島根大学地球資源環境学研究報告 **20**,69~82 ページ (2001 年 12 月) Geoscience Rept. Shimane Univ., **20**, p.69~82 (2001)

Article

Whole–rock geochemical compositions of Miocene sedimentary and volcanic rocks from the Izumo–Matsue districts and Shimane Peninsula, SW Japan

Barry Roser*, Yoko Tateishi* and Katsuhiro Nakayama*

Abstract

Miocene backarc clastic sediments crop out in a strip along coastal Shimane prefecture between Izumo and Matsue, and in Shimane Peninsula. New XRF analyses of 147 sandstones, mudrocks and associated volcanic rocks from the Koura, Ushikiri, Omori, Fujina, Jinzai and Matsue Formations show considerable compositional variation occurs over relatively short stratigraphic intervals. Koura Formation sandstones have Upper Continental Crust (UCC) –normalized multielement patterns intermediate between interbedded felsic tuff and coeval andesite. Turbidite sediments from the Ushikiri Formation at Chikumi also have andesitic patterns, but shallow water equivalents in the Omori Formation near Izumo exhibit dacitic signatures identical to the volcanic rocks on which they rest. Elemental abundances in the overlying Fujina Formation are depleted relative to UCC, suggesting influx of weathered plutonic detritus. Similar signatures occur in the Jinzai Formation, except for localized basaltic contributions around the Jinzai Basalt edifice. Sediments of the Matsue Formation, which is correlative with the Jinzai Formation, also have depleted patterns indicative of plutonic source, but carry signatures suggestive of more intense source weathering and more advanced sorting in a shallower water depositional environment. The stratigraphic and lateral variations observed reflect relatively proximal deposition, complex source geology, and sediment supply from restricted catchments.

Introduction

Neogene sedimentary, volcanic and lesser intrusive rocks crop out extensively in the Izumo-Matsue district and in Shimane Peninsula, forming a coastal strip adjoining a largely Paleogene intrusive basement that forms uplands to the south (Fig. 1). The sediments were deposited in a rifted backarc basin during and after the Early to Early middle Miocene opening of the Japan Sea (Kano, 1998). The Miocene sequence in the area has been the subject of numerous studies which have spanned many aspects of its general geology, sedimentology, and paleontology (e.g. Takayasu, 1986; Kano *et al.*, 1989; 1991; 1994; 1997; Morita and Nakayama, 1999). The succession is thus well mapped, and a broad stratigraphy has been established.

Geochemical studies of clastic sediments have become common in recent years, as an additional lever to help understand the provenance, tectonic setting and evolution of sedimentary sequences. The environments examined in such work range from immature volcanic arcs through to passive continental margins. Very few studies, however, have specifically examined the composition of sediments deposited in known or demonstrable backarc settings. Geochemical signatures of sedimentary successions deposited in this environment are thus not well known.

The Miocene succession in west Shimane Prefecture gives a good opportunity to examine the compositions of backarc sediments, because its backarc setting is clearly established. Although several geochemical studies of sediments have been carried out in this area, they have focussed on the compositions of shales, and data for sandstones are lacking. As a first step in fully characterizing the geochemical signatures of the Miocene succession in this area, we have acquired comprehensive whole-rock XRF data for a collection of 147 sandstones and mudrocks from the Izumo district, Matsue City, and Shimane Peninsula (Fig. 1). Most of the samples are from the Omori, Fujina, Jinzai and Matsue Formations (Izumo and Matsue), with a lesser number from the Ushikiri and Koura Formations in Shimane Peninsula. A small number of analyses of coeval volcanic rocks are also included in the database, to permit evaluation of potential source compositions.

The primary purpose of this report is to outline the coverage of the sample suite and to present the raw data, for later use in a more detailed interpretive paper. However, we also briefly examine the geochemical variability within the database. The results show substantial geochemical variation within relatively narrow stratigraphic intervals, reflecting the proximal nature of the sediments and the geologic complexity of their source.

Stratigraphy and Geology

Schematic stratigraphy of the Miocene succession in the areas examined is given in Figure 2. The basal unit in Shimane Peninsula, the early Miocene Koura Formation, consists primarily of non-marine sandstone, conglomerate and laminated mudstone. Some andesitic to rhyolitic tuffs and breccias also occur. The Koura Formation is conformably overlain by the early-middle Miocene Josoji

^{*}Department of Geoscience, Shimane University, Matsue 690-8504

Fig. 1. Map showing the location of the areas sampled, and generalized distribution of Miocene sedimentary and volcanic rock units. Geology based on the 1:200,000 geological map of Shimane Prefecture (Editorial Board of Geological map of Shimane Prefecture, 1997). Inset: location in Japan. Box: area of Figure 3. Locality abbreviations: IZ–Izumo City; MA–Matsue City. Stars (sample sites) SDC–Shimada drillcore; NA–Nanpeidai, CH–Chikumi; KA–Karuba; SN–South Nishi–Izumo.

Formation, which comprises black argillaceous marine sediments and intercalated submarine rhyolitic to andesitic lavas, hyaloclastites and pyroclastic deposits (Kano and Nakano, 1986). In that area it is succeeded by the middle Miocene Ushikiri Formation, which consists dominantly of volcaniclastic and tuffaceous sandstone, interbedded mudstone and lesser conglomerate. Deposition of the coarser sediments was from turbidity currents or debris flows (Kano et al., 1989). Paleocurrent indicators in west Shimane Peninsula show derivation from the southeast (Kano et al., 1991), and the Ushikiri Formation there is thus likely to be the deeper-water equivalent of the more proximal Omori Formation in the Iwami-Oda-Izumo area. However, paleocurrents in east Shimane Peninsula (Chikumi) are much more varied, with various sets indicating derivation from the west, and from the north to northeast (Yamauchi et al., 1980; Yamauchi and Yoshitani, 1981). This suggests that this part of the Ushikiri Formation had a different source from that in the west of the peninsula. The Ushikiri Formation in Shimane Peninsula is succeeded by the Furue Formation, which consists of massive argillaceous rocks, also of marine origin.

The Miocene sediments beneath the Izumo-Matsue lowlands form a syncline buried beneath Quaternary sediments. Koura Formation is not exposed in the Matsue City area, and the Josoji, Ushikiri and Furue Formations occur only to the north of the city limits (Fig. 2). Shallower water or terrestrial equivalents of the latter three formations (Kawai-Kuri, Omori and Fujina, respectively) crop out in the south of Matsue City (Kano *et al.*, 1994; Fig. 2). The Furue and Fujina Formations are succeeded by the Matsue Formation, which outcrops in bluffs around the shores of Lake Shinji, and in hills within the city limits. Matsue Formation is dominated by pale sandstones and subordinate mudstones, but intercalated alkali basalt flows and associated volcaniclastic lithofacies also occur in its lower

Fig. 2. Schematic stratigraphy and correlations between formations in Shimane Peninsula and the Matsue and Izumo districts. Shaded formations are those sampled in this study. Abbreviations: JBH – Jinzai Basalt Horizon; MB–Matsue Basalt. Based on Kano *et al.* (1989, 1991, 1994, 1997); EBGMSP (1997) and Yamauchi (*pers. comm.* 2001)

and middle parts. The age of Matsue Formation is constrained in part by the basalts, the dates of which average 11 Ma (Morris and Itaya, 1997). From its lithofacies and faunal assemblages, Matsue Formation was deposited in a very shallow brackish to marine environment in a sheltered embayment (Nakayama *et al.*, 1996).

Early Miocene andesitic to dacitic lavas and pyroclastics of the Hata Formation occur southwest of Izumo, but lie outside our present study area. They are succeeded by sandstone, conglomerate, and andesitic to rhyolitic volcanic rocks of the Kawai and Kuri Formations, which are time equivalents of the Josoji Formation in Shimane Peninsula. Radiometric ages for Kawai volcanic rocks in the Iwami-Oda district to the west range between 15 and 18 Ma (Kano et al., 1997). The Kawai Formation is non-marine to shallow marine, and the Kuri Formation marine (Kano et al., 1997). Kawai-Kuri rocks occur near the southern edge of our study area in the Izumo district, but were not sampled. The middle Miocene Omori Formation overlies all three of the above units. It consists of volcaniclastic sandstones, mudstones, and debris flow deposits, along with massive and autobrecciated andesitic to dacitic lavas and associated pyroclastic deposits. Depositional environments of the sediments range from non-marine to shallow marine, including beach deposits. Detailed lithofacies analysis has been made in the area south of Lake Jinzai (Morita and Nakayama, 1999). Radiometric ages of the volcanic rocks range between 13 and 15 Ma (Kano et al., 1997).

The Omori Formation is succeeded by onlapping sandstones, mudstones and lesser pebble conglomerates of the Fujina Formation (Kano *et al.*, 1997). Lithofacies are indicative of deposition in foreshore and shoreface environments (Morita and Nakayama, 1999). Fujina Formation grades upward into the Jinzai Formation, the equivalent of the Matsue Formation in this area.

The Jinzai Formation south of Lake Jinzai is distinguished by the presence of a small submarine alkali basalt tuff cone, the Jinzai Basalt. This has been described in detail by Kano (1998). The cone was constructed in relatively shallow water (50-150 m) by phreatomagmatic eruptions that produced hyaloclastites, bedded lapillistones and lapilli tuffs. These lithotypes pass laterally and vertically into bedded sandstone, mudstone and lesser conglomerate. Lithofacies analysis of this part of the succession suggests deposition mainly took place in lower shoreface to shelf settings (Morita and Nakayama, 1999), in slightly deeper water than Matsue Formation equivalents. The occurrence of storm deposits and their characteristic sedimentary structures in the Jinzai Formation (Morita and Nakayama, 1999) also suggests that its depositional environment was an open ocean coast. This is in contrast to the protected embayment in which the Matsue Formation in Matsue City was deposited.

In the latest 1:200,00 scale regional geologic map (EBGMSP, 1997), Jinzai Formation in the Izumo area has been mapped as Matsue Formation, as occurs around Matsue City. Although the general appearance of the sandstones in both formations is similar, lithofacies and age differ between the two areas. The Jinzai Basalt has been K/Ar dated at 13.2 ± 0.6 Ma (Takayasu and Sawada, 1989), which slightly overlaps the 13-15 Ma range of volcanic rocks in the Omori Formation (Kano *et al.*, 1997). This suggests that deposition of the Jinzai Formation in the Lake Jinzai area began somewhat earlier than did the Matsue Formation in its type locality (Fig. 2).

Sample Suites

The samples in this study comprise three discrete sets (Fig. 1).

(1): A collection of 67 outcrop samples from the Omori, Fujina and Jinzai Formations in two areas southwest of Izumo City and southeast of Lake Jinzai. Morita and Nakayama (1999) have already reported a detailed lithofacies study of the area south of Lake Jinzai. The purpose of this collection was to establish the broad compositional ranges in each formation in this area and to examine their geochemical provenance signatures (Tateishi, *in prep.*) as a basis for comparison elsewhere in the district.

Samples from the Omori Formation include massive or brecciated calcalkaline subaerial dacitic lavas, a clast from a debris flow, and intercalated and overlying volcaniclastic sandstones and mudstones. Six of the twelve Omori

SANR	LOC	L/F	Lith	1 Lith2	SiO₂	TiO₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K₂O	P₂O₅	LOI	Total	Ва	Ce	Cr	Ga	Nb	Ni	Pb	Rb	Sc	Sr	Th	V	Y	Zr
A. So	outh	west	Izun	no near	Lake	linzai																								
Jinzai S-16/2 S-17 S-18 S-19 S-20 S-63 S-64 S-65 S-66 S-67	Form 4 4 5 20 20 20 21 22	nation F-7 F-7 F-7 F-5 F-2/3 F-2/3 F-7 F-7 F-7	NW S M M M S S S S S S S	of Jinzai I VFS MST MST-s MST FS FS MS-FS FS-m VFS-m VFS	Basalt 77.27 64.78 75.90 63.36 80.13 83.32 84.07 62.23 68.88 77.36	0.42 0.81 0.40 0.81 0.25 0.25 0.37 0.98 0.83 0.53	11.99 18.88 12.89 17.36 9.45 9.15 8.57 18.01 17.23 11.39	1.66 2.89 1.62 4.85 1.33 1.43 1.57 6.78 3.52 2.00	0.01 0.02 0.01 0.02 0.01 0.03 0.02 0.04 0.02 0.02	0.63 1.76 0.79 1.81 0.80 0.35 0.38 1.68 0.65 0.68	0.70 0.45 0.67 0.29 0.74 0.46 0.47 0.59 0.22 0.66	1.65 1.01 1.62 0.87 1.47 1.26 1.10 0.81 0.71 1.75	2.62 2.78 2.92 2.74 2.35 2.27 1.89 1.26 1.70 2.59	0.01 0.03 0.01 0.05 0.01 0.01 0.01 0.04 0.04 0.03	2.60 5.73 2.83 7.07 3.33 1.76 1.78 6.65 5.60 2.52	99.58 99.15 99.66 99.21 99.88 100.28 100.23 99.07 99.40 99.53	601 373 621 368 523 498 450 247 304 496	43 83 47 140 27 31 38 57 51 61	32 171 23 76 14 34 33 44 48	13 25 14 23 10 10 9 20 20 14	9 16 8 17 6 5 6 8 9 10	9 42 14 55 12 8 17 12 14	17 20 31 14 15 13 17 19 15	96 125 102 133 81 80 68 49 71 96	6.5 16.5 6.7 13.7 1.6 3.3 4.7 24.3 16.9 5.4	291 184 294 102 203 164 148 116 70 236	2.5 4.4 2.4 4.3 1.9 4.3 4.6 6.3 8.6 7.3	138 384 124 361 88 24 35 196 123 61	34 66 39 85 31 12 10 24 17 14	166 175 107 196 70 101 156 174 221 305
Jinzai S-21 S-22 S-23 S-24 S-25 S-32	Form 6 7 7 7 11	nation F-1 F-1 F-1 F-1 F-1 F-1	, Jinz M M B S S S	zai Basalt ZST ZST BBREC BBREC VCS VCS	horizor 62.74 48.16 54.26 52.69 77.34 53.23	1.20 1.86 1.12 1.15 0.52 0.92	13.21 14.06 15.45 15.41 12.34 15.62	4.99 8.17 7.31 7.42 1.86 8.29	0.04 0.05 0.10 0.08 0.02 0.07	3.10 6.86 5.53 6.29 0.52 7.87	3.63 7.09 7.24 7.84 0.71 5.89	1.79 0.84 2.16 1.91 1.49 1.47	2.78 1.54 1.77 1.71 2.06 1.22	0.59 1.20 0.44 0.54 0.01 0.16	5.17 9.59 4.22 4.55 3.06 4.76	99.24 99.41 99.59 99.59 99.92 99.50	693 961 477 658 396 730	196 323 125 130 18 27	90 117 106 112 16 169	16 19 18 17 12 11	14 20 11 11 5 9	35 40 48 52 1 93	15 15 13 15 15 14	82 69 45 44 75 40	12.7 17.4 21.8 21.7 10.9 24.7	313 507 732 740 161 252	5.5 8.6 4.3 4.5 1.7 2.4	401 594 522 530 180 499	40 39 28 26 25 26	289 288 128 115 82 94
Fujina S-15 S-16 S-26 S-27 S-28 S-33 S-34 S-35 S-34 S-35 S-36 S-37 S-38 S-44 S-45	Forr 3 8 8 8 12 12 12 12 12 12 12 17 17	mation F-3 F-3 F-4 F-4 F-4 F-4 F-4 F-4 F-4 F-4 F-4 F-5 F-5	。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	VFS-FS FS FS VFS-m VFS VFS-FS MST FS FS-m VFS VFS-FS MST	61.48 54.16 73.12 79.47 64.81 63.50 71.55 61.50 63.85 77.50 74.43 83.00 76.62 65.14	0.74 0.88 0.37 0.25 0.51 0.84 0.65 0.79 0.78 0.48 0.64 0.26 0.48 0.73	16.16 12.69 13.80 10.76 15.70 17.36 14.63 20.64 18.40 12.19 12.43 9.37 12.27 13.39	6.54 6.76 3.36 2.30 5.91 5.43 2.60 3.17 3.38 1.79 3.07 1.32 1.59 4.13	0.06 0.60 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.04	3.04 1.83 0.92 0.49 1.75 1.42 0.89 1.47 1.46 0.60 0.95 0.29 0.46 1.62	4.47 11.85 1.46 0.96 0.75 2.56 0.47 0.13 0.28 0.30 0.46 0.26 1.18 2.75	2.43 2.37 1.84 1.78 1.95 1.18 0.45 0.71 1.17 1.16 0.96 2.01 1.52	1.19 1.19 2.39 1.93 2.22 1.47 2.49 2.48 2.90 2.57 2.55 2.46 2.36 2.33	0.12 0.08 0.01 0.02 0.01 0.03 0.02 0.02 0.01 0.03 0.01 0.02 1.72	3.36 7.82 2.54 2.01 6.75 4.95 4.90 8.38 7.33 3.35 3.78 2.07 2.56 5.63	99.61 100.23 99.85 99.99 99.45 99.52 99.43 99.03 99.14 99.94 99.94 99.52 100.01 99.57 99.02	352 254 558 387 418 469 403 283 361 503 419 577 463 358	44 31 30 20 63 79 85 81 60 57 28 53 196	4 18 12 28 50 57 66 34 43 25 42	17 13 11 20 17 16 23 14 16 10 14 16	7 5 3 7 6 9 14 15 8 10 5 7 4	5 8 13 16 10 14 14 29 15 13 7 5 16	16 10 16 16 16 17 13 14 15 16 13	32 35 64 100 63 88 102 121 89 99 80 78 88	18.6 21.3 8.2 8.4 17.8 17.3 10.8 21.3 18.2 10.2 12.8 4.3 7.9 20.2	287 213 326 165 139 246 150 61 83 111 134 111 263 232	2.2 2.0 1.9 3.0 2.3 2.6 7.8 10.6 12.8 6.5 7.5 4.5 7.4 10.2	337 474 160 46 457 501 117 152 136 72 113 39 70 156	32 29 47 16 44 23 36 29 15 16 9 12 105	115 127 69 77 129 233 172 192 167 203 100 292 384
Omori S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8	1 1 1 2 2 2 2	mation O-8 O-8 O-8 O-8 O-5 O-1 O-1 O-1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	VCS MST CS-VCS VCS CS FLOW FLOW FLOW	61.04 65.87 59.58 66.69 59.59 68.44 68.67 67.77	0.84 0.55 0.67 0.62 1.19 0.72 0.71 0.74	15.63 13.96 16.91 14.42 16.54 14.17 14.16 14.71	7.72 4.66 6.37 4.27 8.89 5.25 4.98 5.13	0.12 0.06 0.10 0.08 0.11 0.14 0.14 0.09	2.87 1.89 2.09 1.36 2.14 1.09 1.04 1.11	5.02 2.27 5.44 3.31 5.24 4.19 4.17 4.30	2.55 1.44 2.48 2.75 2.50 3.52 3.66 3.39	0.73 2.38 1.80 2.71 0.58 1.44 1.39 1.02	0.11 0.08 0.20 0.14 0.17 0.21 0.20 0.22	2.67 6.41 3.60 2.57 2.80 0.81 0.62 1.47	99.29 99.57 99.25 98.93 99.74 99.96 99.75 99.95	276 596 443 617 336 321 318 269	36 50 57 53 31 33 24 39	8 nd 3 nd 4 nd 1	18 15 18 15 19 15 16 17	5 8 6 7 6 5 4 6	4 4 3 2 3 1 1 2	13 20 16 20 9 10 10	24 105 58 88 22 43 43 28	24.5 12.0 16.5 13.3 38.1 20.3 20.4 21.1	246 172 331 239 303 222 220 234	1.8 3.3 2.4 3.1 1.4 1.6 1.7 1.6	403 147 269 200 722 138 132 147	28 55 48 59 41 42 42 55	89 165 94 137 75 94 94 95

