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In this paper, we give a construction of balanced Freudenthal-Kantor triple systems 

and investigate a structure of the Jordan triple systems associated with reduced balanced 

Freudenthal-Kantor triple systems 

Imtroductiom 

The triple systems studied here are a specialization of the class of Freudenthal-

Kantor triple systems given in [21, 22, 13], which is called balanced by 
ourselves. This triple system is a variation of Freudenthal triple systems [7, 1 8], 

symplectic ternary algebras [6] and symplectic triple systems [23]. This paper is a 

continuation of the previous articles [13, 14] . The main purpose of this article is to 

give followings 

( i ) A construction of Jordan triple systems from a vector space equipped with 

relations of a cross product and a bilinear form 

( ii ) A construction of balanced Freudenthal-Kantor triple systems from a class of 

vector matrices as follows 

b p, 
ce, Pe c, a, b e V 

where c is a base field, V is the Jordan triple system defined by (i) 

(iii) If a simple balanced Freudenthal-Kantor triple system W~ is reduced, then 

~~ ~; W~(V), where ~t(V) is the balanced Freudenthal-Kantor triple system defined 
by (ii). 

We shall be concerned with algebras and triple systems which are finite 
dimensional over a field c of characteristic different from 2 or 3, unless otherwise 

specified. We shall mainly employ the notation and terminology m [13, 14] 



34 Noriaki KAMIYA 

1
 

In this section, we shall give a construction of Jordan triple systems and 

consider the norm similarity 

THEOREM I . I . Let V be a vector space over an arbitrary fleld c equipped with a 

bilinear form B(a, b) and a cross product a x b satisfying the following conditions: 

(1) a x b = b x a 

(2) B(a, b) = B(b, a) 

(3) B(a, b x d) = B(a x b, d) 

(4) ((a x b) x e) x d + ((b x d) x e) x a + ((d x a) x e) x b 

= B(a x b, d)e + B(a, e)b x d + B(b, e)d x a + B(d, e)a x b 

for all a, b, d, ee V 

Then V becomes a Jordan triple system with respect to the triple product 

{xyz} = B(x, y)z + B(z, y)x - (x x z) x y. 

PRooF. By the definition of the triple product, it is clear that 

{xyz} = {zyx}. 

We compute as follows; 

{uv{xyz} } - { {uvx}yz} + {x{vuy}-'} - {xy{uvz} } 

= B(u, v) (B(x, y)z + B(z, y)x - (x x z) x y) 

+ B(B(x, y)z + B(z, y)x - (x x z) x y, v)u 

- (u x (B(x, y)z + B(z, y)x - (x x z) x y)) x v 

- B(B(u, v)x + B(x, v)u - (u x x) x v, y)z 

- B(z, y) (B(u, v)x + B(x, v)u - (u x x) x v) 

+ ((B(u, v)x + B(x, v)u - (u x x) x v) x z) x y 

+ B(x, B(v, u)y + B(y, u)v - (v x y) x u)z 

+ B(z, B(v, u)y + B(y, u)v - (v x y) x u)x 

- (x x z) x (B(v, u)y + B(y, u)v - (v x y) x u) 

- B(x, y) (B(u, v)z + B(z, v)u - (u x z) x v) 

- B(B(u, v)z + B(z, v)u - (u x z) x v, y)x 

+ (x x (B(u, v)z + B(z, v)u - (u x z) x v)) x y 

= - B((x x z) x y, v)u + (u x ((x x z) x y)) x v 

+ B(x, v) (u x z) x y - (x x z) x B(y, u)v 

- (((u x x) x v) x z) x y + (x x z) x ((v x y) x u) 

+ B(z, v)(x x u) x y - (x x ((u x z) x v)) x y 
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= (B(x, v) (u x z) - ((u x x) x v) x z 

+ B(z, v)(x x u) - x x ((u x z) x v)) x y 

( - ((v x (x x z)) x u) + B(x x z, u)v + B(v, u)x x z) x y 

(by the relation (4) of the assumption, that is, B((x x z) x y, v)u - (u x ((x x z) x y)) 

x v + (x x z) x B(y, u) v - (x x z) x ((v x y) x u) = ((v x (x x z)) x u) x y 

- B(x x z, u)v x y - B(v, u)y x (x x x)) 

= O. 

