\mathscr{P}-Cryptogroups

Miyuki Yamada
Department of Mathematics, Shimane University, Matsue, Japan
(Received September 7, 1988)

A semigroup which is a band of groups is called a cryptogroup (see [4]). Let P be a C -set in a cryptogroup S. Then, $\mathrm{S}(\mathrm{P})$ is \mathscr{P}-regular (see [11]). In this case, we simply say that $\mathrm{S}(\mathrm{P})$ is a \mathscr{P}-cryptogroup. In this paper, the structure of \mathscr{P}-cryptogroups is investigated.

§1. Introduction

Let S be a regular semigroup, and E_{S} the set of idempotents of S. Let P be a subset of E_{S} such that $P \cap L \neq \square$ and $P \cap R \neq \square$ for every \mathscr{L}-class L and \mathscr{R}-class R of S (where \mathscr{L} and \mathscr{R} are Green's L-and R-relations respectively). If the pair ($S . P$) of S and P satisfies
(C.1) (1) $P^{2} \subset E_{S}$,
(2) $q P q \subset P$ for $q \in P$,
then we say that $S(P)$ is weakly \mathscr{P}-regular. If (S, P) further satisfies
(3) for any $x \in S$, there exists $x^{*} \in V(x)$ (where $V(x)$ denotes the set of all inverses of x) such that $x P^{1} x^{*}, x^{*} P^{1} x \subset P$ (where P^{1} is the adjunction of 1 to P),
then $S(P)$ is called \mathscr{P}-regular. In this case, x^{*} above is called a \mathscr{P}-inverse of x, and the set of all \mathscr{P}-inverses of x is denoted by $V_{\mathscr{F}}(x)$.

If $S(P)$ is \mathscr{P}-regular and if $V_{\mathscr{P}}(q) \subset P$ for every $q \in P$, then $S(P)$ is called strongly \mathscr{P} regular.

In a regular semigroup S, a subset P of E_{S} is called a full subset of E_{S} if $P \cap L \neq \square$ and $P \cap R \neq \square$ for every \mathscr{L}-class L and \mathscr{R}-class R of S. Further, a full subset P of E_{S} is called left [right] minimal if $P \cap L[P \cap R]$ consists of a single element for every \mathscr{L}-class L [\mathscr{R} class R] of S. A full subset P of E_{S} is called a C-set in S if it satisfies (1)-(3) of (C.1).

For example, if S is a regular semigroup then $S\left(E_{S}\right)$ is \mathscr{P}-regular if and only if S is orthodox. As another example, if S is a regular semigroup with special involution \# (that is, a regular *-semigroup having \# as its special involution; see [8]) and if Q is the set of all projections of S, then $S(Q)$ is \mathscr{P}-regulr and Q is a both left and right minimal full subset of E_{S}. Conversely, if $S(Q)$ is a \mathscr{P}-regular semigroup and if Q is a both left and right minimal full subset of E_{S}, then every element x of S has a unique \mathscr{P}-inverse x^{\sharp}, and S becomes a regular *-semigroup having Q as its projections under the special involution \#
defined by " x \# $=($ the \mathscr{P}-inverse of x)". Hereafter, such a regular *-semigroup having \# and Q as its special involution and the projections respectively is denoted by $S(Q$; \#). From the examples above, it is easy to see that the class of \mathscr{P}-regular semigroups contains both the class of orthodox semigroups and that of regular *-semigroups. The following shows a part of the connection between orthodox semigroups, inverse semigroups, regular $*$-semigroups and strongly \mathscr{P}-regular semigroups:

Theorem 1.1. Let $S(P)$ be a \mathscr{P}-regular semigroup. Then:
(1) $P=E_{S}$ if and only if P is closed with respect to the multiplication. Hence, in this case S is orthodox.
(2) $S(P)$ is strongly \mathscr{P}-regular if and only if $p q \in P$ implies $q p \in P$ for every $p, q \in P$.
(3) $S(P)$ is a regular *-semigroup having P as its projections if and only if $p q \in P$ implies $q p \in P$ and $p q=q p$ for $p, q \in P$.
(4) $S(P)$ is an inverse semigroup if and only if $p q=q p$ for $p, q \in P$.

Proof. (1) Obvious. (2): The "if" part: Let $p \in P$, and $q \in V_{\gtrdot}(P)$. Let $p q=u$ and $q p=v$. Then, $u, v \in P$. Since $u v \in E_{S}, u v \mathscr{R} u$ and $u v \mathscr{L} \quad v$, we have $p=u v$. Similarly, $v u$ $=q$. Since $u v \in P$, it follows that $v u \in P$. Hence, $q \in P$, that is, $S(P)$ is strongly \mathscr{P} regular. The "only if" part: Let $q p \in P$ for $p, q \in P$. Then, every \mathscr{P}-inverse of $p q$ is contained in P. Hence, $q p \in P$ since $q p$ is a \mathscr{P}-inverse of $p q$.
(3): The "if" part: We need only to show that P is a p-system (see [8]). Suppose that $p \mathscr{L} q$ for $p, q \in P$. Then, $p q=p \in P$. Therefore, $p q=q p$. Hence, $p=q$. Thus, each of $L \cap P$ and $R \cap P$ consists of a single element for every \mathscr{L}-class L and \mathscr{R}-class R. This implies that P is a p-system in S. (4): The "if" part: Let $p, q \in P$. Since $p q p \in P, p q p=p p q$ $=p q \in P$. Therefore, $E_{S}=P^{2} \subset P$, that is, $P=E_{S}$. Thus, $e f=f e$ for $e, f \in E_{S}$. That is, $S(P)$ is an inverse semigroup.

The "only if" part: For $p, q \in P, p q=p q p \in P$. Thus, $P^{2} \subset P$, and hence $E_{S}=P$ by (1). Since $S(P)$ is an inverse semigroup, $p q=q p$ for $p, q \in E_{S}=P$.

Further, we have the following:
Theorem 1.2. Let $S(P)$ be a \mathscr{P}-regular semigroup. Then, $S(P)$ is strongly \mathscr{P}-regular if and only if $p, q, h \in P$ and $q \mathscr{L} h \mathscr{R} p$ imply that there exists $u \in P$ such that $p \mathscr{L} u \mathscr{R} q$.