 Table 1:
 Whole-rock XRF analyses of sedimentary and volcanic rocks from the Jinzai, Fujina and Omori Formations, Izumo district (hydrous basis). Major elements wt%, trace elements ppm. Column headings and codes are detailed in the footnotes to this table.

Table 1 (ctd)

SANR	LOC	; L/F	Lith1	Lith2	SiO₂	TiO₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na₂O	K₂O	P ₂ O ₅	LOI	Total	Ba	Ce	Cr	Ga	Nb	Ni	Pb	Rb	Sc	Sr	Th	V	Y	Zr
Omor	i Forr	nation	(ctd)																											
S-9	2	0-5	D	CLAST	69. 65	0.51	14.09	5.14	0.06	0.57	4.07	3.50	1.66	0.11	0.63	99.97	299	28	nd	15	4	2	10	65	16.7	205	1.4	215	41	85
S-10	2	0-9	S	VCS	62.93	0.93	16.23	6.80	0.06	1.73	4.75	2.78	0.62	0.15	2.87	99.85	309	29	8	18	5	4	11	21	28.7	321	1.8	402	47	84
S-11 S-12	2	0-9	5 c		62.07	1.04	19.44	5.54	0.03	1.52	1.42	1.19	0.60	0.01	9.88	99.74	450	42	5 14	22	5	5	14	23	32.1	1//	1.7	464	20	110
S-12	2	0-9	s	VES-ES	68 85	0.54	14.04	3.99	0.03	1.87	2.18	2.14	2.22	0.04	3.89	99.79	444	35	16	15	6	4	12	69	12.4	352	2.1	247	33	143
S-30	9	0-9	s	VFS	58.03	1.85	11.62	13.76	0.08	4.07	3.07	1.85	1.34	0.12	3.00	98.79	374	32	64	13	8	14	15	54	33.7	249	2.7	1104	31	144
S-31	10	O-9	S	VCS	61.07	0.56	15.98	5.21	0.08	2.28	4.01	1.63	1.76	0.10	6.87	99.55	577	40	10	15	6	6	13	82	12.8	523	2.3	265	50	68
S-39	13	0-1	D	FLOW	70.37	0.53	13.84	4.57	0.07	0.35	4.16	3.61	1.38	0.12	0.69	99.70	313	34	3	16	5	nd	13	37	14.8	274	3.2	60	22	131
S-40	14	0-1	D	FLOW	67.31	0.85	16.61	3.63	0.04	0.36	4.99	4.03	1.33	0.17	0.45	99.77	269	41	nd	20	5	nd	11	34	22.6	337	4.0	80	32	132
S-41	15	0-10	M	MSI	52.89	1.14	18.13	6.24	0.03	3.86	0.91	0.21	1.12	0.03	14.58	99.13	625	57	11	26	6	11	13	20	23.7	703	4.5	105	44	126
5-42	16	0-11	S	VES-ES	67 21	0.57	16 17	2.52	0.03	1.35	1.21	2.20	2.71	0.04	4 76	99.37	405	138	10	19	13	12	22	89	11.3	386	8.0 8.1	84	111	165
0 10	10	• …	0		07.21	0.07	10.17	2.02	0.00	1.20	1.01	2.00	2.00	0.00		00.01									11.0	000	0.1	01		100
(B)Fı	ijina	Forr	natio	on, Sout	h Nish	ni-Izu	mo																							
SANR	LOC	L/F	Lith1	Lith2	SiO₂	TiO₂	Al ₂ O ₃	Fe₂O ₃	MnO	MgO	CaO	Na₂O	K₂O	P₂O₅	LOI	Total	Ва	Ce	Cr	Ga	Nb	Ni	Pb	Rb	Sc	Sr	Th	v	Y	Zr
S-46	18	B-1	s	MS-VCS	71.73	0.43	12.94	2.66	0.02	0.59	2.55	2.29	2.17	0.06	4.25	99.69	652	22	14	14	5	З	13	71	11.2	625	3.9	69	13	97
S-47	18	B-1	S	VFS-m	69.71	0.62	13.54	3.30	0.02	1.11	1.13	1.66	2.19	0.04	6.05	99.36	500	55	32	17	8	4	12	87	15.1	530	7.1	95	17	261
S-48	18	B-1	М	MST	63.69	0.65	16.71	4.94	0.01	1.70	0.98	0.93	2.53	0.03	6.90	99.08	315	56	58	21	11	14	7	122	16.3	170	9.7	149	23	166
S-49	18	B-2	S	FS-VFS	75.80	0.41	12.62	2.24	0.02	0.48	1.21	2.04	2.33	0.01	2.60	99.74	487	26	17	13	5	6	12	83	6.2	243	5.1	55	12	145
S-50	19	B-2	M	MSI	62.34	0.65	16.20	5.60	0.01	1.78	1.02	0.87	2.40	0.02	8.14	99.04	301	51	58	21	11	17	10	114	17.7	181	10.2	145	23	161
S-51	19	B-2	M	MST	62 21	0.41	16.62	2.64	0.01	1.86	1.15	0.83	2.55	0.02	4.25	99.56	267	56	56	22	10	20	13	114	144	250	5.1 10.1	153	29	159
S-53	19	B-2	S	MS-FS	72.72	0.41	13.37	2.86	0.01	0.77	1.08	1.73	2.52	0.02	3.97	99.45	445	28	15	14	6	8	13	90	8.9	220	5.3	62	12	162
S-54	19	B-3	ŝ	FS-VFS	74.50	0.65	12.13	3.10	0.03	0.82	1.32	1.83	2.32	0.04	2.86	99.59	416	58	25	13	8	11	15	80	8.6	222	8.3	97	17	371
S-55	19	B-3	М	MST	61.25	0.63	16.56	4.48	0.01	1.55	1.67	1.06	1.74	0.03	10.30	99.29	273	36	11	21	5	7	11	54	23.5	275	5.8	127	18	161
S-56	19	B-3	S	FS	75.57	0.65	12.40	2.61	0.02	0.89	0.53	1.25	2.08	0.01	3.66	99.6 8	398	48	22	14	7	5	13	72	11.1	149	5.8	100	16	295
S-57	19	B-3	S	FS-VFS	73.03	0.52	13.30	2.55	0.02	0.84	0.84	1.49	2.28	0.02	4.69	99.57	532	60	26	15	6	9	15	79	8.1	300	6.1	72	22	219
S-58	19	B-4	S	CS-VCS	77.93	0.24	11.74	1.79	0.01	0.37	0.81	1.79	2.23	0.01	2.90	99.82	428	28	14	12	5	9	13	85	8.0	149	3.8	33	24	81
5-59	19	D-4 B-5	5	MS-US MST	76.28	0.37	12.15	1.78	0.03	1.82	0.98	1.98	2.37	0.01	3.13	99.44	408 321	23	62	20	4	10	10	118	7.0 16.8	191	4.2 11 A	51 140	14	84 175
S-61	19	B-5	S	VES	74.81	0.09	11 51	4.53 271	0.02	0.91	1 13	1 49	2.04	0.04	3.90	99.46	463	60	42	13	7	8	15	82	10.0	436	7.3	100	16	359
S-62	19	B-5	š	VFS	74.66	0.58	13.66	2.35	0.02	0.64	0.33	1.36	2.44	0.01	3.47	99.52	405	54	27	15	7	6	11	85	9.0	88	6.7	79	14	304
						_	-																							

NOTES: Column headings: SANR = Sample number; LOC=location, numbers as in Fig. 2; L/F=Lithofacies code ; LITH1=broad lithotype; LITH2=texture (visual estimates); LOI=loss on ignition.

Codes: L/F: (A) Southwest Izumo near Lake Jinzai: Lithofacies codes after Morita & Nakayama (1999) -

Jinzai and Fujina Formations: F-1: basaltic lava and volcanic breccia (shallow marine); F-2: boulder cgl and very coarse sst (gravelly fluvial); F-3: sandstone and conglomerate (foreshore); F-4: fine sandstone (upper shoreface); F-5: fine and very fine sandstone (lower shoreface); F-7: sandy mudstone (shelf). Omori Formation: O-1: massive lava (terrestrial); O-5: boulder conglomerate (subaerial or subaqueous debris flow); O-8 sandstone and conglomerate, discoid gravels (foreshore); O-9: medium

Umori Formation: 0-1: massive lava (terrestrial); 0-5: boulder conglomerate (subaerial or subaqueous debris flow); 0-8 sandstone and conglomerate, discoid gravels (foreshore); 0-9: mediun to fine sandstone (upper shoreface); 0-11: fine and very fine massive sandstone (lower shoreface).

(B) South Nishi-Izumo: B-1: sst + cgl gravel dune (lwr shoreface + gravelly fluvial inflow); B-2 sst + cgl (lwr shoreface + gravelly fluvial inflow);B-3: sst + mnr cgl (upper shoreface); B-4: sst (erosional surface and delta front); B-5: sst and mst (tidal and intertidal deposits).

LITH1: S=sandstone; M=mudstone or siltstone; B=alkali basalt; D=Omori volcanics (dacitic).

LITH2: Sediments - VCS=very coarse sand to granule; CS=coarse sand; MS=medium sand; FS=fine sand; VFS=very fine sand; ZST=siltstone; MST=mudstone. Modifiers -s and -m are sandy and muddy, respectively. Volcanics - BBREC=basaltic breccia; FLOW=subaerial dacite; CLAST=clast in debris flow facies.

nd Not detected. Total Fe as Fe_2O_3 .

Fig. 3. Geology and sample localities in the area south of Lake Jinzai, Izumo district. Based on Kano et al. (1997) and Morita and Nakayama (1999).

lithofacies identified by Morita and Nakayama (1999) are represented in the collection (Table 1). Fourteen samples of Fujina Formation sediments (eleven sandstones, three mudstones) were collected from four localities (Fig. 3). The sandstones were all fine- or very fine-grained, and most were from lithofacies F-3 and F-4 (Morita and Nakayama, 1999), representing foreshore and upper shoreface environments.

Samples from the Jinzai Basalt horizon were collected at three localities (Fig. 3), and include basaltic breccia, very coarse-grained sandstones, and hyaloclastitic siltstones (Table 1). All belong to lithofacies F-1 (shallow marine basaltic lava and volcanic breccia) of Morita and Nakayama (1999). Ten samples (seven sandstones, three mudstones) were also collected from the Jinzai Formation from five localities stratigraphically above the Jinzai Basalt horizon (Fig. 3). The sandstones are typically very fine- to mediumgrained, and most were deposited in a shelf environment.

Seventeen additional samples (12 sandstones, five mudstones) were collected from two continuous sections in South Nishi-Izumo, from an area mapped as Fujina Formation by Kano *et al.* (1997). The area is currently being mapped in detail by Bandou (*in prep.*). For convenience, we here informally assign lithofacies in the

area to five groups, denoted B-1 to B-5 (Table 3 B). These represent lower shoreface with gravelly fluvial inflow (B-1 and B-2), upper shoreface (B-3), delta front (B-4) and tidal and intertidal deposits (B-5). The sandstones analysed here span a range in texture from very fine sand through to very coarse sand .

