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We have proposed stochastic quantization procedure in Minkowski space-ttme m prevrous 

papers. That formulation , however, was done with non-Gaussian white noises. In this article 

we show that the equivalent formulation is possible with Gaussian white noises. This will be 

useful for the application to numerical analysis though manifest covariance of the theory under 

Lorentz transformation is lost. The covariance is restored at the Green function level 

S1. Imtroduction 

After the proposal of stochastic quantization method as a new quantization 

procedure by Parisi and Wu [1], many people have discussed the application of this 

method to many types of fields [2]. In most of them including the Parisi and Wu's 

original paper, however, quantization is done in Euclidean space-time. This is because 

Mmkowski action is not positive-definite in general and then a solution of the Langevin 

equation does not approach an equilibrium state. Minkowski stochastic quantization 

has been formulated by analytic continuation from Euclidean to Minkowski space-time 

l.e. t->it. [3, 4, 5] In this formulation action becomes a complex number so that the 

solution of the Langevin equation oscillates. Then a dumping factor must be 

introduced to action in order to make the solution converge. However, such 
introduction of the dumping factor to action may violate some symmetries such as gauge 

or ch-iral invariances because this dumping factor is a very imaginary mass term. [4] 

In prevrous papers the present author has proposed a new Minkowski quantization 

procedure. [6, 7] Instead of addition of such a dumping factor to action, we introduced a 

kernel to the Langevin equation in order to make a solution converge. We discussed 

applicatron of this method to a scalar, a nori-Abelian gauge and a fermion fields. We 

found that we can derive chiral anomaly, which coincides with that from the other 

conventional quantization methods, though this formulation is chirally symmetric even if 

it is regularized. [7] 

In this formulation, however, the white noises are not Gaussian but have the 

correlation as 

 = i~4(x-y)6(t- t'), (1.1) 
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for a scalar field for example. Here we suppose that the noises n and n* are both real 

numbers but their distribution function is a complex one. The above equation does not 

have any trouble for formal calculation. But it won't be applicable straight- forwardly 

to numencal comDutation 

We show in this paper that an equivalent formulation is possible with Gaussian 

white noises. It is done by recombining the white noises. The white noises for the 

scalar field are only rearranged while the noises for the vector field must be rearranged 

and doubled at the same time. Such a doubling of freedom of the noises were originally 

proposed by Nakazato et. al. [5] Manifest covariance of the theory for the vector field 

under the Lorentz transformation is lost though it is restored at the Green function level 

The plan of this paper is as follows. In the next section we shortly review our 

original proposal for Minkowski stochastic quantization with non-Gaussian white 

norses. We will drscuss the scalar and the vector field cases. In S3 we show the 

equivalent formulation with the Gaussian white noises. The last section is devoted to 

conclusion. We use the metric convention gu~ = ( - , + , + , + ) 

S2. Minkowski stochastic quantizatiom 

We consider at first the scalar field whose Minkowski action is given by 

1
 S d x ;auipauip-~m2ip2-V(c) (2. 1) 

The Langevin equation for this field is supposed as 

atc(x, t) d y K(x y) -6ip +n(y, t) +n*(x, t) 
c ~c (y, t) 

The correlations of the white noises n and n * are 

 = i64(x - y)6(t - t'), 

 = 
 =0, 

Then it is obvious as mentioned before that these noises are not Gausslan 

The kernel K(x - y) is defined by 

[[1 - m2].K(x - y) = ~4(x - y), 

Then the Langevin equation (2.2) rs rewntten as 

eS e 4Kx, t) c(x t)+ d y K(x y) +n(y, t) +n*(x, y). 

at ~ 6ip c _c (y, t) 

(2.2) 

(2.3) 

(2.4) 

(2.2') 
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' ' given iteratively from A solution of the above equation rs 

4~:x t) dT e'~t d4y K(x - y)n(y, T) + n*(x, T) 

+ e~tc(x, O). + dT e'~t d4y K(x-y}~, 
o ~ip c-c (y, t) 