(by the relation (4)) 

This completes the proof. B 
If N is a cubic form on a vector space V and c e V a basepoint where N(c) = 1, 

then we can form the trace form 

T(x, y) = - e*ay log Nl. = (a* Nl.)(ay Nl.) - a* ayNl. 

of N at c. We say N is nondegenerate at c if its trace form is nondegenerate. For 

nondegenerate forms we have a unique quadratic mapping x -> x# in V defined by 

T(x#, y) = ey N I*. We say a nondegenerate cubic form N and basepoint c are 

admissible if the adjoint identity x## = N(x)x holds under all scalar extensions 

(see [17]). We denote this vector space V by ~5*(N c) For ch c ~ 2, 3, to apply 

the case of our construction, we put 2x# = x x x, T(x, y) = B(x, y) and N(x) 

= 1/3 T(x#, x). We can easily show that if N(x) x = x##, then 4/3B(x x x, x) 
x = (x x x) x (x x x). Also these identities yield the relation x x (x# x y) = N(x) y 

+ T(x, y) x# (by the argument of density of V). Hence this result implies that 

((x x x) x y) x x = 1/3B(x x x, x) y + B(x, y)x x x, 

which reduce the relation (4) of the assumption in Theorem 1. Thus we obtain the 

following corollary 

COROLLARY [17] . If the cubic form N and basepoint c are admissible then 
;5=(N, c) is a Jordan triple system with respect to the triple product 

{xyz} = T(x, y) z + T(z, y) x - (x x z) x y. 

THEOREM 1.2. Let V be a vector space over a field c of characteristic ~ 2 or 3 

equipped with a bilinear form B(a, b) and a cross product a x b satisfying the relations 

(1) - (4) of Theorem 1.1 and the following conditions ; 

(5) (a x b) x (e x d) + (b x e) x (d x a) + (e x a) x (b x d) 

= B(a x b, e)d + B(a x e, d)b + B(a x d, b)e + B(b x e, d)a, 

(6) there exlsts an element c e V such that 

x x c = B(x, c)c - x for all xe V 

Then it holds 
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x3 - T(x)x + S(x)x N(x)c = O 

and x x x = 2x2 - 2T(x)x + 2S(x)c for all xe V, 

where x3 = l/2{xxx}, x2 = 1/2{xcx}, T(x) = B(x, c), S(x) = 1/2B(x x x, c) and 

N(x) = 1/6B(x x x, x). 

PRooF. From x3 = 1/2 {xxx} and x2 = 1/2 {xcx}, we have 

x3 - B(x, c) x2 = 1/2{xxx} - 1/2B(x, c) {xcx} 

= B(x, x) x - 1/2(x x x) x x - 1/2B(x, c) (2B(x, c) x - (x x x) x c) 

= (B(x, x) - B(x, c)2) x - 1/2(x - B(x, c) c) x (x x x). (1-1) 

On the other hand we have 

B(x x y, c) = B(x, y x c) 

= B(y, c) B(x, c) - B(x, y) (by the relation (6) of the assumption) . 

If we put y = x, then this implies that 

B(x x x, c) = B(x, c)2 - B(x, x). 

Combining this with the identity (1-1), we get 

x3 - B(x, c)x2 = - B(x x x, c)x + (x x c) x (x x x). (1-2) 

By the relation (5) of the assumption, we have 

(x x c) x (x x x) = 1/3B(x x x, x) c + B(x x c, x) x. (1-3) 

From (1 2) and (1 3) rt follows that 

x3 - B(x, c)x2 + 1/2B(x x x, c)x - 1/6B(x x x, x) c = O. 

Hence this yields that 

x T(x) x + S(x) x N(x) c = O, 

where T(x) = B(x, c), S(x) = 1/2B(x x x, c) and N(x) = 1/6B(x x x, x). Also, it 

follows from x x c = B(x, c) c - x that 

(x x x) x c = B(x x x, c) c - x x x. 

From this identity and the identity x2 - T(x) x = - 112(x x x) x c, we obtain 

x2 - T(x)x = - 1/2(B(x x x, c)c - x x x), 

which implies x x x = 2x2 - 2T(x) x + 2S(x),c. This completes the proof. BBl 

THEOREM 1.3. Let V(resp. V') be a vector space over an infinite field c of 

characteristic ~ 2 or 3 equipped with a nondegenerate bilinear form B(a, b) 
(resp. B(a, b)') and a cross product a x b(resp, a' x b') satisfying the relations (1), (2), 
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(3) and (5) of Theorem 1.2 (resp. (1)', (2)', (3)' and (5)'). If a mapping g is invertible 

( = Iinear and bljective) from V onto V', then the followings are equivalent: 

(i) B(ga x ga, ga)' = AB(a x a, a) ~ec*, for all aeV 

(ii) g is an isotopy of the Jordan triple system with respect to the triple product 

{xyz} = B(x, y) z + B(z, y) x - (x x z) x y. 

Furthermore, in the case of (ii), we have 

g(x x y) = ~~x x ~y, ~(a x b) = A-1ga x gb 

and B(~a, gb)' = B(a, b), where B(g*a', b) = B(a', gb)' and ~ = g*~l 

PRROF. (i) => (ii) If g is a bijective linear mapping, one may define a bijective 

Imear mapping g* of V' onto V by 

B(g*a', b) = B(a', gb)'. 