(2): A suite of 53 Matsue Formation sandstones and mudstones taken from a 110 m drillcore put down by Shimada Technical Consultants Ltd. The hole was located near the northern shore of Lake Shinji in Sada-cho, Nishihama, Matsue City, at 35° 28'22.4" N, 133° 00'38.0"E. The hole penetrated 110 m of poorly consolidated sediments which were dominated by relatively monotonous pale cream/buff, grey or orange fine- or very fine-grained sandstone. Occasional thin horizons of coarser sand or mud occurred sporadically throughout the core. A single coarse sand unit at 72.10-75.90 m BCL that contains subrounded basaltic andesite pebbles is interpreted as a debris flow deposit. At the base of the core (107.7-110.0 m BCL), the dominant sandstone lithofacies gave way to thinly bedded (1-2 cm) lenticular fine sand and mud alternations. Apart from these two intervals, the lithofacies observed are very similar to those exposed in cliff outcrops in the immediate area. Stratigraphically, the core intersects the lower part of the Matsue Formation, and thus predates the alkalic volcanism that occurred around 11.0 Ma (Morris and Itaya, 1997).

(3): Assorted outcrop samples collected from the Matsue City area and the northern coast of Shimane Peninsula. Three samples (AH 1-3; Table 3) were collected from the westernmost outcrop of Matsue Formation on the north shore of Lake Shinji in Asahi-cho (Fig. 1). These are from the base of the Matsue Formation, and consist of two very fine-grained sandstones and an entrained clast of Furue Formation mudstone. Five samples were collected from the lower middle of the Matsue Formation at Nanpeidai (Fig. 1, Table 3). These consist of mildly weathered subaerial Matsue Basalt (NPD 5), the highly weathered top of the flow (NPD 1), and three overlying very shallow marine sandstones (NPD 2-4). The basaltic samples were collected to provide some measure of the composition of any basalt or basaltic weathering products that could be supplied to the sediments. Eight sandstones and mudstones (KU 1-8) were also collected from a former quarry site nearby. This locality has been described in detail by Nakayama et al. (1996) and Nakayama (1997).

A small suite of turbidite sandstones and mudstones of the Ushikiri Formation were collected as a pilot study. Five samples (US 4 A-6) were collected from thin (<20 cm) sand -dominated $T_{\rm be}$ and $T_{\rm ce}$ turbidites exposed on the shore platform on the Chikumi coast. Stratigraphically, these samples lie near the base of the Ushikiri Formation, 10-50 m above the contact with the underlying Josoji Formation.

Three green volcaniclastic sandstones (KO 1, 2, and 4) and an interbedded tuff (KO 3) were collected from an

exposure of the Koura Formation on the east side of the bay at Karuba (Fig. 1). Coarse to fine-grained sandstones occur there in fining-upward fluvial cycles, and contain numerous interbedded tuffs 0.4-5.0 m thick. An additional Koura sandstone and an andesite (KO 6, 5) were also taken from a quarry and road section on the southern side of the peninsula opposite Mihonoseki.

Analytical Methods

All indurated samples were manually chipped to remove deleterious material such as veins or weathering rinds. A number of weakly lithified sandstone samples from the Matsue, Omori, Jinzai and Fujina Formations had suffered slight to moderate pervasive weathering, and complete removal of weathered grains was not possible. For the collection from the Izumo district (Table 1), outermost surfaces and clots of weathering products were removed as far as was practical. This procedure was not followed in the case of the Matsue Formation drillcore (Table 2). Pervasively weathered and fresh intervals persisted throughout the core, and bulk samples were taken to permit future tests of the effects of such alteration on conventional weathering indices, and to determine if immobile element ratios had been affected. Prepared material of both indurated and unconsolidated samples was repeatedly washed in deionised distilled water before drying at 110°C prior to crushing.

The majority of the samples were crushed in a tungsten carbide ring mill for 30-45 seconds (Roser *et al*., 1998). Sample weights were typically 75-150 g. However, all samples from the Matsue Formation drillcore (Table 2) were ground in an automatic pestle and mortar for 60 minutes each, in sample aliquots of 20 g. This permitted cobalt analyses to be made in this suite. After crushing, 10 g subsamples were dried for at least 24 h at 110°C prior to conventional gravimetric determination of loss on ignition (LOI) by ignition at 1000°C for 2 h. The ignited material from the LOI determinations was retained, disaggregated in an agate pestle and mortar, and returned to a 110°C oven for at a further 24 hours. Fusion beads for X-ray fluorescence analysis (XRF) were then prepared from this material (ignited basis).

All analyses contained in this report were carried out in the Department of Geoscience, Shimane University, using a Rigaku RIX-2000 spectrometer equipped with a Rh-anode X-ray tube. The analyses were accumulated between 1996 and 2001, using two different methods. Major and trace element analyses of the samples in Tables 2 and 3 were originally made in 1996-7 using fusion beads prepared with lithium tetraborate flux using a 1:5 sample to flux ratio, after the method of Norrish and Hutton (1969). This technique was abandoned in 1998 in favour of the method of Kimura and Yamada (1966). That method uses fusion beads prepared with an alkali flux comprising 80% lithium tetraborate and 20% lithium metaborate, with a sample to flux ratio of 1:2. Both major and 14 trace elements are determined from the same fusion beads. The lower dilution used gives higher count rates and improved peak / background ratios, and consequently lower limits of detection and greater precision than does the 1:5 method.

Results and Discussion

Hydrous analytical data for the three suites are give in Table 1 (Izumo district), Table 2 (Matsue Formation drillcore) and Table 3 (Matsue Formation outcrop samples, and Ushikiri and Koura Formations, Shimane Peninsula). All data in Table 1 were determined in 2001, using the 1:2 method described above. Data in Tables 2 and 3 are a combination of 1:2 and 1:5 data. Although all these samples were originally analyzed using the 1:5 technique, they were subsequently reanalyzed for most trace elements using new 1:2 fusion beads, to take advantage of the superior precision the 1:2 method offers, and to add Sc analyses. However, data listed for As, Co and Zn in Tables 2 and 3 are the original 1:5 data, as these elements are not included in the current 1:2 calibration. The yttrium values listed in all tables have also been corrected for the methodological bias discussed by Roser et al. (2000), and consequently are comparable with results obtained by ICP-MS.

Elemental compositions of individual samples and formations can be conveniently compared using normalised multi-element diagrams (spidergrams). The normalizer used here is the Upper Continental Crust (UCC) estimate of Taylor and McLennan (1985). Both sample compositions and UCC were first recalculated to 100% volatile-free prior to normalization. Elements are plotted left to right in the order of progressive depletion or enrichment relative to UCC in the average Cenozoic greywacke of Condie (1993), following Dinelli *et al.* (1999). Using this order, many incompatible elements (e.g. Nb, K, Zr, Sr) plot at left, and most compatible elements (e.g. Sc, Fe, Ti, Ni, Cr, and V) lie to the right (Fig. 4).

Typical patterns of common source lithotypes are given in Fig. 4, using published average rock compositions. Published averages were used here because although some analyses of potential source rocks in the district are available in the literature, none contain comprehensive trace element analyses. Relatively mafic source rocks (e.g. basalts, andesites) have patterns which generally increase from normalized abundances <UCC at left, to >UCC at right (Fig. 4a), whereas felsic volcanic rocks tend to have normalised abundances similar to or less than UCC. For felsic volcanics, depletion relative to UCC is especially marked for the segment Fe-V (Fig. 4b). Similar patterns are also shown by average felsic plutonic rocks (Fig. 4b). Plutonic rocks form a substantial part of the Chugoku Mt. hinterland of the study area (Fig. 1), and thus could have supplied detritus to the Miocene successions analysed here.

	fr	om the Izumo-Mats	ue districts and Shin	nane Peninsula, SW	Japan
98 144 146 153	88	82 87 88 87 88 87 88 80 80 80 80 80 80 80 80 80 80 80 80	72 168 168 166 166 187 188 188 188 18	827 29 44 19 29 29 29 29 29 29 29 29 29 29 29 29 29	118 118 128 138 145 128 138 138 138 138 135 138
888886	8728	8 8 8 8 9 7 8 9 7 8 8	8 2 2 8 8 8 8 8 8 7 8	2 5 8 8 9 9 9 7 5 5 8 8 5 7 7 5 5 5 5 5 5 5 5 5 5 5 5	8 8 8 5 8 8 8 8 8 8 8 8 8 8 8
4 <u>1</u> 4 4 4 5	5555	29922222992	22222222322	0011288865841	5 5 5 5 5 7 7 7 8 6 6 6 6 6 7 7 7 7 8 6 6 6 6 7 7 7 7 6 6 6 6 6 7 7 7 7 6
6 2 4 4 8	88888	& ~ % & & & & & & & & & & & & & & & & &	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	8654575855 5 888	8688886444556
4.0.4.4 7.0.1.0	4 5 5 5 5 7 7 5 7 7 7 5 7 7 7 7 7 7 7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.2 2.2 2.3 2.6 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	× × × × × × × × × × × × × × × × × × ×	0,44440,440,00 4,40,140,440,00 4,10,140,040,00 0,00,100,00,00,00,00,00,00,00,00,00,00,0

228822282722

0000-0000000

1170981100

134923319461

40000040400

98.92 99.92 100.19 101.10 99.75 99.94 99.94 99.94 99.94 99.94

0.92 0.92 1.05 0.93 0.93 0.93 0.93

0.45 0.79 0.79 0.78 0.78 0.79 0.79 0.79 0.79 0.79 0.79

0.64 0.56 0.56 0.56 0.73 0.55 0.55 0.55

0.02 0.02

1.63 5.17 5.17 5.17 1.48 1.48 1.48 1.83 1.83

9.00 8.66 8.38 8.38 8.89 1.92 8.82 8.82 8.82 8.87 8.82 8.87 8.87

82.60 82.29 68.73 68.73 82.59 82.59 81.77 81.99 81.99

40.95 44.10 44.10 51.55 51.55 52.40 61.70

40.85 44.00 44.70 48.75 51.45 55.30 55.60 55.60 51.60

MF21 MF22 MF23 MF25 MF26 MF28 MF28 MF28 MF29 MF29

4

.

910109

∞¤≥go

~~09

99

==

888888866688

8188611686

50 7 Ωα

0000000000000

£ 8 8 5

2011840880

555553855582

100.39 88.10 98.10 98.10 98.60 98.60 98.60 100.05 100.05

 $\begin{array}{c} 0.02\\ 0.01\\ 0.05\\ 0.05\\ 0.05\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.02\\ 0.02\\ 0.03\\$

1.29 1.49 1.49 1.19 1.19 1.57 1.57 1.33

0.66 0.63 0.63 0.63 0.63 0.97 0.97 0.97 0.97 0.97 0.06 1.06

0.51 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.75 0.75 0.75 0.75

 $\begin{array}{c} 0.02\\$

1.33 0.97 0.97 0.97 0.98 0.98 0.98 0.98 1.93 1.93

8.89 8.82 8.85 8.85 8.85 8.85 8.85 12.75 12.75 11.59 11.59 9.07

82.68 81.23 81.23 82.04 82.04 81.23 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.54 81.23 81.23 81.23 81.23 81.23 81.23 81.23 81.23 82.68 81.23 82.68 81.23 82.68 82.68 82.68 82.68 82.68 82.68 82.68 82.68 82.68 82.68 82.68 82.68 82.68 82.68 82.64 82.64 82.64 82.64 82.64 82.64 82.64 82.64 82.64 82.64 82.64 82.64 82.64 82.64 82.68 82.64

63.60
66.90
66.90
68.60
71.00
71.00
71.00
72.95
73.10
73.10
75.75
79.90
80.00
80.70

63.50 66.80 66.80 70.90 73.00 73.00 73.00 73.00 73.00 80.50

MF32 MF32 MF35 MF36 MF36 MF36 MF36 MF36 MF36 MF30 MF40

စ ဂ္က ဝ ဖ

<u>ន</u> ៥ ៥ 8 ន ន ន ន 8 ន ភ្ល 8 ៥ 8

99489577868888

∞ ω ω ω ω

ignition

estimate based on color); LOI=loss on

Wea=weathering (visual

0-0-0400

9

8 9 9

E9EE999999999999 88888888888888888888 222222222222222222 100.21 99.80 99.80 99.81 99.85 99.55 99.55 99.55 99.65 99.65 99.65 99.65 99.65 $\begin{array}{c} 0.03 \\ 0.03 \\ 0.05 \\ 0.$ 9.79 9.79 9.79 9.93 9.93 9.93 10.25 10.25 11.40 11.40 11.40 11.40 12.46 78.32 76.83 76.83 76.83 76.73 76.73 75.43 75.43 75.43 75.43 75.43 75.43 75.43 75.43 75.43 75.63 76.63 76.63 ວຸທິວວຸທຸທິລວວວ ທຸທຸທຸທຸລວວວວວ ທຸທຸທຸທຸລວວວວວວວວ VFS MST VFS 83.30 85.40 85.40 94.55 94.50 94.70 94.70 94.70 100.75 100

Codes:

Interval=interval sampled, metres downhole; LITH=texture (visual estimates);

Column headings:

NOTES

MF53

MF41 MF42 MF43 MF44 MF44 MF44 MF50 MF51 MF51 MF52 MF52

MST

weathering CS=coarse sand; MS=medium sand; FS=fine sand; VFS=very fine sand; MST=mudstone. U=unweathered; VSW=very slight; SW=slight; MP=moderate pervasive weathering; SP=strong pervasive. LITH: Wea:

28

ភ្ល

≻≌

>8

E S

0 8 4 4 6 9 7 - 0

0000000

40-0000

00000000000

Total 99.84 99.84 99.35 99.35 99.35 99.84 99.81 99.81 99.81 99.81 100.25

LOI 3.17 3.17 3.17 2.85 2.85 3.17 4.01 4.01

^{5,0,1} 1.58 1.58 1.46 1.46 1.35 0.96 0.96 0.96

12:10 12:09 13:08 13:08 10:16 10:47 10:47 8:80 8:80 8:80 8:68

TIO2 0.23 0.25 0.30 0.30 0.25 0.17 0.17 0.17

SiO₂ 78.73 75.46 77.54 80.51 80.05 80.05 80.05 80.05 81.38 81.56

- 0.90 - 2.70 - 5.65 - 5.85 - 5.85 - 7.80 - 10.90 - 16.00 - 16.00

0.80 5.60 7.75 13.50 10.80 13.50 13.50 13.50 13.50 13.50 13.50

Sample MF1 MF2 MF2 MF5 MF5 MF5 MF7 MF7 MF7 MF10

Interval

Table 2:

(4a,0) 0.78 0.78 0.78 0.78 1.102 1.102 1.129

4.66.75.67.7

2887228222

004000000000

0004000000

00000000040

100.48 100.06 100.34 100.39 100.39 100.02 100.02 100.02 89.99

8.93 9.56 9.50 9.42 9.42 9.42 9.42 9.40 9.40 9.40 8.54

82.63 81.42 81.87 81.98 81.98 81.69 82.68 82.68 82.68 82.62 82.04 82.04

19.60 20.90 23.70 25.50 33.80 33.30 33.30 37.30

MF12 MF15 MF16 MF17 MF17 MF17 MF17 MF17 MF17 MF20

4-0 0 01 ၿငိုင်းဝံဆ

8074-0

8 ~ 9

202020202 01012000000

22232622⁻² 2829² 40758² 4076

Whole-rock XRF analyses of Matsue Formation sandstones and mudrocks, Shimada Consultants Ltd drillcore, Nishihama Sada-cho, Matsue City. Major elements w¹⁰⁶, trace elements ppm.

Table 3. Whole-rock XRF analyses of surface outcrop samples from (A) Matsue Formation, Matsue City and (B) Miscellaneous Miocene rocks, Shimane Peninsula. Major elements wt%, trace elements ppm.

