Mem. Fac. Sci. Shimane Univ., 22, pp. 21–31 Dec. 20, 1988

P-Cryptogroups

Miyuki Yamada

Department of Mathematics, Shimane University, Matsue, Japan (Received September 7, 1988)

A semigroup which is a band of groups is called a cryptogroup (see [4]). Let P be a C-set in a cryptogroup S. Then, S(P) is \mathscr{P} -regular (see [11]). In this case, we simply say that S(P) is a \mathscr{P} -cryptogroup. In this paper, the structure of \mathscr{P} -cryptogroups is investigated.

§1. Introduction

Let S be a regular semigroup, and E_S the set of idempotents of S. Let P be a subset of E_S such that $P \cap L \neq \Box$ and $P \cap R \neq \Box$ for every \mathcal{L} -class L and \mathcal{R} -class R of S (where \mathcal{L} and \mathcal{R} are Green's L-and R-relations respectively). If the pair (S. P) of S and P satisfies

- (C.1) (1) $P^2 \subset E_S$,
 - (2) $qPq \subset P$ for $q \in P$,

then we say that S(P) is weakly *P*-regular. If (S, P) further satisfies

(3) for any $x \in S$, there exists $x^* \in V(x)$ (where V(x) denotes the set of all inverses of x) such that xP^1x^* , $x^*P^1x \subset P$ (where P^1 is the adjunction of 1 to P),

then S(P) is called \mathcal{P} -regular. In this case, x^* above is called a \mathcal{P} -inverse of x, and the set of all \mathcal{P} -inverses of x is denoted by $V_{\mathcal{P}}(x)$.

If S(P) is \mathscr{P} -regular and if $V_{\mathscr{P}}(q) \subset P$ for every $q \in P$, then S(P) is called *strongly* \mathscr{P} -*regular*.

In a regular semigroup S, a subset P of E_S is called a full subset of E_S if $P \cap L \neq \Box$ and $P \cap R \neq \Box$ for every \mathscr{L} -class L and \mathscr{R} -class R of S. Further, a full subset P of E_S is called *left* [right] minimal if $P \cap L$ [$P \cap R$] consists of a single element for every \mathscr{L} -class L [\mathscr{R} -class R] of S. A full subset P of E_S is called a C-set in S if it satisfies (1)-(3) of (C.1).

For example, if S is a regular semigroup then $S(E_S)$ is \mathscr{P} -regular if and only if S is orthodox. As another example, if S is a regular semigroup with special involution #(that is, a regular *-semigroup having # as its special involution; see [8]) and if Q is the set of all projections of S, then S(Q) is \mathscr{P} -regular and Q is a both left and right minimal full subset of E_S . Conversely, if S(Q) is a \mathscr{P} -regular semigroup and if Q is a both left and right minimal full subset of E_S , then every element x of S has a unique \mathscr{P} -inverse $x^{\#}$, and S becomes a regular *-semigroup having Q as its projections under the special involution # defined by " $x^* = (\text{the } \mathcal{P}\text{-inverse of } x)$ ". Hereafter, such a regular *-semigroup having # and Q as its special involution and the projections respectively is denoted by S(Q; #). From the examples above, it is easy to see that the class of $\mathcal{P}\text{-regular semigroups}$ contains both the class of orthodox semigroups and that of regular *-semigroups. The following shows a part of the connection between orthodox semigroups, inverse semigroups, regular *-semigroups and strongly $\mathcal{P}\text{-regular semigroups}$:

THEOREM 1.1. Let S(P) be a \mathcal{P} -regular semigroup. Then:

(1) $P = E_S$ if and only if P is closed with respect to the multiplication. Hence, in this case S is orthodox.

(2) S(P) is strongly \mathcal{P} -regular if and only if $pq \in P$ implies $qp \in P$ for every $p, q \in P$.

(3) S(P) is a regular *-semigroup having P as its projections if and only if $pq \in P$ implies $qp \in P$ and pq = qp for p, $q \in P$.

(4) S(P) is an inverse semigroup if and only if pq = qp for $p, q \in P$.