Proof. The "if" part: Let $p \in P$, and p^{*} a \mathscr{P}-inverse of p. Let $p p^{*}=q$ and $p^{*} p$ $=h$. Then, $q, h \in P$ and $q \mathscr{R} p \mathscr{L} h$. Hence, there exists $u \in P$ such that $q \mathscr{L} u \mathscr{R} h$. Now, $q h=p$ and $h q=u$. Since $p^{*}=h q=u \in P, S(P)$ is strongly \mathscr{P}-regular. The "only if" part: Let $p, q, h \in P$, and $q \mathscr{L} h \mathscr{R} p$. There exists $u \in V(h)$ such that $p \mathscr{L} u \mathscr{R} q$. Now, $h u=p$ and $u h$ $=q$. Since $p q=h$ and $q p=u$ and since $p q \in P$, it follows that $q p \in P$. Then, $u \in P$.

The basic properties of a \mathscr{P}-regular semigroup and the structures of some special \mathscr{P}. regular semigroups have been studied in the previous papers [11] and [12]. A regular semigroup is called a cryptogroup if it is a band of groups (see [4]). In this paper, we shall investigate the structure of \mathscr{P}-regular cryptogroups (abbrev., \mathscr{P}-cryptogroups).

§2. Fundamental properties

A completely regular semigroup S is uniquely decomposed into a semilattice Λ of completely simple subsemigroups $\left\{S_{\lambda}: \lambda \in \Lambda\right\}$. This decomposition is called the structure decomposition of S, and is denoted by $S \sim \Sigma\left\{S_{\lambda}: \lambda \in \Lambda\right\}$. In this case Λ is unique up to isomorphism, and is called the structure semilattice of S.

It has been shown in [6] that an orthodox cryptogroup S is isomorphic to the spined product (hence, of course a subdirect product) of E_{S} and a Clifford semigroup C (see [6]). That is, there exists a Clifford semigroup C whose structure semilattice Λ is the same as that of E_{S}, such that S is isomorphic to the spined product $E_{S} \bowtie C$ of E_{S} and C. That is, let $E_{S} \sim \Sigma\left\{E_{\lambda}: \lambda \in \Lambda\right\}$ and $C \sim \Sigma\left\{C_{\lambda}: \lambda \in \Lambda\right\}$ be the structure decompositions of E_{S} and C. Then,
$E_{S} \nwarrow_{\Lambda} C=\Sigma\left\{E_{\lambda} \times C_{\lambda}\right.$ (direct product): $\left.\lambda \in \Lambda\right\}$ (where Σ means disjoint sum), and the multiplication is given by
$(e, a)(f, b)=(e f, a b)$,
and $S \cong E_{S} \triangleleft C$.
It is obvious that any \mathscr{P}-regular semigroup is weakly \mathscr{P}-regular. Conversely,
Lemma 2.1. For a cryptogroup $S, S(P)$ is \mathscr{P}-regular if and only if it is weakly \mathscr{P}-regular.
Proof. The "only if" part is obvious. The "if" part: Let $S(P)$ be a band Λ of groups $\left\{G_{\lambda}: \lambda \in \Lambda\right\}$. Of course, each G_{λ} is an \mathscr{H}-class (where \mathscr{H} denotes Green's H relation) of $S(P)$. Let e_{λ} be the identity of G_{λ}. Let $x \in H_{e_{\lambda}}$ (the \mathscr{H}-class containing e_{λ}; hence $H_{e_{\lambda}}=G_{\lambda}$). Then, there exist p, q such that $p q=e_{\lambda}$. There exists $x^{*} \in V(x) \cap H_{q p}$. Now, $x x^{*}=p$ and $x^{*} x=q$. For any $h \in P,\left(x h x^{*}\right)^{2}=x h x^{*}$. There exist $G_{\tau}, \mathrm{G}_{\delta}$ such that $h \in G_{\tau}$ and $x^{*} \in G_{\delta}$. Then, $x h x^{*} \in G_{\lambda \tau \delta}$, and $p q h q p \in G_{\lambda \tau \delta}$. Hence, $x h x^{*}=p q h q p \in P$.

Similarly, $x^{*} h x \in P$. Thus, $x^{*} \in V_{\mathscr{F}}(x)$. Therefore, $S(P)$ is \mathscr{P}-regular.
Thus, for cryptogroups, weakly \mathscr{P}-regularity and \mathscr{P}-regularity are just the same. It is well-known that a regular semigroup is an inverse semigroup if and only if every element has a unique inverse. Similarly, the following is interest as a characterization of a regular *-semigroup:

Theorem 2.2. A \mathscr{P}-regular semigroup $S(P)$ is a regular *-semigroup $S(P ; \#)$ if and only if every element x of $S(P)$ has a unique \mathscr{P}-inverse.

Proof. The "only if" part: Suppose that $S(P)$ is a regular *-semigroup $S(P$; \#). Then, it is easy to see that $x^{\#}$ is a unique \mathscr{P}-inverse of x for any element $x \in S(P)$ (see [8]). The "if" part: Assume that every element x of the \mathscr{P}-regular semigroup $S(P)$ has a unique \mathscr{P}-inverse x^{\ddagger}. Suppose that a certain \mathscr{L}-class L contains two different elements p, q of P. Since $p q=p$ and $q p=q$, we have $p P q=p q P q p \subset p P p \subset P$ and $q P p=q p P p q$ $\subset q P q \subset P$. Since $q \in V(P), q$ is a \mathscr{P}-inverse of p, and hence $p=q$. This is a contradiction. Thus, each \mathscr{L}-class contains a unique element of P. Similarly, each \mathscr{R} class contains a unique element of P. Therefore, P is a both left and right minimal full
subset of E_{S}, and accordingly $S(P)$ becomes a regular *-semigroup $S(P ; \#)$.

§3. Completely simple \mathscr{P}-regular semigroups

First, we have:
Theorem 3.1. Let B be a rectangular band, and P a full subset of B. Then, P is a C-set in B, and accordingly $B(P)$ is \mathscr{P}-regular.

Proof. Since $q P q=\{q\} \subset P$ for $q \in P, B(P)$ is weakly \mathscr{P}-regular. Since B is of course a crypptogroup, it is also \mathscr{P}-regular.

Corollary. if B is a square band (see [8]), and P a both left and right minimal full subset of B. Then, $B(P)$ is \mathscr{P}-regular, and it becomes a regular *-semigroup $B(P$; \#) under the special involution \# defined by $x^{\#}=($ the \mathscr{P}-inverse of $x)$.