(A) Matsue Formation, Matsue City Area

Name Vance Visuance Vi	Nanpeid	LITH	SiO2	TiO₂	Al ₂ O ₃	Fe ₂ O ₃ T	MnO	MgO	CaO	Na₂O	K₂O	P₂O₅	LOI	Total	As	Ва	Ce	Cr	Ga	Nb	Ni	Pb	Rb	Sc	Sr	Th	v	Y	Zn	Zr
NPD1 WBAS 42.82 3.69 2.84.5 11.60 0.04 0.66 0.05 0.10 0.11 0.20 99.72 - 200 131 173 39 41 138 143 5 39.4 11 142 386 20 - 512 NPD3 VFS 82.09 0.20 10.83 1.22 0.01 0.27 0.05 0.11 1.49 0.01 4.69 99.74 3 147 16 9 10 10 16 56 2.0 2.01 1.27 0.01 0.27 0.01 4.69 99.42 4 165 3 1.0 10 16 56 2.0 2.01 1.0 0.0 2.0 1.0 2.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.		dai, Matsue (City																											
NPD2 VFS 78.8 0 1.51 0.01 0.28 0.05 0.11 0.89 0.02 4.81 99.75 2 167 38 17 14 10 16 11 38 11.3 22 38 48 12 20 142 0.01 0.27 0.05 0.11 0.49 99.74 3 147 16 9 8.6 33 32 13.3 21 33.4 44 9 16 98 24 16 13 10 16 6 33 32 13.7 13.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7 18.7 18.6 18.7 18.7 18.7 18.3 11.3 20.1 20.0 21.0 <td>NPD1</td> <td>WBAS</td> <td>42.82</td> <td>3.69</td> <td>28.45</td> <td>11.60</td> <td>0.04</td> <td>0.66</td> <td>0.06</td> <td>0.15</td> <td>0.10</td> <td>0.11</td> <td>12.03</td> <td>99.72</td> <td>-</td> <td>200</td> <td>131</td> <td>173</td> <td>39</td> <td>41</td> <td>138</td> <td>143</td> <td>5</td> <td>39.4</td> <td>11</td> <td>14.2</td> <td>366</td> <td>20</td> <td>-</td> <td>512</td>	NPD1	WBAS	42.82	3.69	28.45	11.60	0.04	0.66	0.06	0.15	0.10	0.11	12.03	99.72	-	200	131	173	39	41	138	143	5	39.4	11	14.2	366	20	-	512
NPD3 VFS B2.09 0.20 0.083 1.22 0.01 0.24 0.03 0.01 4.69 9.74 3 147 16 9 10 9 8 6 33 3.21 3.5 24 10 13 10 10 16 56 210 <td>NPD2</td> <td>VFS</td> <td>78.82</td> <td>0.45</td> <td>12.67</td> <td>1.61</td> <td>0.01</td> <td>0.28</td> <td>0.05</td> <td>0.12</td> <td>0.92</td> <td>0.02</td> <td>4.81</td> <td>99.75</td> <td>2</td> <td>167</td> <td>38</td> <td>17</td> <td>14</td> <td>10</td> <td>16</td> <td>11</td> <td>38</td> <td>11.3</td> <td>22</td> <td>3.8</td> <td>48</td> <td>12</td> <td>20</td> <td>142</td>	NPD2	VFS	78.82	0.45	12.67	1.61	0.01	0.28	0.05	0.12	0.92	0.02	4.81	99.75	2	167	38	17	14	10	16	11	38	11.3	22	3.8	48	12	20	142
NPD4 MS 77.80 0.29 12.66 2.10 0.01 0.46 50.83 0.65 4.7 99.93 1 678 82 102 10	NPD3	VFS	82.09	0.20	10.83	1.22	0.01	0.27	0.05	0.11	0.89	0.02	4.06	99.74	3	147	16	9	10	9	8	6	33	3.3	21	3.5	24	10	13	75
NPD5 BAS 60.83 1.87 19.63 6.16 0.11 4.03 4.91 3.20 1.83 0.65 4.72 99.93 1 678 82 102 20 21 87 5 66 21.8 297 7.1 217 31 78 279 AH1* MST-C 66.53 0.68 16.01 5.72 0.04 1.89 0.20 0.38 212 0.03 1.07 5 13 80 1.7 5 13 66 1.6 4.3 19 7.2 1.7 74 4.0 66 2.4 21 83 9 7 2.3 1.8 1.8 7.5 76 74 4.0 66 2.4 21 83 9 7.5 723 1.8 74 4.0 66 2.4 21 83 8 4 9 7 2.3 1.8 1.8 2.4 1.8 3.8 2.3 1.8 2.4 1.8 2.3 1.8 2.6 5 18 86 7.7 7.0 3	NPD4	MS	77.80	0.29	12.66	2.10	0.01	0.24	0.03	0.11	1.49	0.01	4.69	99.42	4	185	24	16	13	10	10	16	56	8.5	20	6.8	44	9	16	98
Asabi-Asabi-Asabi-Asabi-Asabi-Asabi-Formation Asabi-Asabi-Asit Solver of Lake Shinji near base of Matsue Formation AH1* MST-C 66.53 0.68 16.0 15.72 0.04 169 0.20 0.38 2.12 0.03 6.10 99.49 11 410 55 38 21 12 11 18 87 14.5 56 166 161 45 56 186 AH2 VFS 72.83 0.16 0.02 0.01 0.20 0.14 0.22 2.37 0.02 3.80 99.53 4 588 8 4 9 7 23 17 74 4.0 66 2.4 21 8 39 67 Nanpidai, Matsue City, locality of Nakayama et al. (1996). 0.10 0.19 0.49 1.44 2.70 0.02 2.81 99.63 7 46 18 18 8 18 8 18 8 18 8 18 8 18 13 0.04 1.41 1.72 0.02 2.89 99.63 7 46 11 <td< td=""><td>NPD5</td><td>BAS</td><td>50.83</td><td>1.87</td><td>19.63</td><td>8.16</td><td>0.11</td><td>4.03</td><td>4.91</td><td>3.20</td><td>1.83</td><td>0.65</td><td>4.72</td><td>99.93</td><td>1</td><td>678</td><td>82</td><td>102</td><td>20</td><td>21</td><td>87</td><td>5</td><td>56</td><td>21.8</td><td>297</td><td>7.1</td><td>217</td><td>31</td><td>78</td><td>279</td></td<>	NPD5	BAS	50.83	1.87	19.63	8.16	0.11	4.03	4.91	3.20	1.83	0.65	4.72	99.93	1	678	82	102	20	21	87	5	56	21.8	297	7.1	217	31	78	279
AH1* MST-C 66.63 0.66 16.0 5.72 0.04 1.69 0.20 0.38 2.12 0.03 6.10 99.49 11 410 55 38 21 12 11 18 87 14.5 61 66 116 45 55 186 AH2 VFS 82.64 0.22 0.98 1.02 0.01 2.25 0.02 3.80 99.53 4 558 8 4 9 7 23 17 7 4.0 66 64 14 25 67 Numpridat Mathause City, normant at al. (1996); 1.01 0.01 0.49 1.44 2.70 0.02 2.01 99.63 7 46 0.18 13 8 5 18 86 7 75 143 141 29 99.83 1.45 51 10 0.5 1.41 210 0.22 2.89 99.83 7 46 0 18 13 8 5 18 96 7.5 126 30 31 20	Asahi-ci	ho, shore of	lake Shir	nji near	base of	f Matsue	Format	ion																						
AH2 VFS 82.64 0.22 9.98 1.02 0.01 2.28 0.01 2.53 99.71 2 453 19 17 10 7 5 13 80 1.7 54 4.4 25 13 7 85 Nanpelciai, Matsue City, locality of Nakayama et al, (1996). 13 0.01 0.23 10 0.12 2.33 0.02 2.10 9.51 3 62.3 11 7 9 4 3 14 87 2.3 24 9 11 75 9.1 80 1.7 74 4.0 66 2.4 21 8 39 67 NU1 VFS-ZST 78.30 0.32 12.00 1.51 0.01 0.31 1.35 2.68 0.02 2.83 91.83 4 56 18 88 6.7 179 3.1 49 11 29 99 1.07 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 1.31 2.02 2.85 98.3 4 </td <td>AH1*</td> <td>MST-C</td> <td>66.53</td> <td>0.68</td> <td>16.01</td> <td>5.72</td> <td>0.04</td> <td>1.69</td> <td>0.20</td> <td>0.38</td> <td>2.12</td> <td>0.03</td> <td>6.10</td> <td>99.49</td> <td>11</td> <td>410</td> <td>55</td> <td>38</td> <td>21</td> <td>12</td> <td>11</td> <td>18</td> <td>87</td> <td>14.5</td> <td>61</td> <td>6.6</td> <td>116</td> <td>45</td> <td>56</td> <td>186</td>	AH1*	MST-C	66.53	0.68	16.01	5.72	0.04	1.69	0.20	0.38	2.12	0.03	6.10	99.49	11	410	55	38	21	12	11	18	87	14.5	61	6.6	116	45	56	186
AH3 VFS 7.2.83 0.16 10.81 8.36 0.01 0.20 0.14 0.82 2.37 0.02 3.80 99.53 4 558 8 4 9 7 23 17 74 4.0 66 2.4 21 8 39 67 Null VFS 81.04 0.22 10.08 1.31 0.01 0.39 0.32 2.01 99.51 3 623 11 7 9 4 3 14 87 2.3 2.84 1.3 24 9 11 75 KU2 VFS-ZST 76.20 38 1.29 2.48 0.02 2.89 99.69 5 52.1 2.3 4 12 6 5 18 96 7.5 1.7 3.1 49 11 29 99 13 5.21 2.3 4 12 6 5 18 96 7.5 12.6 3.0 48 1.01 1.3 2.61 1.02 1.59 99.56 2 458 10 10 <td< td=""><td>AH2</td><td>VFS</td><td>82.64</td><td>0.22</td><td>9.98</td><td>1.02</td><td>0.01</td><td>0.28</td><td>0.09</td><td>0.41</td><td>2.51</td><td>0.01</td><td>2.53</td><td>99.71</td><td>2</td><td>453</td><td>19</td><td>17</td><td>10</td><td>7</td><td>5</td><td>13</td><td>80</td><td>1.7</td><td>54</td><td>4.4</td><td>25</td><td>13</td><td>7</td><td>85</td></td<>	AH2	VFS	82.64	0.22	9.98	1.02	0.01	0.28	0.09	0.41	2.51	0.01	2.53	99.71	2	453	19	17	10	7	5	13	80	1.7	54	4.4	25	13	7	85
Nanpeidai, Matsue City, locality of Nakayama et al. (1996), where the series of the se	AH3	VFS	72.83	0.16	10.81	8.36	0.01	0.20	0.14	0.82	2.37	0.02	3.80	99.53	4	558	8	4	9	7	23	17	74	4.0	66	2.4	21	8	39	67
KU1 VFS 61.04 0.22 10.08 1.31 0.01 0.19 0.49 1.44 2.0 0.21 99.51 3 623 11 7 9 4 3 14 87 2.3 284 1.31 0.01 0.30 0.38 1.35 2.68 0.02 2.82 99.63 7 446 40 18 13 8 5 18 89 6.7 179 3.1 49 11 29 99 KU3 ZST 76.22 0.38 1.29 2.48 0.01 0.41 0.40 1.71 2.79 0.02 2.93 99.63 7 446 40 18 13 8 5 18 96 7.5 126 3.0 43 17 39 143 KU4 FS 77.97 0.28 1.03 0.01 0.50 0.03 1.59 99.63 468 11 7 10 35 12 86 3.2 348 1.7 19 10 17 76 8.11 17	Nanpeid	dai, Matsue (City, loca	lity of N	lakavan	na et al.	(1996).																					-		•••
KU2 VFS-ZST 78.30 0.32 12.00 1.51 0.01 0.30 0.38 1.35 2.68 0.02 2.82 99.63 7 446 40 18 13 8 5 18 96 7.5 126 30 48 17 39 143 KU4 FS 77.97 0.28 1.29 2.48 0.01 0.41 0.40 1.71 2.79 0.02 2.58 99.63 7 446 40 18 13 8 5 18 96 7.5 126 30 48 17 39 143 KU4 FS 78.29 0.22 9.81 0.31 0.69 1.59 99.53 2 465 11 7 10 3 5 12 80 39 49 12 6 6 4 11 67 2.5 100 3.3 15 10 10 17 75 8.1 14 4.7 57 14 26 182 99.68 5 585 13 12 <td>KU1</td> <td>VFS</td> <td>81.04</td> <td>0.22</td> <td>10.08</td> <td>1.31</td> <td>0.01</td> <td>0.19</td> <td>0.49</td> <td>1.44</td> <td>2.70</td> <td>0.02</td> <td>2.01</td> <td>99.51</td> <td>3</td> <td>623</td> <td>11</td> <td>7</td> <td>9</td> <td>4</td> <td>3</td> <td>14</td> <td>87</td> <td>2.3</td> <td>284</td> <td>1.3</td> <td>24</td> <td>9</td> <td>11</td> <td>75</td>	KU1	VFS	81.04	0.22	10.08	1.31	0.01	0.19	0.49	1.44	2.70	0.02	2.01	99.51	3	623	11	7	9	4	3	14	87	2.3	284	1.3	24	9	11	75
KU3 ZST 76.22 0.38 12.29 2.48 0.01 0.41 0.40 1.71 2.79 0.02 2.93 99.83 7 446 40 18 13 8 5 18 96 7.5 126 3.0 48 17 39 143 KU4 FS 82.39 0.22 911 0.73 0.01 0.31 0.69 1.82 3.12 0.02 2.58 99.83 4 561 24 9 12 06 15 110 4.5 741 2.6 3.0 4.9 17 76 8.1 124 8.1 744 8.5 78.4 8.6 15 100 4.5 100 177 76 8.1 124 4.7 57 14 26 10 10 17 76 8.1 124 4.7 57 14 26 18 13 8 5 18 10 10 17 76 8.1 124 4.7 57 14 26 18 13 16 14	KU2	VFS-ZST	78.30	0.32	12.00	1.51	0.01	0.30	0.38	1.35	2.68	0.02	2.82	99.69	5	521	23	4	12	6	5	18	88	6.7	179	3.1	49	11	29	99
KU4 FS 77.97 0.28 11.95 1.07 0.01 0.31 0.69 182 3.12 0.02 2.58 9.98.3 4 561 24 9 12 0 6 15 10 4.5 741 2.6 33 13 20 95 KU5 FS 82.39 0.22 9.81 0.83 0.03 0.19 0.45 1.43 2.64 0.02 1.59 99.58 1 465 11 7 10 3 5 12 86 3.2 348 1.7 19 10 27 KU7 MST 7.754 0.45 11.09 1.03 0.01 0.50 0.37 1.52 2.08 0.03 4.09 99.61 5 408 43 32 13 10 10 17 75 8.1 1.42 4.7 57 14 26 182 KU8 FS 77.94 0.16 7.63 8.14 0.01 0.14 0.21 1.01 2.04 1.00 1.02 4.80	KU3	ZST	76.22	0.38	12.29	2.48	0.01	0.41	0.40	1.71	2.79	0.02	2.93	99.63	7	446	40	18	13	8	5	18	96	7.5	126	3.0	48	17	39	143
KU5 FS 82.39 0.22 9.81 0.73 0.01 0.19 0.52 1.50 2.61 0.02 1.59 99.58 1 465 11 7 10 3 5 12 86 3.2 3.48 1.7 19 10 17 76 KU6 FS 82.27 0.20 9.81 0.83 0.03 0.19 0.45 1.43 2.64 0.02 1.69 99.55 2 458 10 2 9 2 5 12 90 3.9 429 2.1 19 10 22 74 KU8 FS 77.94 0.16 7.63 8.14 0.01 0.14 0.21 1.01 2.04 0.10 2.32 99.68 5 585 13 12 6 6 4 11 67 2.5 100 3.3 15 10 12 78 KU8 FS 77.94 0.16 7.63 8.14 0.01 0.14 0.21 1.01 2.04 0.10 3.3	KU4	FS	77.97	0.28	11.95	1.07	0.01	0.31	0.69	1.82	3.12	0.02	2.58	99.83	4	561	24	9	12	Ó	6	15	110	4.5	741	2.6	33	13	20	95
KU6 FS 82.27 0.20 9.81 0.83 0.03 0.19 0.45 1.43 2.64 0.02 1.69 99.55 2 458 10 2 9 2 5 12 90 3.9 429 2.1 19 10 22 74 KU7 MST 77.54 0.45 11.09 1.93 0.01 0.50 0.37 1.52 2.08 0.03 4.09 99.61 5 408 43 32 13 10 10 17 75 8.1 124 4.7 57 14 26 182 KU8 FS 77.94 0.16 7.63 8.14 0.01 0.14 0.21 1.01 2.04 0.10 2.32 99.68 5 585 13 12 6 6 4 11 67 2.5 100 3.3 15 10 12 78 *clasts of Furue Formation mudstone within basal Matsue Formation. Mig Mag Ca Ca Ca Ca Ca Ca Ca Ca <td>KU5</td> <td>FS</td> <td>82.39</td> <td>0.22</td> <td>9.81</td> <td>0.73</td> <td>0.01</td> <td>0.19</td> <td>0.52</td> <td>1.50</td> <td>2.61</td> <td>0.02</td> <td>1.59</td> <td>99.58</td> <td>1</td> <td>465</td> <td>11</td> <td>7</td> <td>10</td> <td>3</td> <td>5</td> <td>12</td> <td>86</td> <td>3.2</td> <td>348</td> <td>1.7</td> <td>19</td> <td>10</td> <td>17</td> <td>76</td>	KU5	FS	82.39	0.22	9.81	0.73	0.01	0.19	0.52	1.50	2.61	0.02	1.59	99.58	1	465	11	7	10	3	5	12	86	3.2	348	1.7	19	10	17	76
KU7 MST 77.54 0.45 11.09 1.93 0.01 0.50 0.37 1.52 2.08 0.03 4.09 99.61 5 408 43 32 13 10 10 17 75 8.1 124 4.7 57 14 26 182 KU8 FS 77.94 0.16 7.63 8.14 0.01 0.14 0.21 1.01 2.04 0.10 2.32 99.68 5 585 13 12 6 6 4 11 67 2.5 100 3.3 15 10 12 78 * clasts of Furue Formation mudstone within basal Matsue Formation. Miscellaneous analyses of Miocene rocks, Shimane Peninsula 5 0.03 4.09 99.61 5 4.08 8a Ce Cr Ga Nb Ni Pb Rb Sc Sr Th V Y Zn Zr Zr Ushkin Formation, Chikumi shore platform US4A 2ST 78.19 0.38 8.26 4.27 0.03 1.95 0.23 1.06 1.17	KU6	FS	82.27	0.20	9.81	0.83	0.03	0.19	0.45	1.43	2.64	0.02	1.69	99.55	2	458	10	2	9	2	5	12	90	3.9	429	21	19	10	22	74
