n^2 + 38n + 48)/(n+16)$.

PROOF. Since the correspondence between the inner derivation S(x, y) of a simple balanced Freudenthal-Kantor triple system and the derivation D(x, y) of the Freudenthal triple system associated with it is given by

$$S(x, y)z = 2D(x, y)z = 2[xyz] - 2\langle z, y \rangle_E x - 2\langle z, x \rangle_E y$$

the theorem is verified.

On the other hand, we have

where
$$V = \left\{ \begin{pmatrix} \xi_1 & c & \bar{b} \\ \bar{c} & \xi_2 & a \\ b & \bar{a} & \xi_3 \end{pmatrix} \middle| \begin{array}{l} \xi_i \in \varPhi, a, b, c \in \mathfrak{A}. \text{ (a composition algebra over a field } \varPhi) \\ -: \text{involution of the algebra } \mathfrak{A} \end{array} \right\}$$

(For composition algebras, see [12, 19]).

Therefore, for simple balanced Freudenthal-Kantor triple system over an algebrai-

cally closed field of characteristic 0, from the fact that $\mathfrak{M}(V)$ is simple if and only if $L(\mathfrak{M}(V))$ is simple [14], we can obtain simple Lie algebras;

For E_6 , we note the followings: From dimension 78 of simple Lie algebras, it follows that there exist the type B_6 , C_6 and E_6 . In our case, since the dimension of the simple Lie triple system is 40's, we can obtain the type of E_6 .

Remark. If dim $\mathfrak{A} = 0$, then we have

$$\mathfrak{M}(V) := \left\{ \begin{pmatrix} \alpha & a \\ b & \beta \end{pmatrix} \middle| a = (\xi_1, \xi_2, \xi_3), \ b = (\eta_1, \eta_2, \eta_3), \ \xi_i, \ \eta_i \in \Phi \right\},$$

and $B(a, b) = \xi_1 \eta_1 + \xi_2 \eta_2 + \xi_3 \eta_3$, $a \times a = 2(\xi_2 \xi_3, \xi_1 \xi_3, \xi_1 \xi_2)$. Hence by straightforward calculations it is shown that the Lie algebra $L(\mathfrak{M}(V))$ is a simple Lie algebra of type D_4 .

Let
$$\mathfrak{M}(\Phi) := \left\{ \begin{pmatrix} \alpha & \gamma \\ \delta & \beta \end{pmatrix} \middle| a, \beta, \gamma, \delta \in \Phi \right\}.$$
 $B(\alpha, \beta) = \alpha \beta$

and cross product be identically zero. Then it is clear that this matrix set $\mathfrak{M}(\Phi)$ satisfies conditions (1) \sim (5). Therefore if Φ is an algebraically closed field of characteristic 0, then the standard imbedding Lie algebra $L(\mathfrak{M}(\Phi))$ is a simple Lie algebra of type G_2 .

3

In this section, we shall consider a coordinatization theorem of simple reduced balanced Freudenthal-Kantor triple systems.

From now on we restrict our attention to simple balanced Freudenthal-Kantor triple systems \mathfrak{M} over a field of characteristic $\neq 2$ or 3.

DEFINITION. $u \in \mathfrak{M}$ is rank one if

$$L(u, u) = 0. (3-1)$$

REMARK. If an element a is rank one in the vector space V equipped with the conditions $(1) \sim (5)$ in Section 2(that is, $a \times a = 0$ and $a \neq 0$), then the element $\begin{pmatrix} \alpha & a \\ 0 & 0 \end{pmatrix}$ is rank one in $\mathfrak{M}(V)$, where α is an arbitrary element in Φ .

Lemma 3.1. Let $(\mathfrak{M}, \langle -, -, - \rangle)$ be a balanced Freudenthal-Kantor triple

system and $(\mathfrak{M},[-,-,-])$ be the Freudenthal triple system associated with it. Then an element u is rank one in $(\mathfrak{M},\langle-,-,-\rangle)$ if and only if u is strictly regular in $(\mathfrak{M},[-,-,-])$. (for the definition of strictly regular element, for example [7])

PROOF. "only if": Let $\langle uux \rangle = 0$ for all $x \in \mathfrak{M}$. Since $\langle u, x \rangle u = \langle uux \rangle - \langle xuu \rangle$, we get

$$\langle xuu \rangle = -\langle u, x \rangle u.$$
 (3–2)

On the other hand, by the balanced property, we have

$$\langle u, x \rangle u = -\langle uxu \rangle + \langle xuu \rangle.$$
 (3–3)

Form (3-2) and (3-3), it follows that

$$\langle uxu \rangle = -2\langle u, x \rangle u. \tag{3-4}$$

By the definition of the triple product

$$[xyz] = 1/2(\langle xyz \rangle + \langle xzy \rangle),$$

we obtain

$$[uxu] = -\langle u, x \rangle u,$$

which implies that u is strictly regular in $(\mathfrak{M}.[-,-,-])$.