Hence we have 

B(ga x ga, ga)' = B(g*(ga x ga), a). (1~) 

From the assumption that B(ga x ga, ga)' = ~B(a x a, a) and B(,) is nondegenerate, 

we get 

g*(ga x ga) = ~a x a 

and so ~(a x a) = ~-1ga x ga, where ~ = g*~1 (1-5) 
Using (1-5), we obtain 

(ga x ga) x (ga x ga) ~2g^(a x a) x g(a x a) (1-6) 

By relation (5)' of the assumption, we have 

4B(ga x ga, ga)' ga = 3 (ga x ga) x (ga x ga) 

The left-hand side of equation (1-6) is equal to ' 

4/3 B(ga x ga, ga)' ga 

= 4/3 ~B(a x a, a) ga. 

Consequently, we get 

4/3 B(a x a, a) ga = ~~(a x a) x ~(a x a). 

Replacing a by a x a, we have 

4/3 B((a x a) x (a x a), a x a)g(a x a) 

= ~~((a x a) x (a x a)) x ~((a x a) x (a x a)). 

Using the relation (a x a) x (a x a) = 4/3 B(a x a a) a we get 
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(4/3)2 (B(a x a, a))2 g(a x a) = ~(4/3 B(a x a, a))2 ~a x ~a. 

By using a density argument, that is, B(a x a, a) ~ O for all a ~ O in V, we obtain 

g(a x a) = ~~a x ~a. 

In B(g* a', b) B(a gb) puttmg a g* a' we have 

B(a, b) = B(~a, gb)'. 

From the definition of the triple product 

{xyz} = B(x, y)z + B(z, y)x - (x x z) x y, 

we can see that 

9{xyz} = B(x, y)gz + B(z, y)gx - g((x x z) x y) 

= B(gx, ~y)' gz + B(gz, ~y)' gx - ~(~(x x z) x ~y) 

= B(gx, ~y)' gz + B(gz, ~y)' gx - (gx x gz) x ~y 

= {9x~ygz}'. 

Srmilarly we have 

~ {xyz} = {~xgy~z}'. 

(ii) => (i). Let g be an isotopy satisfying ~(x x y) = ~~'1 (gx x gy) and g(x x y) 

= ~~x x ~y. From g {xyz} = {9x~ygz}' and the definition of the triple product, 

we have 

B(x, y) gz + B(z, y) gx - (gx x gz) x ~y (1-7) 
= B(gx, ~y)' gz + B(gz, ~y)' gx - (gx x gz) x ~y. 

Putting x = z in the identity (1-7), we get 

B(x, y) = B(gx, ~y)'. (1-8) 
Replacing y by x x x in the equation (1-8), we have 

B(x x x, x) = ~~1B(gx x gx, gx)' 

(by ~(x x x) = ~-1(gx x gx)). 

This completes the proof. ~l 

Theorem 1.3 can be regarded as a generalization of the following proposition 

for a Jordan triple system 

PROPOSITION 1.4. [12] Let V and V' be reduced simple exceptional Jordan 
algebras. Then the following conditions are equivalent: 

(1) V and V' are isotopic, 

(2) V and V' are norm similar. 
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If A is a linear mapping of a vector space V equipped with a bilinear form 

B(x, y) and a cross product x x y mto itself satisfying 

B(Ax x x x) pB(x x x, x) for all x e V (1-9) 

where p e ep* is fixed and satisfying (1-9) for all field extensions of c, then A is said 

to be a Lie similarity of V Then we have the following; 

THEOREM 1.5. Let V be as in Theorem 1.3. If A is a linear mapping of V into 

itself, then the followings are equivalent; 

(i) A is a Lie similarity of V 

(ii) There exists a linear mapping A of V into itself satisfying 

A {xyz} = {Axyz} + {xA*yz} + {xyAz} 

where A* is the linear mapping of V into itself defined by B(A*x, y) = - B(x Ay) 

REMARK. The above theorem implies that the notion of structure algebra of the 

Jordan triple system V coincides that of Lie similarity. (for the definition of structure 

algebra, see [13]). In particular, if the cross product is zero, then an arbitrary linear 

mapping A of V is a Lie similarity, hence tf V has a nondegenerate bilinear form, the 

mapping A is a structure algebra of V 

2
 

In this section, we shall study a construction of the prototype of a balanced 

Freudenthal-Kantor triple system with 8 = 1 

For e = ~ 1, a tnple system U(8) with the triple product - > is called 

a Freudenthal-Kantor triple system if 

(Ul) [L(a, b), L(c, d)] = L(

,d)+8L(c, 

) 

(2- I ) 

(U2) K(K(a, b) c, d) - L(d, c) K(a, b) + 8K(a, b) L(c, d) = O, (2-2) 

where L(a, b) c = 

 and K(a, b) c = 

 - 

. 