Convergence of the solution is obvious at least in perturbatrve sense 

The Schwinger-Dyson equation [8] is grven as 
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(2. 5) 

60(c) 6S ~20(c) d4xd4y K(x y) >.q=0, (2.6) 6 ip(x) 8 ip( y) 6 ip(x)~ ip( y) 

where 

 .q means equilibrium limit of t->00 and O(ip) denotes a product of c(x).[5] From this equation we can derive the Green function. If we put O(c) = c(x)ip(y) as an 

example, we have 

 = AF(x y) + (mteraction terms) (2.7) 
'q 

Next we consider the non-Abelian gauge field A~ whose action is 

1
 S = -~ d4x F u~F*P~ (2.8) 

The Langevin equation is given by 

a
 etA~(x, t) 

aS b ~K"b(x, y; t) - d4y K"b(x, y; t)* 5A~(y, t) ~ np(y, t) + i d4y ~A~(y, t) (2.9) 

+ n~u(x, t) . 

The correlations of white noises ~* and n*p are defined as 

 = i ~"bgp~~4(x - y)6(t - t'), (2.10) 

*b > 
 = O. 

Then they are not Gaussian again. The kernel K(x, y; t) is defined by 

V"ub(x, t)Vbu.(x, t)K'd(x, y; t) = 6"d~4(x - y), 

which depends on gauge field A~ for the sake of the gauge invariance of the Langevin 

equation. The additional term in (2.9) is necessary for the equivalence to the other 
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[6] The Schwinger-Dyson equation is derived as 

8
  .q = O 

~A~( y) 
(2. 1 2) 

S3･ Gaussiam white moises 

In the previous section we review our procedure for Minkowski stochastic 

quantization. It is formulated with non-Gaussian white noises. This point, of course, 

does not cause any trouble for formal calculation. This procedure, however, is not 

applicable to numerical analysis straightforwardly 

One should note that in derivation of the Green function correlation between the 

terms consisting of white noises in the Langevin equation is essential but the detail 

structures of these terms are unimportant 

Now we construct the equivalent formulation with Gaus~ian white noises. We 

discuss the scalar and the gauge fields separately 

i) Scalar field 

We rearrange the white noises n and n* into complex numbers as 

n = nl + in2, 

n* = inl + n2 , (3'1) 
where n I and n2 are both real numbers. Correlation between them is given as 

 = 1/2 6ij84(x - y)8(t - t'), (3.2) 

Then it is obvious that they are G.aussian. Correlation between n and n* is given 

identically as (2.3). Though white noises n and n* are complex numbers in this 

formulation, it rs easily confirmed that the same Schinger-Dyson equation as (2.6) 

holds. Thus recombining the white noises we obtain the equivalent formulation for the 

scalar field with Gaussian white noises. 

n) Gauge field 

As is shown below, we must extend freedom of the white noises. We put 

N 
nu= ~ Cin~, 

i= 1 

n*u= ~ C*in" 
i=1 

where n~ is a real number while Ci and C*iare complex nuumbers. Note that C*iis not 
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complex conjugate to Ci 

Now we prove that N must be more than three. Correlations we have to set up are 

 = igu"84(x - y)6(t - t'), 

 = 
 =0. (3.4) Let us suppose that correlation of n~ is given as 

 = ~ijT;'~.84(x - y)6(t - t'). (3.5) 

where Ttu~ is a positive definite matrix. Then n; is a Gaussian white noise 

Substituting (3.3) into (3.4) we have 

N 

~ .T! =iguv' (3'6) L CiC*' /~~ 
i=1 

N 
~ CiCiT~~ = O. (3'7) 
i= 1 

N 

~ C .C .T~~=0. (3･8) ** *' 
i= 1 

It is obvrous that N = I is forbidden because from (3.7) or (3.8) we have T'u~ = O, which 

contradicts (3.6) 