"if": Let u be strictly regular. From the equation (5) in [7, p317], we have $[uuy] = 2\langle y, u\rangle_F u$, where \langle , \rangle_F is the anti-symmetric bilinear form of Freudenthal triple sytem. From Proposition 2.3. we get

$$\langle uuy \rangle = \lceil uuy \rceil + 2 \langle u, y \rangle_F u.$$

Therefore we obtain $\langle uuy \rangle = 0$ for all $y \in \mathbb{M}$. This completes the proof.

DEFINITION. A balanced Freudenthal-Kantor triple system \mathfrak{M} is said to be reduced if \mathfrak{M} contains a rank one element u.

DEFINITION. A pair of rank one element (u, v) is said to be supplementary if

$$K(u, v) = 2Id. (3-5)$$

PROPOSITION 3.2. Let \mathfrak{M} be a simple balanced Freudenthal-Kantor triple system. Then \mathfrak{M} is reduced if and only if \mathfrak{M} contains a pair of supplementary rank one elements.

PROOF. Combining the above lemma 3.1 with Theorem 3.3 in [7], we can easily show the proposition.

COROLLARY. Let \mathfrak{M} be a simple balanced Freudenthal-Kantor triple system and $q(x) := \langle \langle xxx \rangle, x \rangle$ be a nonzero 4-linear form of \mathfrak{M} . Then \mathfrak{M} is reduced if and only if \mathfrak{M} contains an element x with $q(x) = -24\beta^2$, $\beta \in \Phi^*$.

REMARK. Let \mathfrak{M} be a balanced Freudenthal-Kantor triple system. Then for the 4-linear form $q(x, y, z, w) = \langle \langle xyz \rangle, w \rangle$ in $x, y, z, w \in \mathfrak{M}$, we have the following identies by straightforward calculations;

$$q(x, y, z, w) = q(w, z, y, x) = q(y, x, w, z) = q(z, w, x, y).$$

In particular,

$$q(x, x, x, y) = q(x, x, y, x) = q(x, y, x, x) = q(y, x, x, x).$$

Furtheremore, we have

$$q(S(x, y)z, z, z, z) = 0$$
 for all $x, y, z \in \mathfrak{M}$,

where S(x, y) = L(x, y) + L(y, x).

PROPOSITION 3.3. Let \mathfrak{M} be a simple balanced Freudenthal-Kantor triple system. If the 4-linear form q(x) is identically zero, then it holds $\langle xyz \rangle = 1/2(\langle y, x \rangle z + \langle y, z \rangle x + \langle x, z \rangle y)$, for all $x, y, z \in \mathfrak{M}$.

PROOF. By the fact that \langle , \rangle is nondegenerate if and only if $\mathfrak M$ is simple, and from linearizing of $\langle \langle xxx \rangle, x \rangle = 0$ and the above remark it follows that

$$\langle xxx \rangle = 0$$
 for all $x \in \mathfrak{M}$.

Linearizing the identity $\langle xxx \rangle = 0$, we have

$$\langle xxy \rangle + \langle xyx \rangle + \langle yxx \rangle = 0.$$
 (3–6)

From the assumption to be balanced, we have

$$\langle xxy \rangle = 2\langle yxx \rangle - \langle xyx \rangle. \tag{3-7}$$

Combining (3–6) with (3–7), we get from ch $\Phi \neq 3$

$$\langle yxx \rangle = 0.$$

Hence we have $\langle xyx \rangle = -\langle x, y \rangle x$. Linearizing this identity, we have

$$\langle xyz \rangle + \langle zyx \rangle = -\langle x, y \rangle z - \langle z, y \rangle x.$$
 (3-8)

On the other hand, we have

$$\langle xyz \rangle - \langle zyx \rangle = \langle x, z \rangle y. \tag{3-9}$$

From (3-8) and (3-9), we obtain

$$\langle xyz \rangle = 1/2(\langle y, x \rangle z + \langle y, z \rangle x + \langle x, z \rangle y).$$

Lemma 3.4. Let (u, v) be a pair of supplementary rank one elements of simple balanced Freudenthal-Kantor triple system \mathfrak{M} . Then it holds

$$1/4(R(u, v) + R(v, u))^2 x = x + 3/2\langle u, x \rangle v - 3/2\langle v, x \rangle u$$

for all $x \in \mathfrak{M}$.