PROOF. (1) Obvious. (2): The "if" part: Let $p \in P$, and $q \in V_{\mathscr{P}}(P)$. Let pq = u and qp = v. Then, $u, v \in P$. Since $uv \in E_s$, $uv \mathscr{R}u$ and $uv \mathscr{L} v$, we have p = uv. Similarly, vu = q. Since $uv \in P$, it follows that $vu \in P$. Hence, $q \in P$, that is, S(P) is strongly \mathscr{P} -regular. The "only if" part: Let $qp \in P$ for $p, q \in P$. Then, every \mathscr{P} -inverse of pq is contained in P. Hence, $qp \in P$ since qp is a \mathscr{P} -inverse of pq.

(3): The "if" part: We need only to show that P is a p-system (see [8]). Suppose that $p \mathcal{L} q$ for $p, q \in P$. Then, $pq = p \in P$. Therefore, pq = qp. Hence, p = q. Thus, each of $L \cap P$ and $R \cap P$ consists of a single element for every \mathcal{L} -class L and \mathcal{R} -class R. This implies that P is a p-system in S. (4): The "if" part: Let $p, q \in P$. Since $pqp \in P, pqp = ppq = pq \in P$. Therefore, $E_S = P^2 \subset P$, that is, $P = E_S$. Thus, ef = fe for $e, f \in E_S$. That is, S(P) is an inverse semigroup.

The "only if" part: For $p, q \in P, pq = pqp \in P$. Thus, $P^2 \subset P$, and hence $E_S = P$ by (1). Since S(P) is an inverse semigroup, pq = qp for $p, q \in E_S = P$.

Further, we have the following:

THEOREM 1.2. Let S(P) be a \mathcal{P} -regular semigroup. Then, S(P) is strongly \mathcal{P} -regular if and only if $p, q, h \in P$ and $q \mathcal{L} h \mathcal{R} p$ imply that there exists $u \in P$ such that $p \mathcal{L} u \mathcal{R} q$.

PROOF. The "if" part: Let $p \in P$, and p^* a \mathscr{P} -inverse of p. Let $pp^* = q$ and $p^*p = h$. Then, $q, h \in P$ and $q \, \mathscr{R} p \, \mathscr{L} h$. Hence, there exists $u \in P$ such that $q \, \mathscr{L} u \, \mathscr{R} h$. Now, qh = p and hq = u. Since $p^* = hq = u \in P$, S(P) is strongly \mathscr{P} -regular. The "only if" part: Let $p, q, h \in P$, and $q \, \mathscr{L} h \, \mathscr{R} p$. There exists $u \in V(h)$ such that $p \, \mathscr{L} u \, \mathscr{R} q$. Now, hu = p and uh = q. Since pq = h and qp = u and since $pq \in P$, it follows that $qp \in P$. Then, $u \in P$.

The basic properties of a \mathscr{P} -regular semigroup and the structures of some special \mathscr{P} regular semigroups have been studied in the previous papers [11] and [12]. A regular
semigroup is called *a cryptogroup* if it is a band of groups (see [4]). In this paper, we shall
investigate the structure of \mathscr{P} -regular cryptogroups (abbrev., \mathscr{P} -cryptogroups).

22

§2. Fundamental properties

A completely regular semigroup S is uniquely decomposed into a semilattice Λ of completely simple subsemigroups $\{S_{\lambda}: \lambda \in \Lambda\}$. This decomposition is called *the structure decomposition* of S, and is denoted by $S \sim \Sigma\{S_{\lambda}: \lambda \in \Lambda\}$. In this case Λ is unique up to isomorphism, and is called *the structure semilattice* of S.