Next, we shall investigate the completely simple (weakly) \mathscr{P}-regular semigroups. Let S be a completely simple semigroup. Then we can assume that S is a Rees $I \times J$ matrix semigroup over a group G with sandwich matrix Q; that is, $S=M(G ; I, J ; Q)$ (see [1]). Let $Q=\left[p_{j i}\right](j \in J, i \in I)$.

Lemma 3.2. For a completely simple semigroup $S=M(G ; I, J ; Q)$ and for idempotents $\left[p_{j i}^{-1}\right]_{i j},\left[p_{s k}^{-1}\right]_{k s}$, the following (1), (2) are equivalent:

$$
\begin{align*}
& {\left[p_{j i}^{-1}\right]_{i j}\left[p_{s k}^{-1}\right]_{k s} \in E_{S} \text { and }\left[p_{s k}^{-1}\right]_{k s}\left[p_{j i}^{-1}\right]_{i j} \in E_{S} .} \tag{1}\\
& {\left[p_{j i}^{-1}\right]_{i j}\left[p_{s k}^{-1}\right]_{k s}\left[p_{j i}^{-1}\right]_{i j}=\left[p_{j i}^{-1}\right]_{i j} .} \tag{2}
\end{align*}
$$

Proof. (1) \Rightarrow (2): It is obvious that $\left[p_{s k}^{-1}\right]_{k s}\left[p_{j i}^{-1}\right]_{i j}$ is an inverse of $\left[p_{j i}^{-1}\right]_{i j}\left[p_{s k}^{-1}\right]_{k s}$. Hence, $\left[p_{j i}^{-1}\right]_{i j}\left[p_{s k}^{-1}\right]_{k s}\left[p_{s k}^{-1}\right]_{k s}\left[p_{j i}^{-1}\right]_{i j}=\left[p_{j i}^{-1}\right]_{i j}\left[p_{s k}^{-1}\right]_{k s}\left[p_{j i}^{-1}\right]_{i j} \in E_{S}$. Then, we have $\left[p_{j i}^{-1}\right]_{i j}\left[p_{s k}^{-1}\right]_{k s}\left[p_{j i}^{-1}\right]_{i j}=\left[p_{j i}^{-1}\right]_{i j}$. (2) \Rightarrow (1): Obvious.

By the result above, we have:
Lemma 3.3. Let S be a completely simple semigroup, and Pa a full subset of E_{S}. Then, the following (1) and (2) are equivalent:
(1) $P^{2} \subset E_{S}$.
(2) For any $q \in P, q P q=\{q\}$.

Further, $S(P)$ is \mathscr{P}-regular if and only if it satisfies one of (1) and (2).
Proof. The first part follows from Lemma 3.2. It is obvious that if $S(P)$ is \mathscr{P} regular then P satisfies (1) and (2). Conversely, suppose that P satisfies (1) or (2). Then, $S(P)$ is weakly \mathscr{P}-regular. Since S is a cryptogroup, $S(P)$ is \mathscr{P}-regular.

Suppose that P is a C-set in $S=M(G ; I, J ; Q)$. Let $T=\left\{(i, j) \in I \times J:\left[p_{j i}^{-1}\right]_{i j} \in P\right\}$. Then, of course
(C.3) (1) for any $i \in I$, there exists $j \in J$ such that $(i, j) \in T$, and
(2) for any $j \in J$, there exists $i \in I$ such that $(i, j) \in T$.

Since P is a C-set, $\left[p_{j i}^{-1}\right]_{i j}\left[p_{s k}^{-1}\right]_{k s}=\left[p_{s i}^{-1}\right]_{i s}$ for $(i, j),(k, s) \in T$. Hence, $p_{j i}^{-1} p_{j k}^{-1}{p_{s k}^{-1}}^{1}$ $=p_{s i}^{-1}$, that is, $p_{j i}^{-1} p_{j k}=p_{s i}^{-1} p_{s k}$.

Thus, $Q=\left[p_{u v}\right]$ satisfies the following:

$$
\begin{equation*}
p_{j i}^{-1} p_{j k}=p_{s i}^{-1} p_{s k} \text { for any }(i, j),(k, s) \in T \tag{C.4}
\end{equation*}
$$

Conversely, suppose that T is a subset of $I \times J$ such that it satisfies (C.3). In this case, if $Q=\left[P_{u v}\right]$ satisfies (C.4), then $S(P)$ is weakly \mathscr{P}-regular, and hence \mathscr{P}-regular, with respect to $P=\left\{\left[p_{j i}^{-1}\right]_{i j}:(i, j) \in T\right\}$.

First, it is obvious that P is a full subset of E_{S}. For any $\left[p_{j i}^{-1}\right]_{i j},\left[p_{s k}^{-1}\right]_{k s} \in P$, $\left[p_{j i}^{-1}\right]_{i j}\left[p_{s k}^{-1}\right]_{k s}=\left[p_{j i}^{-1} p_{j k}^{-1} p_{s k}^{-1}\right]_{i s}=\left[p_{s i}^{-1}\right]_{i s}$ (by (C.4)) $\in E_{S}$. Hence, it follows from Lemma 3.3 that $S(P)$ is weakly \mathscr{P}-regular, and accordingly \mathscr{P}-regular. Thus, we have:

Theorem 3.4. Let $S=M(G ; I, J ; Q)$ be a completely simple semigroup, and Q $=\left[p_{u v}\right]$. Let T be a subset of $I \times J$ such that
(1) T satisfies (C.3), and
(2) $P=\left\{\left[p_{j i}^{-1}\right]_{i j}:(i, j) \in T\right\}$ satisfies (C.4),
then $S(P)$ is \mathscr{P}-regular. Further, every completely simple \mathscr{P}-regular semigroup is constructed in this fashion.