PROOF. From (U1) with $\varepsilon = 1$, we obtain the following relation by straightforward calculations:

$$R(c, d) R(a, b) x = R(a, \langle bcd \rangle) x - L(b, c) R(a, d) x$$
$$- M(b, d) M(a, c) x, \tag{3-10}$$

where $R(a, b)x = \langle xab \rangle$ and $M(a, c)x = \langle acx \rangle$. By making use the relation (3-10), we have

$$R(u, v) R(u, v) x = R(u, \langle vuv \rangle) x - L(v, u) R(u, v) x$$

$$- M(v, v) M(u, u) x$$

$$= R(u, -2 \langle v, u \rangle v) x - L(v, u) R(u, v) x$$

$$- 4 \langle v, \langle u, x \rangle u \rangle v$$

$$(by (3-4))$$

$$= 4R(u, v) x - L(v, u) R(u, v) x + 8 \langle u, x \rangle v.$$

$$(by \langle u, v \rangle = 2)$$

Similarly, we have

$$R(v, u)R(v, u)x = -4R(v, u)x - L(u, v)R(v, u)x - 8\langle v, x \rangle u$$

Hence we get

$$(R(u, v) + R(v, u))^{2} x = (4R(u, v) - L(v, u)R(u, v) + R(u, v)R(v, u) + R(v, u)R(u, v) - 4R(v, u) - L(u, v)R(v, u))x + 8\langle u, x \rangle v - 8\langle v, x \rangle u.$$
(3-11)

We compute

$$(4R(u, v) - L(v, u)R(u, v) + R(u, v)R(v, u) + R(v, u)R(u, v) - 4R(v, u) - L(u, v)R(v, u))x = (4R(u, v)x - 2R(u, v)x + \langle R(u, v)x, u \rangle v + 2R(v, u)x + \langle R(v, u)x, v \rangle u - 4R(v, u)x$$

(by means of the relations;

$$-L(v, u) y + R(v, u) y = -2y + \langle y, u \rangle v \quad \text{for all } y \in \mathfrak{M}$$

$$-L(u, v) z + R(u, v) z = 2z + \langle z, v \rangle u \quad \text{for all } z \in \mathfrak{M})$$

$$= 2R(u, v) x - 2R(v, u) x + \langle R(u, v) x, u \rangle v + \langle R(v, u) x, v \rangle u$$

$$= 4x + \langle R(u, v) x - 2x, u \rangle v + \langle R(v, u) x + 2x, v \rangle u$$

(by means of the relation;

$$R(u, v)x - R(v, u)x = 2x + \langle x, v \rangle u + \langle u, x \rangle v)$$

= $4x + 2\langle x, u \rangle v - 2\langle x, v \rangle u$ (3-12)

(by means of the relations;

$$\langle \langle xuv \rangle, u \rangle = -\langle x, \langle uvu \rangle \rangle = 4\langle x, u \rangle$$

 $\langle \langle xvu \rangle, v \rangle = -\langle x, \langle vuv \rangle \rangle = -4\langle x, v \rangle$.

Combining (3-12) with (3-11), we obtain

$$(R(u, v) + R(v, u))^2 = 4x + 6\langle u, x \rangle v - 6\langle v, x \rangle u.$$

This completes the proof.

We denote 1/2(R(u, v) + R(v, u)) by J(u, v). Thus on $(\Phi u \oplus \Phi v)^{\perp}$, we have $J(u, v)^2 = \mathrm{Id}$, so $(\Phi u \oplus \Phi v)^{\perp} = \mathfrak{M}_1 \oplus \mathfrak{M}_{-1}$, where $\mathfrak{M}_{\varepsilon}$ is the eigenspace for the eigenvalue ε of J(u, v) for $\varepsilon = \pm 1$. Moreover, since $\langle -, - \rangle$ is nondegenerate, and its restriction to $(\Phi u \oplus \Phi v)^{\perp}$ is nondegenerate, we have

$$\mathfrak{M} = \Phi u \oplus \Phi v \oplus \mathfrak{M}_1 \oplus \mathfrak{M}_{-1}.$$