DEFINITION. A Freudenthal-Kantor triple system is balanced if there exists an 

anti-symmetric bilinear form 

 such that K(x, y) = 

 Id, 

 e c* 

REMARK. From results in [14] , we note the following 

( i ) The case of e = - I does not occur in a balanced Freudenthal-Kantor triple 

s ystem. 

( ii ) A balanced Freudenthal-Kantor triple system is simple tf and only tf the anti-

symmetric bilinear form 

 is nondegenerate. (iii) The derivation of semisimple Freudenthal-Kantor triple systems over a field of 

characteristic O is a finite sum of inner derivations of L(a, b) + 8L(b, a) (denoted by 

S(a, b)). 
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Let V be a vector space over an arbitrary field c equipped with a bilinear form 

B(a, b) and a cross product a x b satisfying the following conditions 

(1) axb=bxa 
(2) B(a, b) = B(b, a) 

(3) B(a, b x d) = B(a x b, d) 

(4) ((a x b) x e) x d + ((b x d) x e) x a + ((d x a) x e) x b 

= B(a x b, d)e + B(a, e)b x d + B(b, e)d x a + B(d, e)a x b 

(5) (a x b) x (e x d) + (b x e) x (d x a) + (e x a) x (b x d) 

= B(a x b, e)d + B(a x e, d)b + B(a x d, b)e + B(b x e, d)a 

for all a. b. d. e e V 

In particular, for ch ep ~ 2, 3, 3(a x a) x (a x a) 4B(a a x a) a holds under 

two conditions that "a x b = O => a = O or b = O" (division property) and ((a x a) x b) 

x a = 1/3B(a x a, a)b + B(a, b)a x a. 

EXAMPLE. ;5=(N, c) satisfies the conditions (1) - (5) 

We can consider the set of vector matrices with coefficients in the vector space V 

as follows: 

In ~~(V), we 

~~(V) - b p 

shall introduce an 

oc, pe ep, a, be V 

operation ', that is, 

ocloc2 + B(al, b2) ocl al c(1a2 + p2al + bl x b2 oc2 a2 

b b 2 p2pl + B(a2' bl) 1 pl 2 p2 oc2bl + plb2 + al x a 

Next we shall use the following mapping to consider 

P: oc -oc '-> 

b p -b 

a triple 

p
 

product 

and 

p a 
b p b oc 

Thereby 

where 

we can define a triple product on ~~(V) as follows 

 = xl '(Px2 'x3) + x3 '(Px2 ' xl - ) Px ( x I ' x3) 

' bi pi e~~(V) x' = 

(2-3) 
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We have the following result on this vector matrix ~~t(V) 

THEOREM 2. 1. Let ~t(V) be the set of vector matrices of the above. Then 
(~~~(V), - > ) is a balanced Freudenthal-Kantor triple system with respect to 

the above triple product (2-3). 

PRooF. From the assumptions (1), (2), (3), (4) and (5) of vector space V, we can 

obtain this theorem by straightforward but very long calculations and we omit it. 

~l 

We call ~~t(V) the balanced Freudenthal-Kantor triple system induced from the 

Jordan triple system V satisfying the conditions (1) - (5) 

REMARK. For ch ep ~ 2, we note that 

 ploc2 - oclp2 + B(al' b2) - B(bl' a2) (2~) 
and 

y(xl' x2) = 4
 (2-5) where y(xl' x2) = 1/2[tr2(R(xl' x2) - R(x2' xl)) + L(xl, x2) - L(x2' xl)] 

DEFINITION [7, 1 8] . A Freudenthal triple system is a vector space ~Jt with 

tnlinear product (x, y, z) ~> [xyz] and anti-symmetric bilinear form (x, y) -> 

F such that 

(A1) [xyz] is symmetric in all arguments; 

(A2) qF(x, y, z, w) = 

F is a nonzero symmetric 4-linear form; (A3) [[xxx]xy] = 
 [xxx] + 
FX 

for x, y, z, w e ~~. 

PROPOSITION 2.2. If (W~, 

 ) is a balanced Freudenthal-Kantor triple 
'
 

'
 

system equipped with K(x, y) = 

 Id over a field ch c ~ 2, then (~~ . [ - , - , - J) is a Freudenthal triple system satisfying 

F = 1/2

 with respect to the 

triple product 

[xyz] := 1/2(

 + 

). 
PROoF. ( i ) By the balanced condition, we have 

 - 
 = - 
 + 
. 