It has been shown in [6] that an orthodox cryptogroup S is isomorphic to the spined product (hence, of course a subdirect product) of E_S and a Clifford semigroup C (see [6]). That is, there exists a Clifford semigroup C whose structure semilattice Λ is the same as that of E_S , such that S is isomorphic to the spined product $E_S \bowtie C$ of E_S and C. That is, let $E_S \sim \Sigma \{E_{\lambda}: \lambda \in \Lambda\}$ and $C \sim \Sigma \{C_{\lambda}: \lambda \in \Lambda\}$ be the structure decompositions of E_S and C. Then,

 $E_{S \bowtie} C = \Sigma \{E_{\lambda} \times C_{\lambda} \text{ (direct product): } \lambda \in \Lambda \}$ (where Σ means disjoint sum), and the multiplication is given by

(e, a) (f, b) = (ef, ab),

and $S \cong E_S \bowtie C$.

It is obvious that any P-regular semigroup is weakly P-regular. Conversely,

LEMMA 2.1. For a cryptogroup S, S(P) is \mathcal{P} -regular if and only if it is weakly \mathcal{P} -regular.

PROOF. The "only if" part is obvious. The "if" part: Let S(P) be a band Λ of groups $\{G_{\lambda}: \lambda \in \Lambda\}$. Of course, each G_{λ} is an \mathscr{H} -class (where \mathscr{H} denotes Green's *H*-relation) of S(P). Let e_{λ} be the identity of G_{λ} . Let $x \in H_{e_{\lambda}}$ (the \mathscr{H} -class containing e_{λ} ; hence $H_{e_{\lambda}} = G_{\lambda}$). Then, there exist p, q such that $pq = e_{\lambda}$. There exists $x^* \in V(x) \cap H_{qp}$. Now, $xx^* = p$ and $x^*x = q$. For any $h \in P$, $(xhx^*)^2 = xhx^*$. There exist G_{τ} , G_{δ} such that $h \in G_{\tau}$ and $x^* \in G_{\delta}$. Then, $xhx^* \in G_{\lambda\tau\delta}$, and $pqhqp \in G_{\lambda\tau\delta}$. Hence, $xhx^* = pqhqp \in P$. Similarly, $x^*hx \in P$. Thus, $x^* \in V_{\mathscr{I}}(x)$. Therefore, S(P) is \mathscr{P} -regular.

Thus, for cryptogroups, weakly \mathcal{P} -regularity and \mathcal{P} -regularity are just the same. It is well-known that a regular semigroup is an inverse semigroup if and only if every element has a unique inverse. Similarly, the following is interest as a characterization of a regular *-semigroup:

THEOREM 2.2. A \mathcal{P} -regular semigroup S(P) is a regular *-semigroup S(P; #) if and only if every element x of S(P) has a unique \mathcal{P} -inverse.

PROOF. The "only if" part: Suppose that S(P) is a regular *-semigroup S(P; #). Then, it is easy to see that x^* is a unique \mathscr{P} -inverse of x for any element $x \in S(P)$ (see [8]). The "if" part: Assume that every element x of the \mathscr{P} -regular semigroup S(P) has a unique \mathscr{P} -inverse x^* . Suppose that a certain \mathscr{L} -class L contains two different elements p, q of P. Since pq = p and qp = q, we have $pPq = pqPqp \subset PPp \subset P$ and $qPp = qpPpq \subset qPq \subset P$. Since $q \in V(P)$, q is a \mathscr{P} -inverse of p, and hence p = q. This is a contradiction. Thus, each \mathscr{L} -class contains a unique element of P. Similarly, each \mathscr{R} -class contains a unique element of P.

subset of E_s , and accordingly S(P) becomes a regular *-semigroup S(P; #).

§3. Completely simple *P*-regular semigroups

First, we have:

THEOREM 3.1. Let B be a rectangular band, and P a full subset of B. Then, P is a C-set in B, and accordingly B(P) is \mathcal{P} -regular.

PROOF. Since $qPq = \{q\} \subset P$ for $q \in P$, B(P) is weakly \mathscr{P} -regular. Since B is of course a crypptogroup, it is also \mathscr{P} -regular.

COROLLARY. if B is a square band (see [8]), and P a both left and right minimal full subset of B. Then, B(P) is \mathcal{P} -regular, and it becomes a regular *-semigroup B(P; *) under the special involution * defined by $x^* = (the \mathcal{P}$ -inverse of x).