Since J(u, v)u = -2u(resp. J(u, v)v = 2v), these imply u(resp. v) is the eigenspace for J(u, v) with eigenvalue -2(resp. 2). Consequently we have the following decomposition of \mathfrak{M} ;

$$\mathfrak{M} = \mathfrak{M}_{-2} \oplus \mathfrak{M}_{-1} \oplus \mathfrak{M}_1 \oplus \mathfrak{M}_2,$$

where \mathfrak{M}_i is the eigenspace for the eigenvalue i of $J(u,v)(i=\pm 1,\pm 2)$. We call this decomposition the Peirce decomposition of a simple reduced balanced Freudenthal-Kantor triple system. We remark that all Peirce spaces \mathfrak{M}_i are totally isotopic (that is, $\langle \mathfrak{M}_i, \mathfrak{M}_{-j} \rangle \neq 0$ if i=j and $\langle \mathfrak{M}_i, \mathfrak{M}_{-j} \rangle = 0$ otherwise). Using results of the coordinatization of simple reduced Freudenthal triple system, we can prove following results in a manner analogous to that in [7].

Let $\mathfrak{M}=\mathfrak{M}_{-2}\oplus\mathfrak{M}_{-1}\oplus\mathfrak{M}_1\oplus\mathfrak{M}_2$ be the Peirce decomposition relative to a pair of supplementary rank one elements u and v. We define $t:\mathfrak{M}_1\to\mathfrak{M}_{-1}$ as follows; if for all $y\in\mathfrak{M}_1, \langle u,\langle yyy\rangle\rangle=0$, let a_1,\cdots,a_n be a basis for $\mathfrak{M}_1, a_{-1},\cdots,a_{-n}$ a dual basis for \mathfrak{M}_{-1} relative to $\langle a_i,a_{-i}\rangle=2$ and define t by $ta_i=2a_{-i}$; if there is $y\in\mathfrak{M}_1$, with $1/2\langle u,\langle yyy\rangle\rangle=\lambda\neq0$, define t by $ta=-1/4(\langle ayu\rangle+\langle auy\rangle)+3/8\lambda^{-1}\langle u,\langle ayy\rangle\rangle\langle uyy\rangle$.

Combining Propositions 2.2 and 2.3 with results of §4 in [7], we have the following lemma.

LEMMA 3.5. For t as above,

- (i) $\langle a, tb \rangle = -\langle ta, b \rangle$
- (ii) $\langle v, tatata \rangle = \lambda/12 \langle u, aaa \rangle$
- (iii) t is nonsingular
- (iv) $t\langle vtatb\rangle = -\lambda/12\langle uab\rangle$ for all $a, b \in \mathfrak{M}_1$.

We can next define a bilinear form B(,) and a cross product on \mathfrak{M}_1 as follows: $B(a, b) = \lambda^{-1}/6\langle a, tb \rangle$ and $a \times b = -\lambda^{-1}/2(\langle vtatb \rangle + \langle vtbta \rangle)$ if $\lambda \neq 0$.

$$B(a, b) = 1/6\langle a, tb \rangle$$
 and $a \times b = 0$, if $\lambda = 0$.

PROPOSITION 3.6. Under the above definition, we have the following identities on \mathfrak{M}_1 :

- $(1) a \times b = b \times a$
- (2) B(a, b) = B(b, a)
- (3) $B(a \times b, d) = B(a, b \times d)$
- $(4) \qquad ((a \times a) \times b) \times a = 1/3B(a, a \times a)b + B(b, a)a \times a$
- (5) $(a \times a) \times (a \times a) = 4/3B(a \times a, a) a$

PROOF. By the definition of the above bilinear form and cross product, the relations obtained from Lemma 3.5 yield the proof.

THEOREM 3.7. Let \mathfrak{M} be a reduced simple balanced Freudenthal-Kantor triple system over Φ . Then it holds $\mathfrak{M} \cong \mathfrak{M}(V)$, where V is a vector space equipped with the bilinear form B(a, b) and the cross product \times satisfying the relations (1) \sim (5) of Proposition 3.6.

PROOF. We can show that if $\lambda \neq 0$, then the map $f: \mathfrak{M}(V) \to \mathfrak{M}$ defined as follows is an isomorphism of balanced Freudenthal-Kantor triple systems;

$$\begin{pmatrix} \alpha_1 & a_1 \\ b_1 & \beta_1 \end{pmatrix} \longrightarrow 36 \lambda \alpha_1 v + 1/72 \lambda^{-1} \beta_1 u + a_1 + 1/6 \lambda^{-1} tb$$

if $\lambda = 0$, similarly.

$$\begin{pmatrix} \alpha_1 & a_1 \\ b_1 & \beta_1 \end{pmatrix} \longrightarrow 36\alpha_1 v + 1/72\beta_1 u + a_1 + 1/6tb_1.$$

As the proof of this isomorphism is very long and of strightforward calculations, we omit it.