If N=2, we have Tlcl)T2 from (3.7) or (3.8). Then we find Tu1~(/)Tu2~C/)gu" which is 

inconsrstent wrth the assumption that T'u~ is positive definite 

For N = 3 we must discuss two possible cases: a) eqs. (3.6~(3･8) are all linearly 

independent of each other, and b) they are not independent 

a) We can eliminate one of Ti, say T3, from (3.7) and (3.8). Then we have 
Tu1~rf)Tu2~. This show that Tu3. is proportional to the other T~.'s. From (3.6) Ti is equal 

to gu" up to a numerical factor. Ti is not positive definite again 

b) When (3.7) and (3.8) are not independent of each other, we have 

(C2)2 (C*2)2 (C3)2 (C*3)2 

(Cl)2 (C*1)2 ' (C1)2 (C*1)2 ' (3.9) 
which grve 

C2= +CIC*2 C = +CIC*3 

~ C*1 ~ C*1 (3'10) From (3.6) and the above equations we have 
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(C*1)2T;~+(C*2)2T2 +(C*3)2Tu3~- 'C*1 ' (3.11) 

gu~ . l Cl 

- u" -
With (3.8) we can eliminate two T's in L.H.S. on the above equation. Then we find that 

T Ieft is proportional to gu", which contradicts the assumption on T agam 

When N = 4, we may put 

C1 = 1, C*1 = i, 
C2 = 1, C*2 = - l 
C3 = - i, C*3 = 1, 

C*4= 1. 

We obtain from (3.6~(3･8) 

T;~ - T~･ - T~~ + 7~:u~ = gu~ (3. 1 3) 

T;*+ Tp2~-T3 -T4 =0. 
u~ u~ 

Then we set 

Tpl~= Tu4~=(1/2, 1, 1, 1), (3.14) 
Tp2~ = Tu3~ =(1, 1/2, 1/2, 112), 

for example so that ~u and ~*u satisfy (3.4). We conclude, therefore that N must be more 

than 3. N = 4 implies that freedom of the white noises is doubled 

The positive-definite matrices T is not a constant Lorentz tensor. Therefore, this 

formulation with the Gaussian white noises is frame-dependent. The covariance under 

Lorentz transformation is restored at the Green function level 

S4. Conclusion 

In this article we have proposed the Minkowski stochastic quantization method 

with Gaussian white noises. This will make it possible to deal with the Langevin 

equation numerically, e.g. we can obtain scattering cross section from the Langevin 

equation by numerical calculation. 

The essence of this formulation is that we can make the non-Gaussian white noises 

Gaussian by recombining their components and expanding their freedom. The present 

author conjecture that every type of non-Gaussian white noises can be made Gaussian by 

such procedures. 

The wh.ite noise in the Langevin equation is naively understood to cQrrespond to 

quantum fluctuation of the field. Then what is the physical meaning to expand its 
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freedom? To ansWer this question implies that we can understand stochastic 

quantization method more deeply 

Ref erences 

[ I J G. Parisi and Wu Yong-Shi, Sci. Sin. 24 (1981), 483. 

[ 2 J See as a review P. H. Damgaard and H. Huffel, Phys. Rep. 152 (1987), 228 

[ 3 1 H. Htiffel and H. Rumpf, Z. Phys. C29 (1985), 319. 

H. Rumpf, Phys. Rev. D33 (1986), 942. 

E. Gozzi, Phys, Lett. 150B (1985), 119. 

[ 4 J Huffel and P. V. Landshoff, Nucl. Phys. B260 (1985), 545. 

[ 5 J H. Nakazato and Y. Yamanaka, Phys. Rev. D34 (1986), 492 

H. Nakazato, Prog. Theor. Phys. 77 (1987), 20, 802L. 

[ 6 J J. Sakamoto, Prog. Theor. Phys. 80 (1988), 190. 

[ 7 J J. Sakamoto and A. Sugisawa "Minkowski Stochastic Quantization of Fermion Field and Chiral 

Anomaly", Shimane Univ. preprint, 1988. To appear in Prog. Theor. Phys. Vol. 81 No. I (1989) 

[ 8 J Z. Bern, M. B. Halpern, L. Sadun and C. Taubes, Phys. Lett. 165B (1985), 151, Nucl. Phys. B284 (1987), 

1, 35, 92. 