Let $S(P)$ be a \mathscr{P}-regular semigroup. Let T be a regular subsemigroup of S, and put $U=P \cap T$. Then, $T(U)$ is called a \mathscr{P}-regular subsemigroup of $S(P)$ if $T(U)$ is \mathscr{P} regular. Let $S_{1}\left(P_{1}\right)$ and $S_{2}\left(P_{2}\right)$ be \mathscr{P}-regular semigroups, and $f: S_{1}\left(P_{1}\right) \rightarrow S_{2}\left(P_{2}\right)$ a homomorphism. Then, f is called a \mathscr{P}-homomorphism if $P_{1} f=S_{1} f \cap P_{2}$. Let $S(P)$ be a \mathscr{P}-regular semigroup, and τ a congruence on $S(P)$. Let $x \tau=\bar{x}$ for $x \in S$, and $\bar{X}=\{\bar{x}$: $x \in X\}$ for a subset X of S. Then, $\bar{S}(\bar{P})$ is a \mathscr{P}-regular semigroup, which we call the factor \mathscr{P}-regular semigroup of $S(P) \bmod \tau$ and denote by $S(P) /(\tau)$. . Hereafter, this congruence τ is especially called $a \mathscr{P}$-congruence. Hence, a congruence and a \mathscr{P}-congruence are essentially the same. A bijective \mathscr{P}-homomorphism is called a \mathscr{P}-isomorphism. Hereafter, a \mathscr{P}-regular band is simply called $a \mathscr{P}$-band. Let $E(P), S(Q)$ be a rectangular \mathscr{P}-band and a completely simple \mathscr{P}-regular semigroup, and $E(P) \times S(Q)=T(U)$ the direct product of $E(P)$ and $S(Q)$, where $U=\{(p, q): p \in P$ and $q \in Q\}$. Then, $T(U)$ is \mathscr{P} regular. This $T(U)$ is called a \mathscr{P}-direct product of $E(P)$ and $S(Q)$ (for the general case, see $\S 5)$. Let V be a subdirect product of E and S. Let $(e, x) \in V$. Then, there exists $(f$, $\left.x^{-1}\right) \in V$, where x^{-1} is the group inverse of x and $f \in E$. Then $(e, x)\left(f, x^{-1}\right)=(e f, h)$, where $h=x x^{-1}$. Similarly, $\left(f, x^{-1}\right)(e, x)=(f e, h)$. Hence, $(e f, h)\left(f, x^{-1}\right)(f e, h)=(e$, $\left.x^{-1}\right) \in V$. Hence, V is a completely simple semigroup. Let $K=\{(p, q) \in V: p \in P$ and $q \in Q\}$. If $V(K)$ is \mathscr{P}-regular, then $V(K)$ is a \mathscr{P}-regular subsemigroup of $E(P) \times S(Q)$ $=T(U)$, where $E(P) \times S(Q)$ denotes the \mathscr{P}-direct product of $E(P)$ and $S(Q)$. This $V(K)$
is called a \mathscr{P}-subdirect product of $E(P)$ and $S(Q)$.
We shall show later the following: Any completely simple \mathscr{P}-regular semigroup $S(U)$ is \mathscr{P}-isomorphic to a \mathscr{P}-subdirect product of a rectangular \mathscr{P}-band $E(P)$ and a completely simple $*$-semigroup $T(Q ; \#)$. Conversely, a \mathscr{P}-subdirect product $S(U)$ of a rectangular \mathscr{P}-band $E(P)$ and a completely simple $*$-semigroup $T(Q ; \#)$ is a completely simple \mathscr{P} regular semigroup.

Examples. 1. Let $S=M(G ; I, J ; Q)$ be a completely simple semigroup such that Q $=\left[p_{j i}\right]$, where $p_{j i}=1$ for all $(j, i) \in J \times I$. Then, $E_{S}=\left\{[1]_{i j}:(i, j) \in I \times J\right\}$. Let T be a subset of $I \times J$, and assume that T satisfies (C.3). Then, $P=\left\{[1]_{i j}:(\mathrm{i}, \mathrm{j}) \in \mathrm{T}\right\}$ is a C-set in S, and $S(P)$ is \mathscr{P}-regular. In particular, $S\left(E_{S}\right)$ is \mathscr{P}-regular and is orthodox.
2. Let S be a completely simple semigroup: $S=M(G ; I, J ; Q)$. Let T be a subset of $I \times J$, and assume that T satisfies (C.3). Further, assume that $Q=\left[p_{u v}\right]$ satisfies $p_{j i}=1$ for $(i, j) \in T$ and $p_{s i}=p_{j k}^{-1}$ for $(i, j),(k, s) \in T$. Put $P=\left\{[1]_{i j}:(i, j) \in T\right\}$. Then, $S(P)$ is \mathscr{P} regular. In particular, consider the case where $I=J$ and $p_{i i}=1$ for all $(i, i) \in I \times I$ and $p_{i t}$ $=p_{t i}^{-1}$ for all $(i, t) \in I \times I$. Let $T=I \times I$, and $P=\left\{[1]_{i i}:(i, i) \in T\right\}$. Then, T satisfies (C.3) and $S(P)$ is \mathscr{P}-regular. In fact, in this case $S(P)$ is a regular $*$-semigroup $S(P ; \#)$. Further, it has been shown in [5] that every completely simple regular $*$-semigroup is constructed in this fashion.

§4. \mathscr{P}-Bands

Let B be a band, and $B \sim \Sigma\left\{B_{\lambda}: \lambda \in \Lambda\right\}$ the structure decomposition of B. Let P $\subset B$. If $B(P)$ is \mathscr{P}-regular, then $B_{\lambda}\left(P_{\lambda}\right)$, where $P_{\lambda}=B_{\lambda} \cap P$, is also \mathscr{P}-regular, that is, P_{λ} is a full subset of B_{λ}. Conversely, let P_{λ} be a full subset of B_{λ} for all $\lambda \in \Lambda$. Then, $B_{\lambda}\left(P_{\lambda}\right)$ is \mathscr{P}-regular, but $P=\Sigma\left\{P_{\lambda}: \lambda \in \Lambda\right\}$ is not necessarily a C-set in B, and hence $B(P)$ is not necessarily \mathscr{P}-regular. However, we can construct the least C-set Q_{p} containing P as follows:

Let $p_{1}, p_{2}, \ldots, p_{n} \in P$, and consider the element $p_{1} p_{2} \cdots p_{n-1} p_{n} p_{n-1} \cdots p_{2} p_{1}$. Let Q_{p} be all these elements, that is, $Q_{p}=\left\{p_{1} p_{2} \cdots p_{n-1} p_{n} p_{n-1} \cdots p_{2} p_{1}\right.$ (n arbitrary): $p_{i} \in P$ for all $i=1$, $2, \ldots, n\}$. Then, clearly $q Q_{p} q \subset Q_{p}$ for any $q \in Q_{p}$. Hence, Q_{p} is a C-set in B and Q_{p} $\supset P$. It is obvious that any C-set (in B) containing P contains Q_{p}. Therefore, Q_{p} is the least C-set containing P. Of course, if P itself is a C-set in B, then $Q_{p}=P$. Hence, we have:

Theorem 4.1. Let B be a band, and P a full subset of B.
Let $Q_{p}=\left\{p_{1} p_{2} \cdots p_{n-1} p_{n} p_{n-1} \cdots p_{2} p_{1}\right.$ (arbitrary): $p_{i} \in$ P for $\left.i=1,2, \ldots, n\right\}$. Then, Q_{p} is the least C-set containing P, and $B\left(Q_{p}\right)$ is \mathscr{P}-regular. Further, every \mathscr{P}-band is constructed in this fashion.