Finally, from results of this paper, Theorem 6.8 and Theorem 7.4 in [7], we can obtain the following.

THEOREM 3.8. Let V(resp. V') be a Jordan triple system induced from an admissible cubic form N(resp. N') with basepoint c(resp. c'). Then the followings are equivalent

- (i) V and V' are isotopic.
- (ii) $\mathfrak{M}(V)$ and $\mathfrak{M}(V')$ are isomorpic.

References:

- [1] B. N. Allison,; A construction of Lie algebras from *J*-ternary algebras, Amer. J. Math. 98 (1976), 285-294.
- [2] B. N. Allison,; A class of nonassociative algebras with involution containing the class of Jordan algebras, Math. Ann. 237 (1978), 133-156.

- [3] H. Asano,; On triple systems, Yokohama Math. J. 27 (1975), 7-31 [In Japanese].
- [4] R. B. Brown,; Groups of type E_7 , J. Reine Angew. Math. 236 (1969), 79–102.
- [5] J. R. Faulkner,; A construction of Lie algebras from a class of ternary algebras, Trans. Amer. Math. Soc. 155 (1971), 397-408.
- [6] J. R. Faulkner, and J. C. Ferrar,; On the structure of symplectic ternary algebras, Nederl. Akad. Wetensch. Proc. Ser. A75 (= Idag. Math. 34 (1972), 247-256).
- [7] J. C. Ferrar,; Strictly regular elements in Freudenthal triple systems, Trans. Amer. Math. Soc. 174 (1972), 313-331.
- [8] H. Freudenthal,; Beziehungen der E_7 und E_8 zur Oktavenebene, I, II, Nederl. Akad. Wetensch. Proc. Ser. A57 (= Indag. Math. 16 (1954) 218–230. 363–368).
- [9] W. Hein,; A construction of Lie algebras by triple systems, Trans. Amer. Math. Soc. 205 (1975), 79-95.
- [10] N. Jacobson,; Lie and Jordan triple systems, Amer. J. Math. 71 (1949), 148-170.
- [11] N. Jacobson,; Some groups of transformations defined by Jordan algebras. I, II, III, J. Reine Angew. Math. 201 (1959), 178-195; Ibid 204 (1960) 74-98; Ibid 207 (1961), 61-85.
- [12] N. Jacobson,; "Structure and Representations of Jordan algebras". Amer. Math. Soc., Providence, R. I., 1968.
- [13] N. Kamiya,; A structure theory of Freudenthal-Kantor triple systems. J. Alg. 110 (1987), 108-123.
- [14] N. Kamiya,; A structure theory of Freudenthal-Kantor triple systems II, Comm. Math. Univ. Sancti Pauli. 38 (1989) 41-60.
- [15] I. L. Kantor,; Models of exceptional Lie algebrs. Soviet Math. Dokl. 14 (1973), 254-258.
- [16] K. McCrimmon,; A general theory of Jordan rings, Proc. Nat. Acad. Sci. U. S. A. 56 (1966), 1072-1079.
- [17] K. McCrimmon,; The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer. Math Soc. 139 (1969), 495-510.
- [18] K. Meyberg,; Eine Theorie der Freudenthalschen Tripelsysteme, I, II, Nederl. Akad. Wetensch. Proc. Ser. A71 (= Indag. Math. 30 (1968), 162-174, 175-190).
- [19] R. D. Schafer,; "An introduction to nonassociative algebras", Academic Press, New York/London 1966.
- [20] T. A. Springer,; Characterization of a class of cubic forms, Nedel. Akad. Wetensch. Proc. Ser. A65 (= Indag. Math. 24 (1962). 2459-265).
- [21] K. Yamaguti,; Remarks on characterizations of the points and symplecta in the metasymplectic geometry, Mem. Fac. Ed. Kumamoto Univ. Natur. Sci. 11 (1976) 1-8.
- [22] K. Yamaguti,; On the metasymplectic geometry and triple systems, Surikaisekikenkyusho Kokyuroku 306 (1977), 55-92 [In Japanese].
- [23] K. Yamaguti and H. Asano,; On the Freudenthal construction of exceptional Lie algebras, Proc. Japan Akad. 51 (1975), 253-258.