KU8 FS 77.94 0.16 7.63 8.14 0.01 0.14 0.21 1.01 2.04 0.10 2.32 99.68 5 555 13 12 6 6 4 11 67 2.5 100 3.3 15 10 12 78 *clasts of Furue Formation mudstone within basal Matsue Formation. (B) Miscellaneous analyses of Miocene rocks, Shimane Peninsula SANR LTH SiO2 TiO2 Algo, Fe ₂ O ₃ T MnO MgO CaO Na G N<	KU7	MST	77 54	0.45	11.09	1.93	0.01	0.50	0.37	1.52	2.08	0.03	4 09	99.61	5	408	43	32	13	10	10	17	75	81	124	47	57	14	26	182
*clasts of Furue Formation mudstone within basal Matsue Formation. (B) Miscellaneous analyses of Miocene rocks, Shimane Peninsula SANR LITH SiO2 TiO2 Al ₂ O3 Fe ₂ O3T MnO MgO CaO Na ₂ O K ₂ O P ₂ O3 LOI Total As Ba Ce Cr Ga Nb Ni Pb Rb Sc Sr Th V Y Zn Zr Ushikri Formation, Chikumi shore platform US4A ZST 78.19 0.35 8.26 4.27 0.03 1.95 0.23 1.06 1.17 0.04 3.95 99.49 - 239 30 43 10 8 17 8 57 8.7 67 5.5 62 13 - 75 US4B ZST 77.16 0.38 8.92 4.56 0.03 2.01 0.28 1.16 1.34 0.06 3.66 99.55 - 280 31 45 11 9 20 4 65 6.4 69 5.5 75 15 - 83 US5A MS 61.83 0.60 15.65 6.88 0.07 4.85 1.78 4.42 0.40 0.19 3.36 100.03 - 405 32 28 17 4 15 8 11 16.2 370 5.4 121 21 - 112 US5B MS 55.44 0.75 17.97 7.93 0.10 5.55 2.78 4.34 0.55 0.23 4.10 99.73 - 455 25 49 19 6 17 11 18 22.4 369 5.2 153 20 - 104 US6 MS 67.42 0.50 12.65 5.51 0.07 4.15 1.92 3.76 0.32 0.13 3.24 99.67 - 300 30 14 13 7 8 5 10 10.6 343 4.5 85 17 - 114 X-US1 MS 77.27 0.24 12.38 1.54 0.03 0.39 0.32 4.86 2.09 0.06 0.92 100.10 - 529 36 2 9 7 5 4 57 5.6 156 8.0 17 22 - 163 KO1 MS 62.00 0.72 16.76 5.53 0.17 2.78 2.31 4.82 2.60 0.17 2.07 99.92 - 1040 58 20 19 9 11 7 46 14.1 187 5.4 118 25 - 203	KU8	FS	77 94	0.16	7.63	8 14	0.01	0 14	0.21	1.01	2.04	0.10	2.32	99 68	5	585	13	12	6	6	4	11	67	25	100	33	15	10	12	78
*clasts of Furue Formation mudstone within basal Matsue Formation. (B) Miscellaneous analyses of Miocene rocks, Shimane Peninsula SANR LITH SiO2 TiO2 Al ₂ O3 Fe ₂ O3T MnO MgO CaO Na ₂ O K ₂ O P ₂ O3 LOI Total As Ba Ce Cr Ga Nb Ni Pb Rb Sc Sr Th V Y Zn Zr UShikri Formation, Chikumi shore platform US4A ZST 77.16 0.38 8.92 4.56 0.03 2.01 0.28 1.16 1.17 0.04 3.95 99.49 - 239 30 43 10 8 17 8 57 8.7 67 5.5 62 13 - 75 US4B ZST 77.16 0.38 8.92 4.56 0.03 2.01 0.28 1.16 1.34 0.06 3.66 99.55 - 280 31 45 11 9 20 4 65 6.4 69 5.5 75 15 - 83 US5A MS 61.83 0.60 15.65 6.88 0.07 4.85 1.78 4.42 0.40 0.19 9.36 100.03 - 405 32 28 17 4 15 8 11 16.2 370 5.4 121 21 - 112 US5B MS 55.44 0.75 17.97 7.93 0.10 5.55 2.78 4.34 0.55 0.23 4.10 99.73 - 455 25 49 19 6 17 11 18 22.4 369 5.2 153 20 - 104 US66 MS 67.42 0.50 12.65 5.51 0.07 4.15 1.92 3.76 0.32 0.13 3.24 99.67 - 300 30 14 13 7 8 5 10 10.6 343 4.5 85 17 - 114 X-US1 MS 77.27 0.24 12.38 1.54 0.03 0.39 0.32 4.86 2.09 0.06 0.92 100.10 - 529 36 2 9 7 5 4 57 5.6 156 8.0 17 22 - 163 KO1 MS 62.00 0.72 16.76 5.53 0.17 2.78 2.31 4.82 2.60 0.17 2.07 99.92 - 1040 58 20 19 9 11 7 46 14.1 187 5.4 118 25 - 203								••••							-				•	•	•	••	•.			0.0				
(B) Miscellaneous analyses of Miocene rocks, Shimane Peninsula SANR LITH SiO2 TiO2 Al2O3 Fe2O3T MnO MgO CaO Na2O K2O P2O3 LOI Total As Ba Ce Cr Ga Nb Ni Pb Rb Sc Sr Th V Y Zn Zr USAM ZST 78.19 0.35 8.26 4.27 0.03 1.95 0.23 1.06 1.17 0.04 3.95 99.49 - 239 30 43 10 8 17 8 57 8.7 67 5.5 62 13 - 75 US4A ZST 77.16 0.38 8.29 4.56 0.03 2.01 0.28 1.16 1.34 0.06 3.66 99.55 - 230 31 455 11 16.2 370 5.4 121 21 - 112 US4B 2ST 77.16 0.38 8.92 4.56 0.03 1.95 0.23 4.10 99.73 - 455 25 <td< td=""><td>*clasts c</td><td>of Furue For</td><td>mation m</td><td>udston</td><td>e within</td><td>basal M</td><td>atsue F</td><td>ormation</td><td>1.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	*clasts c	of Furue For	mation m	udston	e within	basal M	atsue F	ormation	1.																					
(B) Miscellaneous analyses of Miocene rocks, Shimane Peninsula SANR LITH SiO2 TiO2 AlgO3 FegO3T MnO MgO CaO NagO KgO P2O5 LOI Total As Ba Ce Cr Ga Nb Ni Pb Rb Sc Sr Th V Y Zn Zr Ushikiri Formation, Chikumi shore platform US4A ZST 78.19 0.35 8.26 4.27 0.03 1.95 0.23 1.06 1.17 0.04 3.95 99.49 - 239 30 43 10 8 17 8 57 8.7 67 5.5 62 13 - 75 15 - 833 US4B ZST 77.16 0.38 8.92 4.56 0.03 2.01 0.28 1.16 1.34 0.06 36.6 99.55 - 280 31 45 11 9.2 4 65 64 69 5.5 75 15 - 833 11 16.2 <td></td>																														
(B) Miscellaneous analyses of Miocene rocks, Shimane Peninsula SANR LITH SiO2 TiO2 Al ₂ O3 FegO3T MnO MgO CaO Na ₂ O K ₂ O P ₂ O3 LOI Total As Ba Ce Cr Ga Nb Ni Pb Rb Sc Sr Th V Y Zn Zr USAR LITH Side of the patient USAA ZST 78.19 0.35 8.26 4.27 0.03 1.95 0.23 1.06 1.17 0.04 3.95 99.49 - 239 30 43 10 8 17 8 57 8.7 67 5.5 62 13 - 75 USA USAB ZST 77.16 0.38 8.92 4.56 0.03 2.01 0.28 1.16 1.34 0.06 3.66 99.55 - 280 31 45 11 9.2 376																														
SANR LITH SiO2 TiO2 AlgO3 FegO3T MnO MgO CaO NagO KgO P2O5 LOI Total As Ba Ce Cr Ga Nb Ni Pb Rb Sc Sr Th V Y Zn Zr Ushikir Formation, Chikumi shore platform 0.35 8.26 4.27 0.03 1.95 0.23 1.06 1.17 0.04 3.95 99.49 - 239 30 43 10 8 17 8 57 8.7 67 5.5 62 13 - 75 US4A ZST 77.16 0.38 8.92 4.56 0.03 2.01 0.28 1.16 1.34 0.06 3.66 99.55 - 280 31 45 11 9 20 4 65 6.4 69 5.5 75 15 - 833 US5A MS 61.83 0.60 15.65 6.88 0.07 4.82 0.40 0.19 3.36 100.03 -	(B) Miscellaneous analyses of Miocene rocks, Shimane Peninsula																													
Ushikri Formation, Chikumi shore platform US4A ZST 78.19 0.35 8.26 4.27 0.03 1.95 0.23 1.06 1.17 0.04 3.95 99.49 - 239 30 43 10 8 17 8 57 8.7 67 5.5 62 13 - 75 US4A ZST 77.16 0.38 8.92 4.56 0.03 2.01 0.28 1.16 1.34 0.06 3.66 99.55 - 280 31 45 11 9 20 4 65 6.4 69 5.5 75 15 - 83 US5A MS 61.83 0.60 15.65 6.88 0.07 4.85 1.78 4.42 0.40 0.19 3.36 100.03 - 405 32 28 17 4 15 8 11 16.2 370 5.4 121 21 - 112 US5B MS 55.44 0.75 17.97 7.93 0.10 5.55 2.78 4.34 0.55 0.23 4.10 99.73 -	(O) MIS		5 allaly:	ses of	Mioce	ne rock	s, Shir	nane F	enins	ula																				
US4A ZST 78.19 0.35 8.26 4.27 0.03 1.95 0.23 1.06 1.17 0.04 3.95 99.49 - 239 30 43 10 8 17 8 57 8.7 67 5.5 62 13 - 75 US4B ZST 77.16 0.38 8.92 4.56 0.03 2.01 0.28 1.16 1.34 0.06 3.66 99.55 - 280 31 45 11 9 20 4 65 6.4 69 5.5 75 15 - 83 US5A MS 61.83 0.60 15.65 6.88 0.07 4.85 1.78 4.42 0.40 0.19 3.36 100.03 - 405 32 28 17 4 15 8 11 16.2 370 5.4 121 21 - 112 US5 MS 67.42 0.50 12.65 5.51 0.07 4.15 1.92 3.76 0.32 0.13 3.24	SANR	ЦТН	SiO2	ses of TiO,	Mioce	Fe ₂ O ₃ T	s, Shir MnO	nane F MaO	enins CaO	u la Na₂O	K,O	P,0,	LOI	Total	As	Ва	Ce	Cr	Ga	Nb	Ni	Pb	Bb	Sc	Sr	Th	v	Y	Zn	7r
US4B ZST 77.16 0.38 8.92 4.56 0.03 2.01 0.28 1.16 1.34 0.06 3.66 99.55 - 280 31 45 11 9 20 4 65 6.4 69 5.5 75 15 - 83 US5A MS 61.83 0.60 15.65 6.88 0.07 4.85 1.78 4.42 0.40 0.19 3.36 100.03 - 405 32 28 17 4 15 8 11 16.2 370 5.4 121 21 - 112 US5B MS 55.44 0.75 17.97 7.93 0.10 5.55 2.78 4.34 0.55 0.23 4.10 99.73 - 455 25 49 19 6 17 11 18 22.4 369 5.2 153 20 - 104 US6 MS 67.42 0.50 12.65 5.51 0.07 4.15 1.92 3.76 0.32 0.13 3.24<	SANR Ushikri	LITH Formation, C	SiO2	TiO₂	Mioce Al ₂ O ₃	ne rock Fe₂O₃T	s, Shir MnO	nane F MgO	CaO	ul a Na₂O	K₂O	P₂O₅	LOI	Total	As	Ва	Ce	Cr	Ga	Nb	Ni	Pb	Rb	Sc	Sr	Th	V	Y	Zn	Zr
US5A MS 61.83 0.60 15.65 6.88 0.07 4.85 1.78 4.42 0.40 0.19 3.36 100.03 - 405 32 28 17 4 15 8 11 16.2 370 5.4 121 21 - 112 US5B MS 55.44 0.75 17.97 7.93 0.10 5.55 2.78 4.34 0.55 0.23 4.10 99.73 - 455 25 49 19 6 17 11 18 22.4 369 5.2 153 20 - 104 US6 MS 67.42 0.50 12.65 5.51 0.07 4.15 1.92 3.76 0.32 0.13 3.24 99.67 - 300 30 14 13 7 8 5 10 10.6 343 4.5 85 17 - 114 V-US1 MS 77.27 0.24 12.88 1.54 0.03 0.32 4.86 2.09 0.06 0.92 10	SANR Ushikri i US4A	LITH Formation, C ZST	SiO2 Chikumi si 78, 19	TiO₂ TiO₂ hore pl	Mioce Al ₂ O ₃ atform 8.26	ne rock Fe₂O₃T 4.27	x s, Shir MnO 0.03	nane F MgO 1.95	CaO 0.23	u la Na₂O 1.06	K₂O	P₂O₅ 0.04	LOI 3.95	<u>Total</u> 99.49	As	Ba 239	<u>Ce</u> 30	<u>Cr</u>	<u>Ga</u>	Nb 8	<u>Ni</u> 17	Pb 8	<u>Rb</u>	<u>Sc</u>	<u>Sr</u>	Th 5.5	V62	Y13	Zn	<u>Zr</u> 75
US5B MS 55.44 0.75 17.97 7.93 0.10 5.55 2.78 4.34 0.55 0.23 4.10 99.73 - 455 25 49 19 6 17 11 18 22.4 369 5.2 153 20 - 104 US6 MS 67.42 0.50 12.65 5.51 0.07 4.15 1.92 3.76 0.32 0.13 3.24 99.67 - 300 30 14 13 7 8 5 10 10.6 343 4.5 85 17 - 114 X-US1 MS 77.27 0.24 12.38 1.54 0.03 0.39 0.32 4.86 2.09 100.10 - 529 36 2 9 7 5 4 57 5.6 156 8.0 17 2.1 163 Koura Formation, east side of bay at Karuba, Mihonoseki KO1 MS 62.00 0.72 16.76 5.53 0.17 2.78 2.31 4.82 2.60 0.17	SANR Ushikri i US4A US4B	LITH Formation, C ZST ZST	SiO2 Chikumi si 78.19 77.16	TiO₂ TiO₂ <i>hore pl</i> 0.35 0.38	Al ₂ O ₃ atform 8.26 8.92	ne rock Fe₂O₃T 4.27 4.56	x s, Shir <u>MnO</u> 0.03 0.03	nane F <u>MgO</u> 1.95 2.01	CaO 0.23 0.28	ula Na₂O 1.06 1.16	K₂O 1.17 1.34	P₂O₅ 0.04 0.06	LOI 3.95 3.66	<u>Total</u> 99.49 99.55	<u>As</u> -	Ba 239 280	<u>Ce</u> 30 31	<u>Cr</u> 43 45	<u>Ga</u> 10 11	Nb 8 9	<u>Ni</u> 17 20	Pb 8 4	Rb 57 65	Sc 8.7 6.4	<u>Sr</u> 67 69	Th 5.5 5.5	02 75	Y 13 15	Zn -	Zr 75 83
US6 MS 67.42 0.50 12.65 5.51 0.07 4.15 1.92 3.76 0.32 0.13 3.24 99.67 - 300 30 14 13 7 8 5 10 10.6 343 4.5 85 17 - 114 X-US1 MS 77.27 0.24 12.38 1.54 0.03 0.39 0.32 4.86 2.09 0.06 0.92 100.10 - 529 36 2 9 7 5 4 57 5.6 156 8.0 17 22 - 163 Koura Formation, east side of bay at Karuba, Mihonoseki KO1 MS 62.00 0.72 16.76 5.53 0.17 2.78 2.31 4.82 2.60 0.17 2.07 99.92 - 1040 58 20 19 9 11 7 46 14.1 187 5.4 118 25 - 203	SANR Ushikri i US4A US4B US5A	LITH Formation, C ZST ZST MS	SiO2 Chikumi si 78.19 77.16 61.83	TiO₂ TiO₂ hore pl 0.35 0.38 0.60	Mioce Al ₂ O ₃ atform 8.26 8.92 15.65	Fe₂O₃T 4.27 4.56 6.88	xs, Shir MnO 0.03 0.03 0.07	MgO 1.95 2.01 4.85	CaO 0.23 0.28 1.78	ula Na₂O 1.06 1.16 4.42	K₂O 1.17 1.34 0.40	P₂O₅ 0.04 0.06 0.19	LOI 3.95 3.66 3.36	Total 99.49 99.55 100.03	<u>As</u> - -	Ba 239 280 405	Ce 30 31 32	<u>Cr</u> 43 45 28	Ga 10 11 17	Nb 8 9 4	Ni 17 20 15	Pb 8 4 8	Rb 57 65 11	Sc 8.7 6.4 16.2	Sr 67 69 370	Th 5.5 5.5 5.4	V 62 75 121	Y 13 15 21	<u>Zn</u> -	Zr 75 83 112
X-US1 MS 77.27 0.24 12.38 1.54 0.03 0.39 0.32 4.86 2.09 0.06 0.92 100.10 - 529 36 2 9 7 5 4 57 5.6 156 8.0 17 22 - 163 Koura Formation, east side of bay at Karuba, Mihonoseki Kol 1 2.78 2.31 4.82 2.60 0.17 2.07 99.92 - 1040 58 20 19 9 11 7 46 14.1 187 5.4 118 25 - 203 VO2 VS 61.09 0.02 16.00 17 2.07 99.92 - 1040 58 20 19 9 11 7 46 14.1 187 5.4 118 25 - 203	SANR Ushikri J US4A US4B US5A US5B	LITH Formation, C ZST ZST MS MS	SiO2 Chikumi si 78.19 77.16 61.83 55.44	TiO₂ TiO₂ hore pl. 0.35 0.38 0.60 0.75	Al ₂ O ₃ atform 8.26 8.92 15.65 17.97	Fe ₂ O ₃ T 4.27 4.56 6.88 7.93	MnO 0.03 0.03 0.07 0.10	MgO 1.95 2.01 4.85 5.55	CaO 0.23 0.28 1.78 2.78	ula Na₂O 1.06 1.16 4.42 4.34	K₂O 1.17 1.34 0.40 0.55	P₂O₅ 0.04 0.06 0.19 0.23	LOI 3.95 3.66 3.36 4.10	Total 99.49 99.55 100.03 99.73	<u>As</u> - -	Ba 239 280 405 455	Ce 30 31 32 25	Cr 43 45 28 49	Ga 10 11 17 19	Nb 8 9 4 6	<u>Ni</u> 17 20 15 17	Pb 8 4 8 11	Rb 57 65 11 18	Sc 8.7 6.4 16.2 22.4	57 69 370 369	Th 5.5 5.5 5.4 5.2	62 75 121 153	Y 13 15 21 20	<u>Zn</u> - -	Zr 75 83 112 104