Consider special kinds of bands, in particular the class of regular bands and that of normal bands. Let B be a regular band, and define multiplication \circ in B as follows:

$$
\begin{equation*}
a \circ b=a b a \quad \text { for } \quad a, b \in B \tag{C.5}
\end{equation*}
$$

Then, $B(\circ)$ is also a band. Let P be a full subset of $B($ not of $B(\circ))$. Then, it is easy to see that $p P p \subset P$ if and only if $P\left({ }^{\circ}\right)$ is a subband of $B\left({ }^{\circ}\right)$. Hence, P is a C-set in B if and only if $P\left({ }^{\circ}\right)$ is a subband of $B\left({ }^{\circ}\right)$.

Therefore, we have:
Theorem 4.2. Let B be a regular band, and P a full subset of B. Then, P is a C-set in B if and only if $P(\circ)$ is a subband of $B(\circ)$.

Next, let B be a normal band. It is well-known that B is a strong semilattice Λ of rectangular bands $\left\{B_{\lambda}: \lambda \in \Lambda\right\}$. That is, there exists a transitive system $\left\{\phi_{\beta}^{\alpha}: \alpha \geqslant \beta, \alpha, \beta \in \Lambda\right\}$ of homomorphisms $\phi_{\beta}^{\alpha}: B_{\alpha} \rightarrow B_{\beta}$ such that the product of $a \in B_{\lambda}$ and $b \in B_{\delta}$ is given by $a b$ $=\left(a \phi_{\lambda \delta}^{\lambda}\right)\left(b \phi_{\lambda \delta}^{\delta}\right)($ see $[10])$. In this case, denote B by $B=\mathscr{S}\left(B_{\lambda} ; \Lambda ; \phi_{\beta}^{\alpha}\right)$. Then we have:

Theorem 4.3. Let P be a full subset of a normal band $B=\mathscr{P}\left(B_{\lambda} ; \Lambda ; \phi_{\beta}^{\alpha}\right)$. Let $P \cap B_{\lambda}$ $=P_{\lambda}$ for each $\lambda \in \Lambda$. Then, $B(P)$ is \mathscr{P}-regular if and only if $P_{\alpha} \phi_{\beta}^{\alpha} \subset P_{\beta}$ for $\alpha, \beta \in \Lambda$ with $\alpha \geqslant \beta$.

Proof. The "if" part: Obvious. The "only if" part: Let $p \in P_{\alpha}$ and $\alpha \geqslant \beta$. Since $B(P)$ is \mathscr{P}-regular, $p P_{\beta} p \subset P_{\beta}$. Hence, $p q p=\left(p \phi_{\beta}^{\alpha}\right) q\left(p \phi_{\beta}^{\alpha}\right)=p \phi_{\beta}^{\alpha} \subset P_{\beta}$ for $q \in P_{\beta}$.

§5. \mathscr{P}-Cryptogroups

Let $S(P)$ and $V(Q)$ be \mathscr{P}-regular semigroups. Consider the direct product W of S and V; that is, $W=S \times V$. Let $K=\{(p, q) \in S \times V: p \in P$ and $q \in Q\}$. Then, $W(K)$ is \mathscr{P} regular. This $W(K)$ is called the \mathscr{P}-direct product of $S(P)$ and $V(Q)$, and denoted by $S(P) \times V(Q)$. Let $T\left(P_{T}\right)$ be a \mathscr{P}-regular subsemigroup of $W(K)=S(P) \times V(Q)$, where $P_{T}=T \cap K$. If the first and second projections of $T\left(P_{T}\right)$ to $S(P)$ and $V(Q)$ are surjective \mathscr{P}-homomorphisms, then $T\left(P_{T}\right)$ is called a \mathscr{P}-subdirect product of $S(P)$ and $V(Q)$. Now, we consider the special case where $S(P)$ and $V(Q)$ are \mathscr{P}-cryptogroups.

Let $A(P)$ and $B(Q)$ be \mathscr{P}-cryptogroups, and $A \sim \Sigma\left\{A_{\lambda}: \lambda \in \Lambda\right\}$ and $B \sim \Sigma\left\{B_{\lambda}: \lambda \in \Lambda\right\}$ be the structure decompositions of A and B respectively, and put $P_{\lambda}=P \cap A_{\lambda}$ and Q_{λ} $=Q \cap B_{\lambda}$ for $\lambda \in \Lambda$ (we assume that A and B have the same structure semilattice Λ). Then, each $A_{\lambda}\left(P_{\lambda}\right)\left[B_{\lambda}\left(Q_{\lambda}\right)\right]$ is \mathscr{P}-regular. Let $S(U)=\Sigma\left\{A_{\lambda}\left(P_{\lambda}\right) \times B_{\lambda}\left(Q_{\lambda}\right)\right.$: $\left.\lambda \in \Lambda\right\}$, where U $=\Sigma\left\{P_{\lambda} \times Q_{\lambda}\right.$ (cartesian product): $\left.\lambda \in \Lambda\right\}$. Then, of course $S(U)$ is also a cryptogroup under the multiplication $(a, b)(c, d)=(a c, b d)$. Now, let $(e, f) \in \mathrm{P}_{\lambda} \times \mathrm{Q}_{\lambda}$ and $(h, t) \in P_{\delta}$ $\times Q_{\delta}$. Then, it is easy to see that $(e, f)(h, t) \in E_{S}$ and $(e, f)(h, t)(e, f) \in U$. Hence, $S(U)$ is weakly \mathscr{P}-regular, and accordingly \mathscr{P}-regular. This $S(U)$ is called \mathscr{P}-spined product of $A(P)$ and $B(Q)$, and denoted by $A(P) \mathscr{A} B(Q)$. Now, let $T(V)$ be a \mathscr{P}-regular subsemigroup of $A(P) \stackrel{\otimes}{\AA} B(Q)$ such that
(C.6) (1) the first and second projections of $S(U)=A(P)$ 高 $B(Q)$ are surjective \mathscr{P}-homomorphisms of $T(V)$ onto $A(P)$ and $B(Q)$ respectively, and
(2) $(a, b) \in T(V)$ implies $\left(a^{-1}, b^{-1}\right) \in T(V)$, where a^{-1}, b^{-1} are the group inverses of a, b respectively,
then $T(V)$ is called a \mathscr{P}-subspined product of $A(P)$ and $B(Q)$, and denoted by $A(P)$ 睬 $B(Q)$, etc.