Hence we have 

[xyz] = 1/2(

 + 

) 
= 1/2(

 + 

) 
= [yzx] . 

From the definition of triple product, we have 
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[xyz] = [xzy] . 

( ii ) Since L(x, y) - L(y, x) = 

Id, we have 
[L(x, y) - L(y, x), L(z, w)] = O. 

Similarly, [L(y, x), L(z, w) - L(w, z)] = O holds. Hence we get [L(x, y), L(z, w)] 

= [L(y, x), L(w, z)]. From (Ul) with 8 = 1, it follows that 

L(

, w) + L(z, 

) - L(

, z> - L(w, 

) = O. 

Therefore we obatain 

, w> + 
> = O. (2~5) 

Similarly, 
, w> + 
> = O holds. (2-7) 
On theother hand, we have 

F = 1/4(
> + 
 >) (2-8) where 

F = 1/2 

 (i.e., 

F: the anti-symmetric bilinear form induced from 

an antr-symmetric form 
 of balanced Freudenthal-Kantor triple system) Combining this with (2-7), we get 

F = 

F. 
(rm) From (Ul) wrth 8 = 1, we have 

y> = - 
xy>. (2-9) Puttmg z = x m K(y, z) x = 

 - 

, we have 2
 = 
 + 
. (2-10) 

Lmeanzing this relation, we get 

 + 
 = 1/2(
 + 
 + 
 + 
). (2-11) 

Replacing z = 
, we have 

> + 
 x> = 1/2(

> + 
y> 

+ 

 yx> + 

 xy>). Combining this with (2-9), we have 

> + 
 x> = 1/2(

 > + 
 yx>). (2-12) 

From K(x y) 

 = - L(x, y) 

 + L(y, x) 

, we have 
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> - 
> = - 
 
. (2-13) 

From L(
, y) x - L(y, 
)x = - K(
 y) x we have 

 yx> - 
 x> = - 
, y> x. (2-14) Therefore by (2-13) and (2-14), we have 

 > + 

 yx> - 

> - 

 x> 

= - 
 
 - 
, y> x. (2-15) 

From (2-12) and (2-15), we obtain 

 > + 

 x> = - 

 

 - 

, y> x. 

Consequently, by means of [xyz] = 1/2(

 + 

) and 

F = 1/2 

, 

we have 

[yx [xxx]] = 

F [xxx] + 

Fx. This completes the proof. ~l 
PROPOSITION 2. 3. If (~~, [ - , - , - I , 

F) is a Freudenthal triple system over a field of ch c ~ 2, then (~t, 

) is a balanced Freudenthal-Kantor triple system with respect to the triple product 

:= [xyz] + 

F x + 

F y + 

 z 

In this case, it holds K(x, y) = 2

F Id. 
PRooF. From the definition of triple system. we have 

 - 

 = 2

F Z and 

 - 

 = 2

F z. Hence we get 

K(x, y) = - L(x, y) + L(y, x) = 2 

F Id (balanced property) . Consequently, this yiels that 

K(K(x, y) a, b) - L(b, a) K(x, y) + K(x, y) L(a, b) = O. 

We shall next show that the following equality holds, 

 > = 

 bz> + 

 z> + 

 >. 

This is verified by using (A2) and the following relation, which can be obtained from 

linearizations of (A3) 
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[ [xaz] by] - [ [byz] ax] - [ [bya] zx] - [ [byx] za] 

= - 

F y - 

F u + 

F [xbz] + 

F [xba] 

+ 

F [baz] + 

F [yax] + 

F [xyz] + 

F [yza] . 

This completes the proof. Bl 

The Freudenthal triple system (~~, [ - , - , - J ) defined above is called the 

Freudenthal triple system associated with a balanced Freudenthal-Kantor triple 

system 
Let V = ~5*(N, c), and let the base field be characteristic zero. Then combining 

the above propositions with Satz 8, 4 in [18], we have dimensional formulas as 
f ollows; 

THEOREM. 2.4. Under the assumption of above, Iet T(~~~(V)) be the Lie triple 

system associated with ~t(V) and L(Wt(V)) be the standard imbedding Lie algebra. If 

dim W~:(V) = n, then we have 

dim Der ~t(V) = 3n(n + 1)/(n + 16). 

dim Anti-Der ~~~(V) = 1, 

dim T(~~(V)) = 2n and 
dim L(~~~(V)) = (5n2 + 38n + 48)/(n + 16). 