Next, we shall investigate the completely simple (weakly) \mathscr{P} -regular semigroups. Let S be a completely simple semigroup. Then we can assume that S is a Rees $I \times J$ matrix semigroup over a group G with sandwich matrix Q; that is, S = M(G; I, J; Q) (see [1]). Let $Q = [p_{ii}]$ $(i \in J, i \in I)$.

LEMMA 3.2. For a completely simple semigroup S = M(G; I, J; Q) and for idempotents $[p_{ji}^{-1}]_{ij}, [p_{sk}^{-1}]_{ks}$, the following (1), (2) are equivalent:

(1) $[p_{ji}^{-1}]_{ij}[p_{sk}^{-1}]_{ks} \in E_S$ and $[p_{sk}^{-1}]_{ks}[p_{ji}^{-1}]_{ij} \in E_S$.

(2) $[p_{ji}^{-1}]_{ij} [p_{sk}^{-1}]_{ks} [p_{ji}^{-1}]_{ij} = [p_{ji}^{-1}]_{ij}.$

PROOF. (1)=(2): It is obvious that $[p_{sk}^{-1}]_{ks}[p_{ji}^{-1}]_{ij}$ is an inverse of $[p_{ji}^{-1}]_{ij}[p_{sk}^{-1}]_{ks}$. Hence, $[p_{ji}^{-1}]_{ij}[p_{sk}^{-1}]_{ks}[p_{sk}^{-1}]_{ks}[p_{ji}^{-1}]_{ij} = [p_{ji}^{-1}]_{ij}[p_{sk}^{-1}]_{ks}[p_{ji}^{-1}]_{ij} \in E_S$. Then, we have $[p_{ji}^{-1}]_{ij}[p_{sk}^{-1}]_{ks}[p_{ji}^{-1}]_{ij} = [p_{ji}^{-1}]_{ij}$. (2)=(1): Obvious.

By the result above, we have:

LEMMA 3.3. Let S be a completely simple semigroup, and P a full subset of E_s . Then, the following (1) and (2) are equivalent:

- (1) $P^2 \subset E_S$.
- (2) For any $q \in P$, $qPq = \{q\}$.

Further, S(P) is \mathcal{P} -regular if and only if it satisfies one of (1) and (2).

PROOF. The first part follows from Lemma 3.2. It is obvious that if S(P) is \mathscr{P} -regular then P satisfies (1) and (2). Conversely, suppose that P satisfies (1) or (2). Then, S(P) is weakly \mathscr{P} -regular. Since S is a cryptogroup, S(P) is \mathscr{P} -regular.

Suppose that P is a C-set in S = M(G; I, J; Q). Let $T = \{(i, j) \in I \times J: [p_{ji}^{-1}]_{ij} \in P\}$. Then, of course

- (C.3) (1) for any $i \in I$, there exists $j \in J$ such that $(i, j) \in T$, and
 - (2) for any $j \in J$, there exists $i \in I$ such that $(i, j) \in T$.

Since P is a C-set, $[p_{ji}^{-1}]_{ij}[p_{sk}^{-1}]_{ks} = [p_{si}^{-1}]_{is}$ for $(i, j), (k, s) \in T$. Hence, $p_{ji}^{-1} p_{jk}^{-1} p_{sk}^{-1} = p_{si}^{-1}$, that is, $p_{ji}^{-1} p_{jk} = p_{si}^{-1} p_{sk}$.

Thus, $Q = [p_{uv}]$ satisfies the following:

(C.4) $p_{ji}^{-1} p_{jk} = p_{si}^{-1} p_{sk}$ for any $(i, j), (k, s) \in T$.

Conversely, suppose that T is a subset of $I \times J$ such that it satisfies (C.3). In this case, if $Q = [P_{uv}]$ satisfies (C.4), then S(P) is weakly \mathscr{P} -regular, and hence \mathscr{P} -regular, with respect to $P = \{[p_{ji}^{-1}]_{ij}: (i, j) \in T\}$.