Koura Formation, east side of bay at Karuba, Mihonoseki Koura Formation, east side of bay at Karuba, Mihonoseki Koura Formation, east side of bay at Karuba, Mihonoseki K01 MS 62,00 0.72 16,76 5,53 0.17 2,78 2,60 0,17 2,07 99,92 - 1040 58 20 19 9 11 7 46 14,1 187 5,4 118 25 - 203	SANR Ushikri J US4A US4B US5A US5B US5B	LITH Formation, C ZST ZST MS MS MS	SiO2 Chikumi si 78.19 77.16 61.83 55.44 67.42	TiO₂ hore pla 0.35 0.38 0.60 0.75 0.50	Al ₂ O ₃ atform 8.26 8.92 15.65 17.97 12.65	re rock Fe ₂ O ₃ T 4.27 4.56 6.88 7.93 5.51	MnO 0.03 0.03 0.07 0.10 0.07	MgO 1.95 2.01 4.85 5.55 4 15	CaO 0.23 0.28 1.78 2.78 1.92	ula Na₂O 1.06 1.16 4.42 4.34 3.76	K₂O 1.17 1.34 0.40 0.55 0.32	P₂O₅ 0.04 0.06 0.19 0.23 0.13	LOI 3.95 3.66 3.36 4.10 3.24	Total 99.49 99.55 100.03 99.73 99.67	<u>As</u> - - -	Ba 239 280 405 455 300	Ce 30 31 32 25 30	Cr 43 45 28 49 14	Ga 10 11 17 19 13	Nb 8 9 4 6 7	Ni 17 20 15 17 8	Pb 8 4 8 11 5	Rb 57 65 11 18 10	Sc 8.7 6.4 16.2 22.4 10.6	5r 67 69 370 369 343	Th 5.5 5.5 5.4 5.2 4 5	V 62 75 121 153 85	Y 13 15 21 20 17	<u>Zn</u> - - -	Zr 75 83 112 104 114
KO1 MS 62.00 0.72 16.76 5.53 0.17 2.78 2.31 4.82 2.60 0.17 2.07 99.92 - 1040 58 20 19 9 11 7 46 14.1 187 5.4 118 25 - 203	SANR Ushikri US4A US4B US5A US5B US5B US6 X-US1	LITH Formation, C ZST ZST MS MS MS MS MS	SiO2 Chikumi si 78.19 77.16 61.83 55.44 67.42 77.27	TiO₂ hore pl: 0.35 0.38 0.60 0.75 0.50 0.24	Mioce Al ₂ O ₃ atform 8.26 8.92 15.65 17.97 12.65 12.38	Fe₂O₃T 4.27 4.56 6.88 7.93 5.51 1.54	MnO 0.03 0.03 0.07 0.10 0.07 0.03	MgO 1.95 2.01 4.85 5.55 4.15 0.39	CaO 0.23 0.28 1.78 2.78 1.92 0.32	ula Na₂O 1.06 1.16 4.42 4.34 3.76 4.86	K₂O 1.17 1.34 0.40 0.55 0.32 2.09	P₂O₅ 0.04 0.06 0.19 0.23 0.13 0.06	LOI 3.95 3.66 3.36 4.10 3.24 0.92	Total 99.49 99.55 100.03 99.73 99.67 100.10	<u>As</u> - - - -	Ba 239 280 405 455 300 529	Ce 30 31 32 25 30 36	Cr 43 45 28 49 14 2	Ga 10 11 17 19 13 9	Nb 8 9 4 6 7 7	Ni 17 20 15 17 8 5	Pb 8 4 8 11 5 4	Rb 57 65 11 18 10 57	Sc 8.7 6.4 16.2 22.4 10.6 5.6	5r 69 370 369 343 156	Th 5.5 5.5 5.4 5.2 4.5 8.0	V 62 75 121 153 85 17	Y 13 15 21 20 17 22	<u>Zn</u> - - - -	Zr 75 83 112 104 114 163
	SANR Ushikri US4A US4B US5A US5B US5B US6 X-US1 Koura F	LITH Formation, C ZST ZST MS MS MS MS	SiO2 Chikumi si 78.19 77.16 61.83 55.44 67.42 77.27 ast side o	TiO₂ hore pl 0.35 0.38 0.60 0.75 0.50 0.24 f bay a	Al₂O₃ atform 8.26 8.92 15.65 17.97 12.65 12.38 t Karub	Fe₂O₃T 4.27 4.56 6.88 7.93 5.51 1.54 a <i>Mihop</i>	MnO 0.03 0.03 0.07 0.10 0.07 0.03 0.03	MgO 1.95 2.01 4.85 5.55 4.15 0.39	CaO 0.23 0.28 1.78 2.78 1.92 0.32	ula Na₂O 1.06 1.16 4.42 4.34 3.76 4.86	K₂O 1.17 1.34 0.40 0.55 0.32 2.09	P₂O₅ 0.04 0.06 0.19 0.23 0.13 0.06	LOI 3.95 3.66 3.36 4.10 3.24 0.92	Total 99.49 99.55 100.03 99.73 99.67 100.10	<u>As</u> - - - - -	Ba 239 280 405 455 300 529	Ce 30 31 32 25 30 36	Cr 43 45 28 49 14 2	Ga 10 11 17 19 13 9	Nb 9 4 6 7 7	Ni 20 15 17 8 5	Pb 8 4 8 11 5 4	Rb 57 65 11 18 10 57	Sc 8.7 6.4 16.2 22.4 10.6 5.6	5r 69 370 369 343 156	Th 5.5 5.5 5.4 5.2 4.5 8.0	V 62 75 121 153 85 17	Y 13 15 21 20 17 22	<u>Zn</u> - - - -	Zr 83 112 104 114 163
NUZ MNA BLYK UYD 1612 722 D1X 2XY 14D 534 12Y D2D 21Y Y966 - 383 36 7 18 6 5 8 27 248 119 34 144 34 - 198 -	SANR Ushikri i US4A US4B US5A US5B US6 X-US1 Koura F KO1	LITH Formation, C ZST MS MS MS MS Tormation, ea	SiO2 Chikumi s. 78.19 77.16 61.83 55.44 67.42 77.27 ast side o 62.00	TiQ₂ hore pl. 0.35 0.38 0.60 0.75 0.50 0.24 f bay a 0.72	Mioce Al₂O₃ atform 8.26 8.92 15.65 17.97 12.65 12.38 t Karuba 16.76	Fe ₂ O ₃ T 4.27 4.56 6.88 7.93 5.51 1.54 a, <i>Mihom</i> 5.53	MnO 0.03 0.03 0.07 0.10 0.07 0.03 0seki 0.17	MgO 1.95 2.01 4.85 5.55 4.15 0.39 2.78	CaO 0.23 0.28 1.78 2.78 1.92 0.32 2.31	Na ₂ O 1.06 1.16 4.42 4.34 3.76 4.86 4.82	K₂O 1.17 1.34 0.40 0.55 0.32 2.09 2.60	P₂O₅ 0.04 0.06 0.19 0.23 0.13 0.06 0.17	LOI 3.95 3.66 3.36 4.10 3.24 0.92 2.07	Total 99.49 99.55 100.03 99.73 99.67 100.10 99.92	<u>As</u> - - - -	Ba 239 280 405 455 300 529	Ce 30 31 32 25 30 36 58	Cr 43 45 28 49 14 2 20	Ga 10 11 17 19 13 9	Nb 9 4 6 7 7	Ni 17 20 15 17 8 5	Pb 8 4 8 11 5 4 7	Rb 57 65 11 18 10 57 46	Sc 8.7 6.4 16.2 22.4 10.6 5.6	Sr 67 69 370 369 343 156 187	Th 5.5 5.5 5.4 5.2 4.5 8.0	V 62 75 121 153 85 17	Y 13 15 21 20 17 22 25	<u>Zn</u> - - - -	Zr 75 83 112 104 114 163 203
	SANR Ushikri i US4A US4B US5A US5B US6 X-US1 KO12	LITH Formation, C ZST MS MS MS MS formation, ea MS MS	SiO2 Chikumi s. 78.19 77.16 61.83 55.44 67.42 77.27 ast side o 62.00 61 93	TiO₂ hore pl. 0.35 0.38 0.60 0.75 0.50 0.24 f bay a 0.72 0.91	Mioce Al ₂ O ₃ atform 8.26 8.92 15.65 17.97 12.65 12.38 t Karuba 16.76 16.12	Fe ₂ O ₃ T 4.27 4.56 6.88 7.93 5.51 1.54 a, <i>Mihono</i> 5.53 7.22	MnO 0.03 0.03 0.07 0.10 0.07 0.03 0seki 0.17 0.18	MgO 1.95 2.01 4.85 5.55 4.15 0.39 2.78 2.89	CaO 0.23 0.28 1.78 2.78 1.92 0.32 2.31 1.40	ula Na ₂ O 1.06 1.16 4.42 4.34 3.76 4.86 4.86 4.82 5.34	K₂O 1.17 1.34 0.40 0.55 0.32 2.09 2.60 1.29	P ₂ O ₅ 0.04 0.06 0.19 0.23 0.13 0.06 0.17 0.20	LOI 3.95 3.66 3.36 4.10 3.24 0.92 2.07 2.19	Total 99.49 99.55 100.03 99.73 99.67 100.10 99.92 99.66	<u>As</u> - - - - -	Ba 239 280 405 455 300 529 1040 383	Ce 30 31 32 25 30 36 58 36	Cr 43 45 28 49 14 2 20 7	Ga 10 11 17 19 13 9 19 18	Nb 8 9 4 6 7 7 9 6	Ni 20 15 17 8 5 11	Pb 8 4 8 11 5 4 7 8	Rb 57 65 11 18 10 57 46 27	Sc 8.7 6.4 16.2 22.4 10.6 5.6 14.1 24.8	Sr 67 69 370 369 343 156 187 119	Th 5.5 5.5 5.4 5.2 4.5 8.0 5.4 3.4	V 62 75 121 153 85 17 118 144	Y 13 15 21 20 17 22 25 34	<u>Zn</u> - - - -	Zr 75 83 112 104 114 163 203 128
	SANR USAA US4A US5A US5B US5B US6 X-US1 KO1 KO2 KO3	LITH Formation, C ZST ZST MS MS MS MS MS MS MS MS MS TIJEF	SiO2 Chikumi s. 78.19 77.16 61.83 55.44 67.42 77.27 ast side o 62.00 61.93 61.88	TiO₂ hore pl. 0.35 0.38 0.60 0.75 0.50 0.24 f bay a 0.72 0.91 0.83	Al ₂ O ₃ atform 8.26 8.92 15.65 17.97 12.65 12.38 t Karuba 16.76 16.12	Fe ₂ O ₃ T 4.27 4.56 6.88 7.93 5.51 1.54 a, <i>Mihono</i> 5.53 7.22 7.40	MnO 0.03 0.03 0.07 0.10 0.07 0.03 0056ki 0.17 0.18 0.20	nane F MgO 1.95 2.01 4.85 5.55 4.15 0.39 2.78 2.89 3.17	CaO 0.23 0.28 1.78 2.78 1.92 0.32 2.31 1.40 1.62	ula Na₂O 1.06 1.16 4.42 4.34 3.76 4.86 4.86 4.82 5.34 5.16	K₂O 1.17 1.34 0.40 0.55 0.32 2.09 2.60 1.29 1.17	P ₂ O ₅ 0.04 0.06 0.19 0.23 0.13 0.06 0.17 0.20 0.16	LOI 3.95 3.66 3.36 4.10 3.24 0.92 2.07 2.19 2.29	Total 99.49 99.55 100.03 99.73 99.67 100.10 99.92 99.66 99.83	<u>As</u> - - - - - -	Ba 239 280 405 455 300 529 1040 383 398	Ce 30 31 32 25 30 36 58 36 38	Cr 43 45 28 49 14 2 20 7 8	Ga 10 11 17 19 13 9 19 18 19	Nb 8 9 4 6 7 7 9 6	Ni 17 20 15 17 8 5 11 5 5	Pb 8 4 8 11 5 4 7 8 6	Rb 57 65 11 18 10 57 46 27 23	Sc 8.7 6.4 16.2 22.4 10.6 5.6 14.1 24.8 24.4	Sr 67 69 370 369 343 156 187 119 130	Th 5.5 5.5 5.4 5.2 4.5 8.0 5.4 3.4 3.2	V 62 75 121 153 85 17 118 144	Y 13 15 21 20 17 22 25 34 31	<u>Zn</u> - - - - -	Zr 75 83 112 104 114 163 203 128 130
	SANR Ushikri J US4A US4B US5A US5B US6 X-US1 KO1 KO2 KO3 KO3	LITH Formation, C ZST MS MS MS MS Turf TUFF VFS	SiO2 Chikumi s. 78.19 77.16 61.83 55.44 67.42 77.27 ast side o 62.00 61.93 61.86 66.87	TiO2 hore pl: 0.35 0.38 0.60 0.75 0.50 0.24 f bay a 0.72 0.91 0.83 0.67	Al ₂ O ₃ atform 8.26 8.92 15.65 17.97 12.65 12.38 t Karuba 16.76 16.12 15.97	ne rock Fe ₂ O ₃ T 4.27 4.56 6.88 7.93 5.51 1.54 a, <i>Mihona</i> 5.53 7.22 7.40 4.46	MnO 0.03 0.03 0.07 0.10 0.07 0.03 0seki 0.17 0.18 0.20 0.12	MgO 1.95 2.01 4.85 5.55 4.15 0.39 2.78 2.89 3.17 2.25	CaO 0.23 0.28 1.78 2.78 1.92 0.32 2.31 1.40 1.62 1.13	1.06 1.16 1.16 4.42 4.34 3.76 4.86 4.82 5.34 5.34 5.34 5.16 4.18	K₂O 1.17 1.34 0.40 0.55 0.32 2.09 2.60 1.29 1.17 2.43	P ₂ O ₅ 0.04 0.06 0.19 0.23 0.13 0.06 0.17 0.20 0.16 0.11	LOI 3.95 3.66 3.36 4.10 3.24 0.92 2.07 2.19 2.29 2.03	Total 99.49 99.55 100.03 99.73 99.67 100.10 99.92 99.66 99.83 99.64	<u>As</u> - - - - - -	Ba 239 280 405 455 300 529 1040 383 398 676	Ce 30 31 32 25 30 36 58 36 38 38	Cr 43 45 28 49 14 2 20 7 8 22	Ga 10 11 17 19 13 9 19 18 19 18	Nb 8 9 4 6 7 7 9 6 6	Ni 17 20 15 17 8 5 11 5 5	Pb 8 4 8 11 5 4 7 8 6	Rb 57 65 11 18 10 57 46 27 23 70	Sc 8.7 6.4 16.2 22.4 10.6 5.6 14.1 24.8 24.4 12.8	Sr 67 69 370 369 343 156 187 119 130	Th 5.5 5.5 5.4 5.2 4.5 8.0 5.4 3.4 3.4 3.2 8	V 62 75 121 153 85 17 118 144 140 80	Y 13 15 21 20 17 22 25 34 31 31	<u>Zn</u> - - - - - - - -	Zr 75 83 112 104 114 163 203 128 130 202
	SANR Ushikri US4A US4B US5A US5B US6 X-US1 KO1 KO2 KO3 KO4 KO4	LITH Formation, C ZST ZST MS MS MS MS MS MS MS TUFF VFS Ormation, ca VFS	SiO2 Chikumi s. 78.19 77.16 61.83 55.44 67.42 77.27 ast side o 62.00 61.93 61.86 66.87	TiO2 hore pl 0.35 0.38 0.60 0.75 0.50 0.24 f bay a 0.72 0.91 0.83 0.83	Al ₂ O ₃ atform 8.26 8.92 15.65 17.97 12.65 12.38 t Karuba 16.76 16.12 15.97 15.38	ne rock Fe ₂ O ₃ T 4.27 4.56 6.88 7.93 5.51 1.54 4., <i>Mihona</i> 5.53 7.22 7.40 4.0 40 7.40	MnO 0.03 0.03 0.07 0.10 0.07 0.03 0056ki 0.17 0.18 0.20 0.12	nane F MgO 1.95 2.01 4.85 5.55 4.15 0.39 2.78 2.89 3.17 2.25	CaO 0.23 0.28 1.78 2.78 1.92 0.32 2.31 1.40 1.62 1.13	1.06 1.16 1.16 4.42 4.34 3.76 4.86 4.86 4.82 5.34 5.16 4.18	K ₂ O 1.17 1.34 0.40 0.55 0.32 2.09 2.60 1.29 1.17 2.43	P ₂ O ₅ 0.04 0.06 0.19 0.23 0.13 0.06 0.17 0.20 0.16 0.11	LOI 3.95 3.66 3.36 4.10 3.24 0.92 2.07 2.19 2.29 2.03	Total 99.49 99.55 100.03 99.73 99.67 100.10 99.92 99.66 99.83 99.64	<u>As</u> - - - - - - - - - - - -	Ba 239 280 405 455 300 529 1040 383 398 676	Ce 30 31 32 25 30 36 58 36 38 85	Cr 43 45 28 49 14 2 20 7 8 22	Ga 10 11 17 19 13 9 19 18 19 18	Nb 8 9 4 6 7 7 9 6 6 13	Ni 17 20 15 17 8 5 11 5 5 10	Pb 8 4 8 11 5 4 7 8 6 1	Rb 57 65 11 18 10 57 46 27 23 70	Sc 8.7 6.4 16.2 22.4 10.6 5.6 14.1 24.8 24.4 12.8	Sr 69 370 369 343 156 187 119 130 119	Th 5.5 5.5 5.4 5.2 4.5 8.0 5.4 3.4 3.2 8.3	V 62 75 121 153 85 17 118 144 140 80	Y 13 15 21 20 17 22 25 34 31 31	<u>Zn</u> - - - - - - - - -	Zr 75 83 112 104 114 163 203 128 130 302
	SANR Ushikri J US4A US4B US5B US5B US6 X-US1 KO1 KO2 KO3 KO4 KO2 KO3 KO4	LITH Formation, C ZST ZST MS MS MS MS TOF TUFF VFS formation, qu FS	SiO2 Chikumi s. 78.19 77.16 61.83 55.44 67.42 77.27 cast side o 62.00 61.93 61.86 66.87 uarryand 67.21	TiO ₂ hore pl 0.35 0.36 0.75 0.50 0.24 f bay a 0.72 0.91 0.83 0.67 road ou 0.67	Al ₂ O ₃ atform 8.26 8.92 15.65 17.97 12.65 12.38 t Karuba 16.76 16.12 15.97 15.38 <i>itcrop</i> , 8	ne rock Fe ₂ O ₃ T 4.27 4.56 6.88 7.93 5.51 1.54 a, Mihona 5.53 7.22 7.40 4.46 Wihonose 5.31	xs, Shir MnO 0.03 0.07 0.10 0.07 0.07 0.03 0058ki 0.17 0.18 0.20 0.12 8ki 0.09	nane F MgO 1.95 2.01 4.85 5.55 4.15 0.39 2.78 2.89 3.17 2.25 2.06	CaO 0.23 0.28 1.78 2.78 1.92 0.32 2.31 1.40 1.62 1.13	1.06 1.16 4.42 4.34 3.76 4.86 4.86 4.82 5.34 5.16 4.18 3.09	K₂O 1.17 1.34 0.40 0.55 0.32 2.09 2.60 1.29 1.17 2.43 2.17	P ₂ O ₅ 0.04 0.06 0.19 0.23 0.13 0.06 0.17 0.20 0.16 0.11 0.15	LOI 3.95 3.66 3.36 4.10 3.24 0.92 2.07 2.19 2.29 2.03 2.75	Total 99.49 99.55 100.03 99.73 99.67 100.10 99.92 99.66 99.83 99.64	<u>As</u>	Ba 239 280 405 455 300 529 1040 383 398 676 816	Ce 30 31 32 25 30 36 58 36 38 85 76	Cr 43 45 28 49 14 2 20 7 8 22 20	Ga 10 11 17 19 13 9 19 18 19 18	Nb 8 9 4 6 7 7 9 6 6 13 9	Ni 17 20 15 17 8 5 11 5 5 10	Pb 8 4 8 11 5 4 7 8 6 1	Rb 57 65 11 18 10 57 46 27 23 70 63	Sc 8.7 6.4 16.2 22.4 10.6 5.6 14.1 24.8 24.4 12.8 12.1	Sr 69 370 369 343 156 187 119 130 119 256	Th 5.5 5.5 5.4 5.2 4.5 8.0 5.4 3.4 3.2 8.3 7 7	V 62 75 121 153 85 17 118 144 140 80 86	Y 13 15 21 20 17 22 25 34 31 31 30	<u>Zn</u> - - - - - - - -	Zr 75 83 112 104 114 163 203 128 130 302 255