PRooF. Since the correspondence between the inner derivation S(x, y) of a 

simple balanced Freudenthal-Kantor triple system and the derivation D(x, y) of the 

Freudenthal triple system associated with it is given by 

S(x y) z 2D(x y) z 2[xyz] 2 

F x - 2 

F y, the theorem is verified. ~l 
On the other hand we have 

dim 2:C 1 2 4 8 

dim V 6 9 1 5 27 

dim 9~~(V) 14 20 32 56 

~l c b ~ie c, a, b, c e ~~. (a composition 

where V = ~2 a algebra over a field ep) 
b d ~ - : involution of the algebra ~~ 

(For composrtion algebras, see [12, 19]) 

Therefore, for simple balanced Freudenthal-Kantor triple system over an algebrai-
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cally closed field of characteristic O, from the fact that ~~t(V) is ~imple if and only if 

L(~?(V)) is simple [14] , we can obtain simple Lie algebras; 

dim 2~ 

Lie alg L(~~(V)) 

1 2 4 
8
 

F4 E6 E7 E8 

For E6, we note the followings: From dimension 78 of simple Lie algebras, it follows 

that there exist the type B6, C6 and E6' In our case, since the dimension of the 

simple Lie triple system is 40's, we can obtain the type of E6 

REMARK. If dim ~~: = O, then we have 

W~(V).- b p a=(~ ~ ~ ) b =(nl,n2'n3)' ~i, n･e~ 

1, 2' 3 ' t ' 
and B(a, b) = ~lnl + ~2n2 + ~3n3, a x a = 2(~2~3' ~l~3, ~l~2)' Hence by 
straightforward calculations it is shown that the Lie algebra L(~~(V)) is a simple Lie 

algebra of type D4 

Let 9~~(~) cc y a,P,y,~e~ B(oc, p) = c~p 
'~ 6 p 

and cross product be identically zero. Then it is clear that this matrix set ~~t(c) 

satisfies conditions (1) - (5). Therefore if c is an algebraically closed field of 

characteristic O, then the standard imbedding Lie algebra L(~(c)) is a simple Lie 

algebra of type G2' 

3
 

In this section, we shall consider a coordinatization theorem of simple reduced 

balanced Freudenthal-Kantor triple systems 

From now on we restrict our attention to simple balanced Freudenthal-Kantor 

triple systems ~~ over a field of characteristic ~ 2 or 3 

DEFlNITION. u e W~ is rank one tf 

L(u, u) = O. (3-1) 
REMARK. If an element a is rank one in the vector space V equipped with the 

conditions (1) - (5) in Section 2(that is, a x a = O and a ~ O), then the element 

c(a is rank one in ~~(V), where oc is an arbitrary element in ~ 

OO 
- , - , - >) be a balanced Freudenthal-Kantor triple LEMMA 3.1. Let (~~,
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system and (~0~,[ - , - , - l) be the Freudenthal triple system associated with it. 

Then an element u is rank one in (~~t,

) tf and only tf u is strictly regular in (~~,[ - , - , - l). (for the definition of strictly regular element, for example [7]) 

PROOF. "only if" : Let 
 = O for all x e~ Smce 
u 
 

- 
, we get 

 = - 
 u. (3-2) On the other hand, by the balanced property, we have 

 u = - 
 + 
 (3-3) 

Form (3-2) and (3-3), it follows that 

 = - 2 
u (3~) By the definition of the tnple product 

[xyz] = 1/2(

 + 

), we obtain 

[uxu] = - 

 u, 
which implies that u rs strictly regular in (~~: . [ - , - , - I ) 

"if" Let u be stnctly regular. From the equation (5) in [7, p317], we have [uuy] 

= 2

F u, where 

F is the anti-symmetric bilinear form of Freudenthal 
triple sytem. From Propiosition 2.3. we get 

 = [uuy] + 2 

F u. 
Therefore we obtain 
 = O for all y e ~)~. This completes the proof. Bl 

DEFlNITION. A balanced Freudenthal-Kantor triple system ~~ is said to be 

reduced if ~~ contains a rank one element u 

DEFlNITION. A pair of rank one element (u, v) is said to be supplementary if 

K(u, v) = 2ld. (3-5) 
PROPOSITION 3.2. Let Wt be a simple balanced Freudenthal-Kantor triple system 

Then ~~ is reduced tf and only tf Wt contains a pair of supplementary rank one 
elemen ts. 

PRooF. Combining the above lemma 3.1 with Theorem 3.3 in [7], we can 
easily show the proposition. B 

COROLLARY. Let ~~: be a simple balanced Freudenthal-Kantor triple system and 

q(x):= 

, x> be a nonzero 4-linear form of ~t. Then ~)~: is reduced tf and only = - 24p2, peep*. tf W~ contains an element x with q(x) 
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REMARK. Let ~0~ be a balanced Freudenthal-Kantor triple system. Then for 
the 4-1inear form q(x, y, z, w) = 

, w> in x, y, z, w e ~~, we have the following identies by straightforward calculations; 

q(x, y, z w) q(w, z, y x) = q(y, x, w, z) = q(z, w, x, y). 