First, it is obvious that P is a full subset of E_s . For any $[p_{ji}^{-1}]_{ij}$, $[p_{sk}^{-1}]_{ks} \in P$, $[p_{ji}^{-1}]_{ij}[p_{sk}^{-1}]_{ks} = [p_{ji}^{-1} p_{jk}^{-1} p_{sk}^{-1}]_{is} = [p_{si}^{-1}]_{is}$ (by (C.4)) $\in E_s$. Hence, it follows from Lemma 3.3 that S(P) is weakly \mathscr{P} -regular, and accordingly \mathscr{P} -regular. Thus, we have:

THEOREM 3.4. Let S = M(G; I, J; Q) be a completely simple semigroup, and $Q = [p_{uv}]$. Let T be a subset of $I \times J$ such that

- (1) T satisfies (C.3), and
- (2) $P = \{ [p_{ii}^{-1}]_{ij} : (i, j) \in T \}$ satisfies (C.4),

then S(P) is \mathcal{P} -regular. Further, every completely simple \mathcal{P} -regular semigroup is constructed in this fashion.

Let S(P) be a \mathcal{P} -regular semigroup. Let T be a regular subsemigroup of S, and put $U = P \cap T$. Then, T(U) is called a \mathcal{P} -regular subsemigroup of S(P) if T(U) is \mathcal{P} regular. Let $S_1(P_1)$ and $S_2(P_2)$ be \mathscr{P} -regular semigroups, and $f: S_1(P_1) \rightarrow S_2(P_2)$ a homomorphism. Then, f is called a \mathcal{P} -homomorphism if $P_1 f = S_1 f \cap P_2$. Let S(P) be a \mathscr{P} -regular semigroup, and τ a congruence on S(P). Let $x\tau = \bar{x}$ for $x \in S$, and $\bar{X} = \{\bar{x}:$ $x \in X$ for a subset X of S. Then, $\overline{S}(\overline{P})$ is a \mathscr{P} -regular semigroup, which we call the factor \mathscr{P} -regular semigroup of $S(P) \mod \tau$ and denote by $S(P)/(\tau)$. Hereafter, this congruence τ is especially called *a P*-congruence. Hence, a congruence and a *P*-congruence are essentially the same. A bijective P-homomorphism is called a P-isomorphism. Hereafter, a \mathcal{P} -regular band is simply called a \mathcal{P} -band. Let E(P), S(Q) be a rectangular \mathcal{P} -band and a completely simple \mathcal{P} -regular semigroup, and $E(P) \times S(Q) = T(U)$ the direct product of E(P) and S(Q), where $U = \{(p, q): p \in P \text{ and } q \in Q\}$. Then, T(U) is \mathcal{P} regular. This T(U) is called a *P*-direct product of E(P) and S(Q) (for the general case, see §5). Let V be a subdirect product of E and S. Let $(e, x) \in V$. Then, there exists $(f, x) \in V$. $x^{-1} \in V$, where x^{-1} is the group inverse of x and $f \in E$. Then (e, x) $(f, x^{-1}) = (ef, h)$, where $h = xx^{-1}$. Similarly, $(f, x^{-1})(e, x) = (fe, h)$. Hence, $(ef, h)(f, x^{-1})(fe, h) = (e, h)(f, x^{-1})(fe, h)(f, x^{-1})(fe, h)(f, x^{-1})(fe, h) = (e, h)(f, x^{-1})(fe, h)(f, x^{-1})(fe, h)(f, x^{-1})(fe, h)(fe, h)(f, x^{-1})(fe, h) = (e, h)(f, x^{-1})(fe, h)(fe, h)($ $x^{-1} \in V$. Hence, V is a completely simple semigroup. Let $K = \{(p, q) \in V: p \in P \text{ and } v \in V\}$ $q \in Q$. If V(K) is \mathscr{P} -regular, then V(K) is a \mathscr{P} -regular subsemigroup of $E(P) \not\simeq S(Q)$ = T(U), where $E(P) \ge S(Q)$ denotes the \mathcal{P} -direct product of E(P) and S(Q). This V(K) is called a \mathcal{P} -subdirect product of E(P) and S(Q).