NOTES: Column headings: SANR=sample number; LITH=lithology; LOI=loss on ignition. Dash (-): not determined.

Codes: LITH: CS=coarse sand; MS=medium sand; FS=fine sand; VFS=very fine sand; ZST=siltstone; MST=mudstone; MST-C=mudstone clast; BAS=basalt; WBAS=weathered basalt; AND=andesite.

Normalised elemental abundances of the Omori Formation lavas and volcanic clasts analysed from the Izumo area show patterns most similar to the felsic igneous rock average of Condie (1993). Although abundances in the segment Nb-Ce are <UCC and are often lower than the felsic rock average, they are strongly depleted in Ni, Cr, and V (Fig. 4 A), and are thus clearly distinct from more mafic andesite and basalt. On a total-alkali-silica classification diagram, the Omori lavas are all classified as dacites. This is supported by the multi-element patterns.

Representative samples of sediments from the Omori, Fujina and Jinzai Formations in the area south of Lake Jinzai show contrasting patterns on multi-element diagrams (Fig. 5). Sandstones from an example locality in the Omori Formation have patterns that correspond very closely with Omori dacites (Fig. 5A). The single mudstone analysed also has an identical pattern, illustrating the lack of sorting fractionation in these proximal volcaniclastic sediments. The close match with the dacite patterns is repeated at the other localities sampled, and the Omori sediments in this area were clearly derived from the dacites on which they rest.

Sandstones and mudstones from the overlying Fujina Formation exhibit different patterns, with abundances of most elements in the sandstones lying below UCC (Fig. 5B). They are also distinguished by marked depletion in Ca, Na and Sr, and compatible element abundances similar to UCC, in sharp contrast to the Omori sediments. Patterns in mudstones vary, but differ slightly from the sandstones. Depletion in Ca, Na and Sr is slightly greater than in the sands, and normalised abundances in the segment Ce-V are generally >UCC, in contrast to depletion in the sands. This suggests some sorting fractionation has occurred between sand and mud. The change in pattern from the Omori Formation also suggests that the source of the Fujina sediments differed. Although the flatter patterns could imply a more mafic (andesitic) source, the patterns also resemble Phanerozoic TTG, and a plutonic component may also be present. This is supported by the greater SiO₂ contents in Fujina sandstones (up to 83 wt%; Table 1A) compared to those for the Omori Formation (all <70 wt%). Depletion in Ca, Na and Sr is likely to be a weathering effect, as all three elements are susceptible to mobilization in surficial weathering.

Samples collected from the Jinzai Formation in the area of the Jinzai Basalt also show clearly differing patterns from the above. Two samples of Jinzai Basalt breccia are enriched in Ca, Sr, Mg and Ce relative to UCC, and also show progressive enrichment in the elements Sc-V (Fig. 5C). Their pattern is thus comparable to that of average Mesozoic-Cenozoic basalt (Fig. 4A). With one exception, sandstones and mudstones collected from the vicinity of the Jinzai Basalt cone display the same patterns as the basalts, with marked enrichment in the segment Sc-V, as well as positive Ca, Sr, Mg and Ce anomalies. This reflects a

Fig. 4. UCC-normalized multi-element plots for published volcanic and plutonic rock averages compared the range of Omori Formation dacites analysed in this study. A: Mesozoic-Cenozoic volcanic rock averages (Condie 1993); B: Phanerozoic TTG (tonalite-trondhjemite-granodiorite) and granite (Condie 1993), and average I-and S-type granite (Whalen et al., 1987). Omori dacite range covers all Omori dacite lavas and clasts listed in Table 1. Major elements (K, Ca, Na, Mg, Si, Al, Fe, Ti) are normalized as oxides.

substantial fragmental basaltic component, at least locally. The exceptional sample (S-25) has a pattern comparable to the Omori Formation dacites and sediments, suggesting that influxes of primarily dacitic sediment still occurred at this time.