In particular, 

q(x, x, x, y) = q(x, x, y, x) = q(x, y, x, x) = q(y, x, x, x) 

Furtheremore, we have 

q(S(x, y)z,z, z z) O for all x, y, z e~~ 

where S(x, y) = L(x, y) + L(y, x). 

PROPOSITION 3.3. Let W7: be a simple balanced Freudenthal-Kantor triple 
system. If the 4-linear form q(x) is identically zero, then it holds 

 = 1/2(

 

z + 

x + 

y), for all x,y,ze~. PRooF. By the fact that 

 is nondegenerate if and only if ~~ is simple, and from linearizing of 

, x> = O and the above remark it follows that 
 = O for all xe~~. 

Linearizmg the identity 

 = O, we have 

 + 
 + 
 = O. (3-6) 

From the assumption to be balanced, we have 

 = 2 
 - 
. (3-7) 

Combining (3-6) with (3-7), we get from ch ~ ~ 3 

 = O. 

Hence we have 

 = - 

 x. Linearizing this identity, we have  + 
 = - 
 z - 
 x. (3-8) 

On the other hand, we have 

 - 
 = 
 y. (3-9) 

From (3-8) and (3-9), we obtain 

 = 1/2(
 z + 
 x + 
 y). ~ 

LEMMA 3.4. Let (u, v) be a pair of supplementary rank one elements of simple 

balanced Freudenthal-Kantor triple system ~J~. Then it holds 

1/4(R(u v) + R(v u))2 x = x + 3/2

 v - 3/2

u 
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ノ加α〃x∈9睨．

　　　PR00F．From　（U1）with　ε：1，we　obtain　the　b11owing　re1ation　by
stra1gh価orward　ca1cu1at1ons

　　　　　　　　　R（C，のR（0，わ）X＝R（α，〈わC∂〉）X－L（わ，C）R（α，∂）X

　　　　　　　　　　　　　　　　　　一〃（わ，6）〃（α，c）x，　　　　　　　．（3二10）

where－R（o，わ）x＝〈朋わ〉and〃（α，c）x＝〈αα〉　By　makmg　use　the　re1at1on（3－10），

we　have

　　　　　　　　　　R（ω，o）R（〃，o）x：R（〃，〈oω〉）x－L（o，〃）R（〃，o）x

　　　　　　　　　　　　　　　　　　　一ルπ（o，o）ルπ（ω，〃）x

　　　　　　　　　　　　　　　　　　　＝R（〃，一2〈o，〃〉o）x－L（〃，ω）R（ω，o）x

　　　　　　　　　　　　　　　　　　　－4〈o，〈〃，x〉〃〉o

　　　　　　　　　　　　　　　　　　　（by（3＿4））

　　　　　　　　　　　　　　　　　　　＝4R（〃，o）x＿1二（o，μ）R（〃，o）x＋8〈〃，x〉o．

　　　　　　　　　　　　　　　　　　　（by〈ω，o〉＝2）

S1m11ar1y，we　have

　　　　　　　R（o，ω）R（o，〃）x＝一4R（o，ω）x－L（ω，o）R（o，ω）x－8〈o，x＞〃．

Hence　we　get

　　　　　　（R（・，・）十R（・，・））2・＝（4R（ω，・）一L（・，μ）R（・，・）十R（ω，・）R（・，ω）

　　　　　　　　　　　　　　　　　　　十R（o，〃）R（ω，o）一4郎，’〃）一L（〃，o）R（砂，〃））x

　　　　　　　　　　　　　　　　　　　＋8〈ω，x〉・一8〈・，x〉ω．　　　　　　（3－11）

We　com－Pute

　　（4R（μ，o）＿1二（o，〃）R（〃，o）十R（ω，o）R（o，μ）

　　　十R（o，〃）R（ω，o）＿4R（o，ω）＿L（ω，o）R（o，ω））x

　＝（4R（〃，〃）x＿2R（〃，o）x＋〈R（〃，o）x，〃〉o

　　　＋2R（o，〃）x＋〈R（o，ω）x，o〉〃＿4R（o，〃）x

（by　means　of　the　re1at1ons，

　　　一L（o，ω）γ十R（o，ω）γ＝一2γ十〈γ，〃〉oわra11γ∈㎜

　　　一L（ω，・）・十R（〃，o）・＝2・十〈・，o〉〃　わra11・∈卿）

　＝2R（〃，o）x－2R（o，〃）x＋〈R（〃，o）x，ω〉・十〈R（o，〃）x，・〉〃

　：4x＋〈R（μ，・）x－2x，ω〉・十〈郎，ω）x＋2x，・〉ω

（by　means　of　the　re1at1on，

　　　R（・、・）x－R（・，・）x＝2x＋〈x，・〉・十＜μ，x〉・）

　＝4・十2〈・，・〉卜2〈x，・〉・　　　　　　　　　　　　（3－12）
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(by means of the relations; 