Now, let $S(P)$ be a \mathscr{P}-cryptogroup, and $S \sim \Sigma\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ the structure decomposition of S. Let $S_{\lambda} \cap P=P_{\lambda}$ for each $\lambda \in \Lambda$. Then, $S_{\lambda}\left(P_{\lambda}\right)$ is a completely simple \mathscr{P}-regular semigroup. Now, $S(P)$ is a band of groups $\left\{G_{\gamma}: \gamma \in \Gamma\right\}$, where Γ is a band and each G_{γ} is an \mathscr{H}-class (where \mathscr{H} is Green's H-relation). Let $\Gamma \sim \Sigma\left\{\Gamma_{\lambda}: \lambda \in \Lambda\right\}$ the structure decomposition of Γ. Let v be the least strong \mathscr{P}-congruence on $S(P)$. This is given as follows (see [11]): Let v be the transitive closure of the relation v° defined by $v^{\circ}=\{(a$, $\left.b) \in S \times S: V_{\mathscr{\rho}}(a) \cap V_{\mathscr{P}}(b) \neq \square\right\}$. Then, it follows from [12] that v is the least strong \mathscr{P} congruence on $S(P)$ which makes $S(P)$ to a regular $*$-semigroup $S(P: \#)=S(P) /(v) \mathcal{E}$, where $x v=\tilde{x}$ and $\tilde{X}=\{\tilde{x}: x \in X\}$ for any subset X of $S(P)$. Now, $\tilde{S}(\tilde{P})=\bigcup\left\{\widetilde{G}_{\gamma}\right.$: $\gamma \in \Gamma\}$. Further, it follows from [11] that $x v y$ implies $x, y \in S_{\lambda}$ for some $\lambda \in \Lambda$. Since a homomorphic image of a completely simple semigroup is completely simple (see [3]), S_{λ} / v is completely simple. Therefore, $\widetilde{S}(\widetilde{P})$ has the structure decomposition $\widetilde{S}(\widetilde{P}) \sim \Sigma\left\{\widetilde{S}_{\lambda}\left(\widetilde{P}_{\lambda}\right)\right.$: $\lambda \in \Lambda\}$, and each $\widetilde{S}_{\lambda}(\widetilde{P})$ is a completely simple $*$-semigroup $\widetilde{S}\left(\widetilde{P}_{\lambda} ; \#\right)$. Since $\widetilde{S}(\widetilde{P})=\bigcup\left\{\widetilde{G}_{\gamma}\right.$: $\gamma \in \Gamma\}, \widetilde{S}(\widetilde{P})$ is also a band of groups. Hence, $\widetilde{S}(\widetilde{P} ; \#)$ is a *-cryptogroup (that is, a regular *-semigroup which is a cryptogroup). Next, define ρ on $S(P)$ as follows: $x \rho y$ if and only if $x, y \in G_{\gamma}$ for some $\gamma \in \Gamma$. Let e_{γ} be the identity of G_{γ}. Let $x \rho=\bar{x}$ and $\bar{X}=\{\bar{x}: x \in X\}$ for X $\subset S(P)$. Then, it is easy to see that $\bar{S}(\bar{P})=S(P) /(\rho)$ is a \mathscr{P}-band, and $\bar{e}_{\gamma} \bar{e}_{\delta}=\bar{e}_{\gamma \delta}$. Hence, $\bar{S}(\bar{P})=\left\{\bar{e}_{\gamma}: \gamma \in \Gamma\right\}$ is isomorphic to Γ. Now, let $x, y \in S_{\lambda}\left(P_{\lambda}\right)$ and assume that $x(\rho \cap v) y$. Then, $x, y \in G_{\delta}$ for some $\delta \in \Gamma$. Since $x y^{-1} v y y^{-1}$, we have $x y^{-1}=e_{\delta}$, and hence $x=y$. Therefore, $f: S(P) \rightarrow \bar{S}(\tilde{P}) \not{ }_{1}^{\mathscr{A}} \tilde{S}(\tilde{P}$; \#) defined by $x f=(\bar{x}, \tilde{x})$ is a \mathscr{P} isomorphism of $S(P)$ to $S(P) f=\{(\bar{x}, \tilde{x}): x \in S(P)\} \subset \bar{S}(\bar{P}){ }_{\lambda}^{\mathscr{D}} \tilde{S}(\widetilde{P} ; \#) . \quad$ Let $S(P) f=T(Q)$, where $Q=\{(\bar{p}, \tilde{p}): p \in P\}$. Then, it is easy to see that $T(Q)$ is a \mathscr{P}-regular subsemigroup of $\bar{S}(\bar{P}) \stackrel{\otimes}{\wedge} \widetilde{S}(\widetilde{P} ; \#)$ and is a \mathscr{P}-subspined product of $\bar{S}(\bar{P})$ and $\widetilde{S}(\widetilde{P} ; \#)$. Conversely, let $E(P)$ be a \mathscr{P}-band, and $T(Q ; \#)$ a $*$-cryptogroup. Then, $T(Q ; \#)$ is a band Γ of groups $\left\{T_{\gamma}\right.$: $\gamma \in \Gamma\}$. Assume that $E(P)$ and $T(Q$; \#) have the same structure semilattice Λ, and E $\sim \sum\left\{E_{\lambda}: \lambda \in \Lambda\right\}$ and $T \sim \sum\left\{T_{\lambda}: \lambda \in \Lambda\right\}$ the structure decompositions of E and T respectively, and put $P_{\lambda}=E_{\lambda} \cap P$ and $Q_{\lambda}=Q \cap T_{\lambda}$ for each $\lambda \in \Lambda$. Let $S(U)$ be a \mathscr{P}-subspined product of $E(P)$ and $T(Q ; \#$;) that is, $S(U)=E(P)$ 害 $T(Q ; \#)$. Then, $S(U)$ is of course a \mathscr{P}-regular semigroup. For any $e \in E(P)$, there exists $a \in S(U)$ such that $(e, x)=a$ for some $x \in T_{\gamma}$. Now, let $S_{e, \gamma}=\left\{(e, x) \in E \times T_{\gamma}:(e, x) \in S(U)\right\}$. Let $(e, x),(e, y) \in S_{e, \gamma}$. Then, $(e, x)(e, y)$ $=(e, x y) \in S(U)$. Hence, $(e, x)(e, y) \in S_{e, \gamma}$. Further, e, x have group inverses $e^{-1}=e$ and x^{-1} in E and T_{γ} respectively. Therefore, $\left(e, x^{-1}\right) \in S(U) \cap S_{e, \gamma}$. Thus, $S_{e, \gamma}$ is a group. Hence, $S(U)=\Sigma\left\{S_{e, \gamma}: e \in E\right.$ and $\left.\gamma \in \Gamma\right\}$ such that $S_{e, \gamma} \neq \square$. Further, for (e, $a) \in S_{e, \gamma}$ and $(f, b) \in S_{f, \delta}(e, a)(f, b)=(e f, a b) \in S_{e f, \gamma \delta}$, that is, $S_{e, \gamma} S_{f, \delta} \subset S_{e f, \gamma \delta}$. Therefore, $S(U)$ is a band of the groups $\left\{S_{e, \gamma}: e \in E\right.$ and $\gamma \in \Gamma$ such that $\left.S_{e, \gamma} \neq \square\right\}$. Thus, $S(U)$ is a \mathscr{P} cryptogroup.