We shall show later the following: Any completely simple \mathscr{P} -regular semigroup S(U) is \mathscr{P} -isomorphic to a \mathscr{P} -subdirect product of a rectangular \mathscr{P} -band E(P) and a completely simple *-semigroup $T(Q; \sharp)$. Conversely, a \mathscr{P} -subdirect product S(U) of a rectangular \mathscr{P} -band E(P) and a completely simple *-semigroup $T(Q; \sharp)$ is a completely simple \mathscr{P} -regular semigroup.

EXAMPLES. 1. Let S = M(G; I, J; Q) be a completely simple semigroup such that $Q = [p_{ji}]$, where $p_{ji} = 1$ for all $(j, i) \in J \times I$. Then, $E_S = \{[1]_{ij}: (i, j) \in I \times J\}$. Let T be a subset of $I \times J$, and assume that T satisfies (C.3). Then, $P = \{[1]_{ij}: (i, j) \in T\}$ is a C-set in S, and S(P) is \mathscr{P} -regular. In particular, $S(E_S)$ is \mathscr{P} -regular and is orthodox.

2. Let S be a completely simple semigroup: S = M(G; I, J; Q). Let T be a subset of $I \times J$, and assume that T satisfies (C.3). Further, assume that $Q = [p_{uv}]$ satisfies $p_{ji} = 1$ for $(i, j) \in T$ and $p_{si} = p_{jk}^{-1}$ for (i, j), $(k, s) \in T$. Put $P = \{[1]_{ij}: (i, j) \in T\}$. Then, S(P) is \mathscr{P} -regular. In particular, consider the case where I = J and $p_{ii} = 1$ for all $(i, i) \in I \times I$ and $p_{it} = p_{ti}^{-1}$ for all $(i, t) \in I \times I$. Let $T = I \times I$, and $P = \{[1]_{ii}: (i, i) \in T\}$. Then, T satisfies (C.3) and S(P) is \mathscr{P} -regular. In fact, in this case S(P) is a regular *-semigroup $S(P; \ddagger)$. Further, it has been shown in [5] that every completely simple regular *-semigroup is constructed in this fashion.

§4. *P*-Bands

Let B be a band, and $B \sim \Sigma\{B_{\lambda}: \lambda \in A\}$ the structure decomposition of B. Let $P \subset B$. If B(P) is \mathscr{P} -regular, then $B_{\lambda}(P_{\lambda})$, where $P_{\lambda} = B_{\lambda} \cap P$, is also \mathscr{P} -regular, that is, P_{λ} is a full subset of B_{λ} . Conversely, let P_{λ} be a full subset of B_{λ} for all $\lambda \in A$. Then, $B_{\lambda}(P_{\lambda})$ is \mathscr{P} -regular, but $P = \Sigma\{P_{\lambda}: \lambda \in A\}$ is not necessarily a C-set in B, and hence B(P) is not necessarily \mathscr{P} -regular. However, we can construct the least C-set Q_p containing P as follows:

Let $p_1, p_2, ..., p_n \in P$, and consider the element $p_1 p_2 \cdots p_{n-1} p_n p_{n-1} \cdots p_2 p_1$. Let Q_p be all these elements, that is, $Q_p = \{p_1 p_2 \cdots p_{n-1} p_n p_{n-1} \cdots p_2 p_1 \ (n \text{ arbitrary}): p_i \in P \text{ for all } i = 1, 2, ..., n\}$. Then, clearly $qQ_p q \subset Q_p$ for any $q \in Q_p$. Hence, Q_p is a C-set in B and $Q_p \supset P$. It is obvious that any C-set (in B) containing P contains Q_p . Therefore, Q_p is the least C-set containing P. Of course, if P itself is a C-set in B, then $Q_p = P$. Hence, we have:

THEOREM 4.1. Let B be a band, and P a full subset of B.