Jinzai Formation sandstones and mudstones from localities stratigraphically above the Jinzai Basalt horizon show patterns similar to those of the Fujina Formation, with abundances of nearly all elements <UCC, and significant depletion in Ca, Na and Sr (Fig. 5 D). Compatible elements are again similar to UCC. Mudstones are rather more fractionated than in the Fujina Formation, with marked enrichment in Sc-V, and clear separation from their companion sands. This suggests that sorting is rather more advanced in the Upper Jinzai sediments than in the Fujina Formation. SiO₂ contents in the Upper Jinzai sandstones are generally greater than in the Fujina Formation (77-84 wt%; Table 1A), and the patterns again suggest a significant plutonic component. This is also supported by estimates of detrital lithic populations (Tateishi, in prep.), which reveal significant quantities of unitary quartz, plagioclase and Kfeldspar and fewer rock fragments than in Omori equivalents.

Fig. 5. UCC-normalized multi-element plots for representative samples from the Omori, Fujina and Jinzai Formations in the area south of Lake Jinzai, Izumo district, compared to Omori dacite. Data from Table 1 A; localities shown on Figure 3.

Samples from the Nishi-Izumo area to the east show some stratigraphic variation. This area was mapped as Fujina Formation by Kano et al. (1997). Those from the base of the section (Loc. 18; Fig. 6A) display patterns most similar to Omori Formation sediments and dacites (Fig. 5A). Those from Loc. 19 (stratigraphically higher) display patterns similar (Fig. 6B) to the Fujina and Upper Jinzai suites (Figs. 5B & D), suggesting that plutonic detritus may then have been supplied. Abundances in sandstones are generally <UCC, except for Zr, Si and V, and marked depletion is evident for Ca. Mudstones show higher abundances in the segment Sc-V, as do the Fujina and Upper Jinzai suites. These contrasts between the two Izumo localities suggests that distinct changes in provenance may occur at equivalent horizons over quite short distances, presumably as a result of lateral facies variation and the influence of local catchment geology.

Medium-grained sandstones from the Matsue Formation (Shimada drillcore) display patterns (Fig. 7A) which clearly differ from their correlatives in the Jinzai Formation. Only SiO_2 is enriched relative to UCC, and many elements (Ca, Th, Mg, Ce, Sc-V are quite strongly depleted (0.2-0.5 x UCC). Fine-and very fine-grained sandstones display similar patterns (not shown), but tend to be slightly less depleted. In contrast, mudstones display linear patterns close to UCC composition, except for clear depletion in Ca, Na and Sr, and slight and progressive enrichment in the compatible element segment Fe-V. The contrasts in the

patterns of the medium sandstones and mudstones are attributable to sorting and winnowing in the very shallow marine embayment in which the Matsue Formation is considered to have been deposited (Nakayama *et al.*, 1996). Elevated SiO₂ contents in the sandstones (many >80 wt%; Table 2), marked Ca, Na and Sr depletion, and the flat patterns suggest derivation from moderately weathered, largely plutonic (granodioritic) source.

Outcrop samples of Matsue Formation in the Nanpeidai area of Matsue City display similar patterns to those above, but with larger Ca, Na and Sr anomalies (Fig. 8). Alkalic Matsue Formation basalt sampled from road outcrop (Fig. 8 a) has a pattern similar to Jinzai Basalt (Fig. 5C), with Zr, Mg and Ce greater than UCC, and progressive enrichment in the segment Sc-V. This pattern is replicated in overlying weathered basalt, except that Nb, Pb and Al are enriched, and K, Ca, Na, Sr and Rb are strongly depleted relative to UCC. Although Ca, Na and Sr are also strongly depleted in the overlying sandstones, no other signals of a basaltic component (e.g. Mg or Sc-V enrichment) are apparent in their patterns (Fig. 8A). This suggests that little basaltic detritus was recycled into the overlying sedimentary pile in this case.

Sandstones and mudstones from quarry outcrop at Nanpeidai (locality of Nakayama *et al.*, 1996) show comparable multi-element patterns to the other Matsue Formation localities, with abundances of all element except SiO_2 less than in UCC (Fig. 8B). Depletion in Ca, Na and Sr

Fig. 6. UCC-normalised multi-element plots for sandstones and mudstones from the Fujina Formation in south Nishi-Izumo district, compared to Omori dacite. Data from Table 1B. Location 18 (A) is stratigraphically below location 19 (B).

Fig. 8. UCC-normalized multi-element plots for (A) Matsue Formation alkalic basalts and sandstones, road outcrop, Nanpeidai, Matsue City; (B) Matsue Formation sandstones and mudstones from quarry outcrop, Nanpeidai, Matsue City (locality of Nakayama et al., 1996). Data from Table 3 A.

Fig. 7. UCC-normalized multi-element plots for (A) mediumgrained sandstones and (B) mudstones from the Matsue Formation, Shimada drillcore, Matsue City. Data from Table 2.

Fig. 9. UCC-normalized multi-element plots for (A) Turbidite sandstones and mudstones, Ushikiri Formation, Chikumi, eastern Shimane Peninsula; (B) non-marine sandstones and a tuff from the Koura Formation, Karuba, and a Koura andesite. Data from Table 3 B.

is, however, intermediate between that in the Shimada drillcore samples and the other Nanpeidai samples. This suggests that differing parts of the Matsue Formation were feed from sources where intensity of weathering varied. Alternatively, intensity of secondary surficial weathering during and immediately after deposition may have varied within the depositional basin.

Turbidite sandstones and mudstones from the eastern block of Ushikiri Formation at Chikumi (Table 3B) display differing patterns from all the above suites (Fig. 9A). With the exception of depletion in Ca, Sr and Rb in a few samples, slopes tend to increase from left to right, with abundances near to or slightly greater than UCC in the segment Sc-V. The pattern closely resembles that of average Mesozoic-Cenozoic andesite (Fig. 4A), and implies a predominantly andesitic source. This is in accord with the volcaniclastic nature of Ushikiri turbidites, and the moderate SiO₂ contents (55–68 wt%) of three of the four sandstones analysed from this locality. Ushikiri mudstones also show similar patterns to the sandstones, reflecting the lack of sorting fractionation characteristic of volcaniclastic sediments. The andesitic Ushikiri patterns contrast sharply with the dacitic patterns observed in their time correlatives in the Izumo Omori Formation suite, suggesting they did not have the same source. This confirms the paleocurrent evidence that the eastern block of the Ushikiri Formation had a different source from that in west Shimane Peninsula. The Chikumi Ushikiri outcrop therefore does not represent a deeper-water equivalent of the Omori Formation exposed along the southern edge of Lake Shinji. Much more extensive sampling is required to characterize the spatial variability in the Ushikiri and Omori Foramations, however.

The small suite of sandstones analysed from the nonmarine Koura Formation (Early Miocene) have patterns which lie between those of an interbedded tuff and an andesite (Fig. 9B). Depletion in the mobile elements (Ca, Na, Sr) is not evident, suggesting that the Koura sediments were derived from a relatively unweathered source terrane. The patterns themselves suggest that the source consisted primarily of andesite, along with lesser more felsic volcanic rocks and tuffs.

Conclusions

Clear contrasts in multi-element abundance patterns occur between the Miocene sedimentary formations examined here. Sandstones from the Koura Formation, the oldest unit represented, display patterns indicative of derivation from coeval andesitic and felsic volcanic source rocks. Turbidite sandstones from the Ushikiri Formation in Shimane Peninsula also display andesitic signatures, in contrast to the strongly dacitic patterns of lateral equivalents in the shallower-water Omori Formation from the Izumo area. The succeeding Fujina Formation in that area exhibits more depleted patterns relative to UCC, suggestive of some influx of weathered plutonic detritus. Some lateral or stratigraphic variation is indicated by additional Fujina samples from the South Nishi-Izumo area. Depleted patterns and probable plutonic input is also recognised in the Jinzai Formation, except in the immediate vicinity of the Jinzai Basalt edifice, where geochemical signatures of basaltic detritus appear in the sediments. Equivalents in the Matsue Formation also show depleted abundances relative to UCC, but patterns differ from those of the Jinzai Formation, especially with respect to elements mobile during weathering. A mainly plutonic source is inferred, with additional modification due to source weathering and sedimentary processes associated with deposition in a protected shallow marine embayment.

Although interpretation of this data has just begun, the preliminary results presented here suggest sediments deposited in backarc settings can show marked stratigraphic and lateral geochemical variation. This is a consequence of their proximal deposition, the complexity of the hinterland geology, and the influence of small catchments.

Acknowledgements

This work was begun with Katsuhiro Nakayama as the first step in a joint investigation of the geochemistry of the Miocene sediments in the area. His sedimentological expertise and enthusiasm will be greatly missed. Our thanks also to Akio Iwata of Shimada Technical Consultants Ltd. for giving access to the Matsue Formation drillcore, to Seiki Yamauchi and Yosuke Bandou for discussions on various aspects of the geology of the areas sampled, and to Yoshihiro Sawada for access to the XRF. This work was partly supported by a Monbukagakusho grant-in-aid (13440147) to B.P. Roser.

References

- Condie, K.C. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. *Chemical Geology*, **104**, 1-37.
- Dinelli, E., Lucchini, F., Mordenti, A. and Paganelli, L. 1999. Geochemistry of Oligocene–Miocene sandstones of the northern Apennines (Italy) and evolution of chemical features in relation to provenance changes. *Sedimentary Geology*, **127**, 193-207.
- Editorial Board of Geological map of Shimane Prefecture (EBGMSP) 1997. Geological map of Shimane Prefecture (1:200,000).
- Kano, K. 1998. A shallow-marine alkali-basalt tuff cone in the Middle Miocene Jinzai Formation, Izumo, SW Japan. *Journal of Volcanology* and Geothermal Research, 87, 173-191.
- Kano, K. and Nakano, S. 1986. Geology of the Etomo district. With geological sheet map at a scale of 1:50,000. Tsukuba, Geological Survey of Japan, 30 p.*
- Kano, K., Takeuchi, K., Oshima, K. and Bunno, M. 1989. Geology of the Taisha district. With geological sheet map at a scale of 1:50,000. Tsukuba, Geological Survey of Japan, 58 p.*
- Kano, K., Takeuchi, K. and Matsuura, H. 1991. Geology of the Imaichi district. With geological sheet map at a scale of 1:50,000. Tsukuba, Geological Survey of Japan, 79 p.*
- Kano, K., Yamauchi, S., Takayasu, K., Matsuura, H. and Bunno, M. 1994.

Geology of the Matsue district. With geological sheet map at a scale of 1: 50,000. Tsukuba, Geological Survey of Japan, 126 p.*

- Kano, K., Matsuura, H., Sawada, Y. and Takeuchi, K. 1997. Geology of the Iwami-Oda and Oura districts. With geological sheet map at a scale of 1:50,000. Tsukuba, Geological Survey of Japan, 118 p.*
- Kimura, J.-I. and Yamada, Y. 1996. Evaluation of major and trace element analyses using a flux to sample ratio of two to one glass beads. *Journal of Mineralogy, Petrology and Economic Geology*, **91**, 62-72.
- Morita, H. and Nakayama, K. 1999, Stratigraphy of the Middle Miocene in the southwestern part of Izumo City in Shimane Prefecture of SW Japan, and subsiding properties of its sedimentary basin. *Geoscience Reports of Shimane University*, **18**, 25-39.
- Morris, P.A. and Itaya, T. 1997. The Matsue Formation: Evidence for gross mantle heterogeneity beneath Southwest Japan at 11 Ma. *The Island Arc*, 6, 337-352.
- Nakayama, K. 1997. Unidirectional to bidirectional sudtidal sandwaves influenced by gradually decreasing steady flow velocity. *Geological Magazine*, **134**, 557-561.
- Nakayama, K., Kan, S., Takayasu, K. and Sampei, Y. 1996. Tidal sand waves in the Miocene Matsue Formation in Shimane Prefecture, Japan. *Journal of the Geological Society of Japan*, **102**, 379-390.*
- Norrish, K. and Hutton, J.T., 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. *Geochimica et Cosmochimica Acta*, **33**, 431-453.
- Roser, B.P., Kimura, J.-I. and Hisatomi, K. 2000. Whole-rock elemental abundances in sandstones and mudrocks from the Tanabe Group, Kii Peninsula, Japan. *Geoscience Reports of Shimane University*, **19**, 101-112.

- Roser, B.P., Sawada, Y. and Kabeto, K. 1998. Crushing performance and contamination trials of a tungsten carbide ring mill compared to agate grinding. *Geoscience Reports of Shimane University*, **17**, 1-11.
- Takayasu, K. 1986. Diversification in the molluscan fauna of the Miocene Izumo Group, San-in district, southwest Japan. *Paleontological Society* of Japan Special Paper, 29, 173-186.
- Takayasu, K. and Sawada, Y. 1989. A new aspect on the age of alkaline basalt from Izumo Group, Shimane Prefecture, Southwest Japan. In: I. Kobayashi and M. Tateishi (eds) "Paleo-Japan sea: Paleoenvironmental change and stratigraphy of the upper Cenozoic along the Japan sea coast", Niigata University, pp 78-79.**
- Taylor, S.R. and McLennan, S.M. 1985. The continental crust: its composition and evolution. Oxford, Blackwell Scientific, 312 pp.
- Whalen, J.B., Currie, F.L. and Chappell, B.W. 1987. A-type granities: geochemical characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology*, 95, 407-419.
- Yamauchi, S., Mitsunashi, T. and Yamamoto, Y. 1980. Miocene systems in Shimane Peninsula. Excursion guidebook, second course. *Geological* Society of Japan, 87 th Annual Meeting, Matsue, 1980. 39 pp.**
- Yamauchi, S. and Yoshitani, A. 1981. Tectonic movements in the progressive stage of the Green-Tuff basins – Taking the case of the Miocene series in the eastern part of Shimane Prefecture, western Japan. *Journal of the Geological Society of Japan*, 87, 711-724.*

^{*} In Japanese, English abstract or summary. ^{**} In Japanese.

(Recieved: 10 Dec. 2001, Accepted: 17 Dec. 2001)

(要 旨)

Barry Roser・立石陽子・中山勝博, 出雲一松江地域および島根半島の中新世堆積岩/火山岩の全岩 元素組成,島根大学地球資源環境学研究報告,20,69-82

出雲-松江地域および島根半島では、中新世の背弧海盆に堆積した砕屑岩類が、海岸線沿いの連 続露頭に広く見い出される.この地域に分布する古浦層、牛切層、大森層、布志名層および松江層 から採取した砂岩、泥質岩とそれに伴う火山岩類 147 試料について、今回新たに XRF 分析を行っ た.その結果、堆積学的に見て比較的短期間に、かなりの組成変化があることがわかった.Upper Continental Crust (UCC)で規格化された結果から見ると、古浦層砂岩は、互層する酸性凝灰岩およ び同時代の安山岩の中間の値を示す.千酌海岸の牛切層タービダイトも安山岩のパターンを持つが、 出雲付近に分布する大森層中の浅海層はデイサイト質火山岩起源を示す.その上位層である布志名 層は全般に UCC よりも低い元素組成を持ち、このことは風化した深成岩砕屑物の影響を示唆して いる.同様な傾向は松江層に対比される神西層にも見られるが、例外的に神西層内では地域的な玄 武岩の影響も見られる.松江層は深成岩起源を示す低いパターンを持つが、風化の影響が大きく、 かつ浅海下に堆積した際の淘汰の影響を強く受けている.観察された層位的変化と側方変化は、比 較的近い堆積場、供給源の複雑な地質、そして限られた集水域からの堆積物供給を反映したものと 考えられる.