By the result above, we have:
Theorem 5.1. Every \mathscr{P}-cryptogroup is \mathscr{P}-isomorphic to a \mathscr{P}-subspined product $S(U)$
of a \mathscr{P}-band $E(P)$ and $a *$-cryptogroup $T(Q ; \#)$. Conversely, any \mathscr{P}-subspined product $S(U)$ of a \mathscr{P}-band $E(P)$ and a $*$-cryptogroup $T(Q ; \#)$ is a \mathscr{P}-cryptogroup.

The structure of *-cryptogroups has been clarified in [9]. The theorem above is a generalization of the structure theorem (Theorem 4, [6]) for strictly inversive semigroups (that is, orthodox cryptogroups) to the class of \mathscr{P}-regular cryptogroups. In fact: Let S be an orthodox cryptogroup, and $S \sim \Sigma\left\{S_{\lambda}: \lambda \in \Lambda\right\}$ the structure decomposition of S. Then, E_{S} has the structure decomposition $E_{S} \sim \Sigma\left\{E_{\lambda}: \lambda \in \Lambda\right\}$, where $E_{\lambda}=S_{\lambda} \cap E_{S}$. Further, $S\left(E_{S}\right)$ and $S_{\lambda}\left(E_{\lambda}\right)$ are \mathscr{P}-regular. Now let $x \rho=\bar{x}$ and $x v=\tilde{x}$ for $x \in S$, and $\bar{X}=\{\bar{x}: x \in X\}$ and $\tilde{X}=\{\tilde{x}: x \in X\}$ for $X \subset S$. Then, $\bar{S}\left(\bar{E}_{S}\right)=S\left(E_{S}\right) /(\rho)_{\mathscr{P}}$ is isomorphic to the band E_{S}. On the other hand, the least strong \mathscr{P}-congruence v on $S\left(E_{S}\right)$ is the least inverse semigroup congruence on S (see [2], [7]), and hence $\tilde{S}\left(\tilde{E}_{S}\right)=S\left(E_{S}\right) /(v) \boldsymbol{p}$ is a Clifford semigroup. Further, each $\widetilde{S}_{\lambda}\left(\widetilde{E}_{\lambda}\right)$ is a group. Let $T=\{(\bar{x}, \tilde{x}): x \in S\}$. Then, it follows from the result above that S is isomorphic to $T=\bar{S}\left(\bar{E}_{S}\right)$ 棌 $\widetilde{S}\left(\widetilde{E}_{S}\right)$. Now, let $T_{\lambda}=\{(\bar{x}, \tilde{x})$: $\left.x \in S_{\lambda}\right\}$ for $\lambda \in \Lambda$. Let $(\bar{x}, \tilde{y}) \in \bar{S}_{\lambda} \times \tilde{S}_{\lambda}$. Then, $(\bar{x}, \tilde{y})=\left(x x^{-1} y x x^{-1}, \widehat{x x^{-1} y x x^{-1}}\right) \in T_{\lambda}$. Therefore, $T_{\lambda}=\bar{S}_{\lambda} \times \tilde{S}_{\lambda}$. Hence, T is the spined product $\bar{S} \bowtie \tilde{S}$ of \bar{S} and \tilde{S}. Now, $\bar{S} \cong E_{S}$. Therefore, S is isomorphic to the spined product of E_{S} and the Clifford semigroup \tilde{S}. This is just the structure theorem for strictly inversive semigroups given by [6].

As a special case of the theorem above, if $S(P)$ is a completely simple \mathscr{P}-regular semigroup, then the structure semilattice of S consists of a single element. Therefore, we have the following as a corollary to Theorem 5.1:

Corollary. A completely simple \mathscr{P}-regular semigroup $S(P)$ is \mathscr{P}-isomorphic to a \mathscr{P}-subdirect product of a rectangular \mathscr{P}-band $E(Q)$ and a completely simple $*$-semigroup $T(K ;$ \#). Conversely, a \mathscr{P}-subdirect product $S(P)$ of a rectangular \mathscr{P}-band $E(Q)$ and a completely simple $*$-semigroup $T(K ; \#)$ is a completely simple \mathscr{P}-regular semigroup.

§6. Strongly \mathscr{P}-regular cryptogroups

Let B be a band, and P a C-set in B. Then, $B(P)$ is \mathscr{P}-regular. Let v be the least strong \mathscr{P}-congruence on $B(P)$. Then, $\widetilde{B}(\widetilde{P})=B(P) /(v)_{\mathscr{P}}$ is the regular $*$-semigroup having \tilde{P} as the projections, where $\tilde{x}=x v$ and $\tilde{X}=\{\tilde{x}: x \in X\}$ for $X \subset B$. Let $Q_{p}=\{e \in B: \tilde{e}$ $=\tilde{q}$ for some $q \in P\}$.