Let $Q_p = \{p_1 p_2 \cdots p_{n-1} p_n p_{n-1} \cdots p_2 p_1 \text{ (n arbitrary)}: p_i \in P \text{ for } i = 1, 2, ..., n\}$. Then, Q_p is the least C-set containing P, and $B(Q_p)$ is \mathcal{P} -regular. Further, every \mathcal{P} -band is constructed in this fashion.

Consider special kinds of bands, in particular the class of regular bands and that of normal bands. Let B be a regular band, and define multiplication \circ in B as follows:

(C.5) $a \circ b = aba$ for $a, b \in B$.

𝒫-Cryptogroups

Then, $B(\circ)$ is also a band. Let P be a full subset of B (not of $B(\circ)$). Then, it is easy to see that $pPp \subset P$ if and only if $P(\circ)$ is a subband of $B(\circ)$. Hence, P is a C-set in B if and only if $P(\circ)$ is a subband of $B(\circ)$.

Therefore, we have:

THEOREM 4.2. Let B be a regular band, and P a full subset of B. Then, P is a C-set in B if and only if $P(\circ)$ is a subband of $B(\circ)$.

Next, let *B* be a normal band. It is well-known that *B* is a strong semilattice Λ of rectangular bands $\{B_{\lambda}: \lambda \in \Lambda\}$. That is, there exists a transitive system $\{\phi_{\beta}^{\alpha}: \alpha \ge \beta, \alpha, \beta \in \Lambda\}$ of homomorphisms $\phi_{\beta}^{\alpha}: B_{\alpha} \rightarrow B_{\beta}$ such that the product of $a \in B_{\lambda}$ and $b \in B_{\delta}$ is given by $ab = (a\phi_{\lambda\delta}^{\lambda}) (b\phi_{\delta\delta}^{\delta})$ (see [10]). In this case, denote *B* by $B = \mathscr{S}(B_{\lambda}: \Lambda; \phi_{\beta}^{\alpha})$. Then we have:

THEOREM 4.3. Let P be a full subset of a normal band $B = \mathcal{G}(B_{\lambda}; \Lambda; \phi_{\beta}^{\alpha})$. Let $P \cap B_{\lambda} = P_{\lambda}$ for each $\lambda \in \Lambda$. Then, B(P) is \mathcal{P} -regular if and only if $P_{\alpha}\phi_{\beta}^{\alpha} \subset P_{\beta}$ for $\alpha, \beta \in \Lambda$ with $\alpha \ge \beta$.

PROOF. The "if" part: Obvious. The "only if" part: Let $p \in P_{\alpha}$ and $\alpha \ge \beta$. Since B(P) is \mathscr{P} -regular, $pP_{\beta}p \subset P_{\beta}$. Hence, $pqp = (p\phi_{\beta}^{\alpha})q(p\phi_{\beta}^{\alpha}) = p\phi_{\beta}^{\alpha} \subset P_{\beta}$ for $q \in P_{\beta}$.

§5. *P*-Cryptogroups

Let S(P) and V(Q) be \mathscr{P} -regular semigroups. Consider the direct product W of Sand V; that is, $W = S \times V$. Let $K = \{(p, q) \in S \times V : p \in P \text{ and } q \in Q\}$. Then, W(K) is \mathscr{P} regular. This W(K) is called the \mathscr{P} -direct product of S(P) and V(Q), and denoted by $S(P) \geq V(Q)$. Let $T(P_T)$ be a \mathscr{P} -regular subsemigroup of $W(K) = S(P) \geq V(Q)$, where $P_T = T \cap K$. If the first and second projections of $T(P_T)$ to S(P) and V(Q) are surjective \mathscr{P} -homomorphisms, then $T(P_T)$ is called a \mathscr{P} -subdirect product of S(P) and V(Q). Now, we consider the special case where S(P) and V(Q) are \mathscr{P} -cryptogroups.