, u> = - 

> = 4

 
, v> = - 

> = - 4

)-
Combining (3-12) with (3-11), we obtain 

(R(u v) + R(v u))2 = 4x + 6

v - 6

u. This completes the proof. ~l 
We denote 1/2(R(u, v) + R(v, u))by J(u, v). Thus on (cue) ~v)i, we have 

J(u, v)2 = Id, so (cu~ ~v)i = ~~~i ~) ~~_1, where ~~:, is the eigenspace for the 

eigenvalue e of J(u, v) for 8 = ~ 1. Moreover, since 

 is nondegenerate, and its restriction to (cu ~ cv)i is nondegenerate, we have 

~~ = cu ~ cv ~) W~l ~ W~_1. 

Smce J(u, v) u = - 2u(resp. J(u, v) v = 2v), these imply u(resp. v) is the eigenspace for 

J(u, v) with eigenvalue - 2(resp. 2). Consequently we have the following 
decomposirion of ~~; 

~~ = 9~t_2 ~ ~~~_1 ~ ~U~l ~ ~J~2, 

where 9~~i is the eigenspace for the eigenvalue i of J(u, v) (i = ~ 1, :1: 2) . We call 

this decomposition the Peirce decomposition of a simple reduced balanced 
Freudenthal-Kantor triple system. We remark that all Peirce spaces ~a~i are totally 

isotopic (that is, 

 ~ O if i = j and 

 = O otherwise). Using 

results of the coordmatization of simple reduced Freudenthal triple system, we can 

prove following results in a manner analogous to that in [7] 

Let ~~~ = 9g~_2 ~ ~~:_1 ~ W~1 ~ ~~2 be the Peirce decomposition relative to a 

pair of supplementary rank one elements u and v. We define t:Wtl ~> Wt _ I as 
follows;if for all y e ~;il' 

>= O, Iet al""'a~ be a basis for ~~l, a_1""' a_~ a dual basis for ~t_1 relative to 

= 2 and define t by tai = 2a_i;if there is ye~~~l' wrth 1/2
> ~ ~ O define t by ta = - 1/4(
 + 
) 

+ 3/8~- I 

 > 

 . 
Combining Propositions 2.2 and 2.3 with results of S4 in [7] , we have the 

following lemma 

LEMMA 3.5. For t as above, 
( i ) 

 = - 

 
(ii) 

 = ~/12 

 

(iii) t is nonsingular 

(iv) t
 = - ~/12
 

for all a, be~0tl. 

We can next define a bilinear form B(,) and a cross product on ~~l as follows 

B(a, b) = ~-1/6

 and a x b = - A-1/2(

 + 

) if h ~ O. 
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B(a, b) = 1/6

 and a x b = O, if ~ = O. 
PROPOSITION 3.6. Under the above definition, we have the following identities on 

~l : 

(1) a x b = b x a 
(2) B(a, b) = B(b, a) 

(3) B(a x b, d) = B(a, b x d) 

(4) ((a x a) x b) x a = 1/3B(a, a x a) b + B(b, a) a x a 

(5) (a x a) x (a x a) = 4/3B(a x a, a) a 

PRooF. By the definition of the above bilinear form and cross product, the 

relations obtained from Lemma 3.5 yield the proof. ~l 

THEOREM 3.7. Let ~~ be a reduced simple balanced Freudenthal-Kantor triple 

system over ep. Then it holds Wt ~; ~0~(V), where V is a vector space equipped with 

the bilinear form B(a, b) and the cross product x satisfying the relations (1) - (5) of 

Proposition 3.6. 

PRooF. We can show that if A ~ O, then the map f:Wt(V) -> ~? defined as 
follows is an isomorphism of balanced Freudenthal-Kantor triple systems 

ocl al _> 36~oelv + 1/72~-1plu + al + 1/6~~Itb 

bl pl 
if A = O, similarly 

ocl a bl pl _ 36cc v + 1172p u + a + 116tb 

As the proof of this isomorphism is very long and of strightforward calculations, we 

omit it. B 
Finally, from results of this paper, Theorem 6.8 and Theorem 7.4 m [7] , we 

can obtain the following. 

THEOREM 3.8. Let V(resp. V') be a Jordan triple system induced from an 
admissible cubic form N(resp. N') with basepoint c(resp. c'). Then the followings are 

equivalent 

(i) V and V' are isotopic. 

(ii) ~~(V) and ~t(V') are isomorpic. 
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