Then,
Lemma 6.1. $\quad B\left(Q_{p}\right)$ is strongly \mathscr{P}-regular.
Proof. Let $e \in Q_{p}$. Then, there exists $q \in P$ such that $\tilde{q}=\tilde{e}$. Hence, $q v e$, and $q \in P$. Let $f \in V_{\vartheta}(e)$ in $B\left(Q_{p}\right)$. Then, $\tilde{e} \widetilde{P} \widetilde{f} \subset \widetilde{Q}_{p}=\widetilde{P}$ and similary $\widetilde{f} \widetilde{P} \tilde{e} \subset \widetilde{P}$. Further, $\widetilde{f} \in V(\tilde{e})$. Hence, $\widetilde{f} \in V_{\mathscr{P}}(\tilde{e})$ in $\widetilde{B}(\widetilde{P})$. Since $\widetilde{B}(\widetilde{P})$ is a regular $*$-semigroup, a \mathscr{P}-inverse of $\tilde{e}($ $=\tilde{q})$ is unique, and hence $\tilde{f}=\tilde{q}=\tilde{e}$. Therefore, $f \in Q_{p} . \quad$ Further, $\widetilde{e Q_{p} e}=\tilde{e} \tilde{P} \tilde{e}=\widetilde{q P q} \subset \tilde{P}$, and accordingly $e Q_{p} e \subset Q_{p}$. Thus, Q_{p} is a C-set. Therefore, $B\left(Q_{p}\right)$ is strongly \mathscr{P}-regular.

Conversely,

Lemma 6.2. Let $B(U)$ be a strongly \mathscr{P}-regular semigroup, and v the least strong \mathscr{P} congruence on $B(U)$. Let $\tilde{B}(\tilde{U})=B(U) /(v)$ os where $x v=\tilde{x}$ and $\tilde{X}=\{\tilde{x}: x \in X\}$ for X $\subset B$. Then, $U=\{x \in B: \tilde{x}=\tilde{u}$ for some $u \in U\}$.

Proof. This follows from [11].
Thus, we have:
Theorem 6.3. Let B be a band, and PaC-set in B. Let v be the least strong \mathscr{P} congruence on the \mathscr{P}-band $B(P)$. Let $x v=\tilde{x}$ and $\tilde{X}=\{\tilde{x}: x \in X\}$ for $X \subset B$. Let $Q_{p}=\{x \in B$: $\tilde{x}=\tilde{q}$ for some $q \in P\}$.

Then, $B\left(Q_{p}\right)$ is strongly \mathscr{P}-regular. Every C-set U such that $B(U)$ is strongly \mathscr{P} regular is obtained in this fashion.

Next, let S be a cryptogroup. Assume that $S(P)$ is strongly \mathscr{P}-regular. In this case, each \mathscr{H}-class is a group. Of course, S is a band Γ of groups $\left\{G_{\gamma}: \gamma \in \Gamma\right\}$. Let e_{γ} be the identity of G_{y} for each $\gamma \in \Gamma$. Then, $S(P) /(\mathscr{H})_{\mathscr{F}}=\bar{S}(\bar{P})$, where $x \mathscr{H}=\bar{x}$ and $\bar{X}=\{\bar{x}: x \in X\}$ for $X \subset S$, is isomorphic to Γ; an isomorphism g is given by $\bar{x} g=\gamma$ if $x \in G_{\gamma}$. Let $A=\{\bar{p} g$: $p \in P\}$. Then, clearly $\Gamma(\Lambda)$ is \mathscr{P}-isomorphic to $\bar{S}(\bar{P})$. Now, let $\bar{p} \mathscr{L} \bar{u} \mathscr{R} \bar{q}$, where p, u, $q \in P$. Since $S(P)$ is strongly \mathscr{P}-regular, $\bar{p} \bar{u}=\bar{p}$ and $\bar{u} \bar{p}=\bar{u}$. Hence, $p u \mathscr{H} p$ and $u p \mathscr{H} u$, and accordingly $p \mathscr{L} u$. Similarly, $u \mathscr{R} q$. Hence, there exists $v \in P$ such that $p \mathscr{R} v \mathscr{L}$ q. Therefore, $\bar{p} \mathscr{R} \bar{v} \mathscr{L} \bar{q}$. Similarly, $\bar{p} \mathscr{R} \bar{u} \mathscr{L} \bar{q}$ implies that $\bar{p} \mathscr{L} \bar{v} \mathscr{R} \bar{q}$ for some $v \in P$. Thus, $\bar{S}(\bar{P})$ is strongly \mathscr{P}-regular, and hence $\Gamma(\Lambda)$ is strongly \mathscr{P}-regular.

From the results above, we easily obtain the following:
Theorem 6.4. Let $S(P)$ be a strongly \mathscr{P}-regular semigroup. Then, $S(P)$ is \mathscr{P} isomorphic to a \mathscr{P}-subspined product of a strongly \mathscr{P}-regular band $T(Q)$ and $a *$ cryptogroup W (U; \#).

References

[1] Clifford, A. H. and Preston, G. B.: The algebraic theory of semigroups, Vol 1, Amer. Math. Soc., Providence, R. I., 1961.
[2] Hall, T. E.: On regular semigroups whose idempotents form a subsemigroup, Bull. Australian Math. Soc. 1 (1969), 195-208.
[3] Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.
[4] Pastijn, F. J. and Petrich, M.: Regular semigroups as extensions, Research Notes in Mathematics 136, Pitman Advanced Publishing Program, Boston, 1985.
[5] Reilly, N. R.: A class of regular *-semigroups, Semigroup Forum 18 (1979), 385-386.
[6] Yamada, M.: Strictly inversive semigroups, Bull. Shimane Univ. 13 (1964), 128-138.
[7] ——: On a regular semigroup in which the idempotents form a band, Pacific J. Math. 33 (1970), 261272.
[8] ——: P-systems in regular semigroups, Semigroup Forum 24 (1982), 173-187.
[9] ——: Construction of a certain class of regular semigroups with special involution, The 1984 Marquette Conference on Semigroups, Marquette Univ., Wisconsin, 1985, 229-240.
[10] Yamada, M. and Kimura, N.: Note on idempotent semigroups, II, Proc. Japan Acad. 34 (1958), 110112.
[11] Yamada, M. and Sen, M. K.: On P-regular semigroups, Proc. of the 11th Symposium on Semigroups, Ritsumeikan Univ., 1988, 3-11.
[12] —: \mathscr{P}-regularity in semigroups, Mem. Fac. Sci., Shimane Univ. 21 (1987), 47-54.