Let A(P) and B(Q) be \mathscr{P} -cryptogroups, and $A \sim \Sigma\{A_{\lambda} : \lambda \in A\}$ and $B \sim \Sigma\{B_{\lambda} : \lambda \in A\}$ be the structure decompositions of A and B respectively, and put $P_{\lambda} = P \cap A_{\lambda}$ and $Q_{\lambda} = Q \cap B_{\lambda}$ for $\lambda \in A$ (we assume that A and B have the same structure semilattice A). Then, each $A_{\lambda}(P_{\lambda}) [B_{\lambda}(Q_{\lambda})]$ is \mathscr{P} -regular. Let $S(U) = \Sigma\{A_{\lambda}(P_{\lambda}) \not \Rightarrow B_{\lambda}(Q_{\lambda}) : \lambda \in A\}$, where $U = \Sigma\{P_{\lambda} \times Q_{\lambda} \text{ (cartesian product): } \lambda \in A\}$. Then, of course S(U) is also a cryptogroup under the multiplication (a, b) (c, d) = (ac, bd). Now, let $(e, f) \in P_{\lambda} \times Q_{\lambda}$ and $(h, t) \in P_{\delta} \times Q_{\delta}$. Then, it is easy to see that (e, f) $(h, t) \in E_{S}$ and (e, f) (h, t) $(e, f) \in U$. Hence, S(U) is weakly \mathscr{P} -regular, and accordingly \mathscr{P} -regular. This S(U) is called \mathscr{P} -spined product of A(P) and B(Q), and denoted by $A(P) \not \Rightarrow B(Q)$. Now, let T(V) be a \mathscr{P} -regular subsemigroup of $A(P) \not \Rightarrow B(Q)$ such that

- (C.6) (1) the first and second projections of $S(U) = A(P) \stackrel{*}{\sim} B(Q)$ are surjective \mathscr{P} -homomorphisms of T(V) onto A(P) and B(Q) respectively, and
 - (2) $(a, b) \in T(V)$ implies $(a^{-1}, b^{-1}) \in T(V)$, where a^{-1}, b^{-1} are the group inverses of a, b respectively,

Miyuki Yamada

then T(V) is called a \mathcal{P} -subspined product of A(P) and B(Q), and denoted by $A(P) \overset{\mathscr{P}}{\xrightarrow{\sim}} B(Q)$, etc.

Now, let S(P) be a \mathscr{P} -cryptogroup, and $S \sim \Sigma\{S_{\lambda} : \lambda \in \Lambda\}$ the structure decomposition of S. Let $S_{\lambda} \cap P = P_{\lambda}$ for each $\lambda \in \Lambda$. Then, $S_{\lambda}(P_{\lambda})$ is a completely simple \mathscr{P} -regular semigroup. Now, S(P) is a band of groups $\{G_{\gamma}: \gamma \in \Gamma\}$, where Γ is a band and each G_{γ} is an \mathscr{H} -class (where \mathscr{H} is Green's *H*-relation). Let $\Gamma \sim \Sigma\{\Gamma_{\lambda}: \lambda \in A\}$ the structure decomposition of Γ . Let v be the least strong \mathcal{P} -congruence on S(P). This is given as follows (see [11]): Let v be the transitive closure of the relation v° defined by $v^{\circ} = \{(a, b) | a \in \mathbb{N}\}$ $b \in S \times S$: $V_{\mathscr{P}}(a) \cap V_{\mathscr{P}}(b) \neq \Box$. Then, it follows from [12] that v is the least strong \mathscr{P} congruence on S(P) which makes S(P) to a regular *-semigroup $S(P; \#) = S(P)/(v)_{\mathcal{P}}$, where $xv = \tilde{x}$ and $\tilde{X} = \{\tilde{x}: x \in X\}$ for any subset X of S(P). Now, $\tilde{S}(\tilde{P}) = \bigcup \{\tilde{G}_{v}: V \in X\}$ $y \in \Gamma$ }. Further, it follows from [11] that $x \lor y$ implies $x, y \in S_{\lambda}$ for some $\lambda \in \Lambda$. Since a homomorphic image of a completely simple semigroup is completely simple (see [3]), S_3/v is completely simple. Therefore, $\tilde{S}(\tilde{P})$ has the structure decomposition $\tilde{S}(\tilde{P}) \sim \Sigma \{\tilde{S}_{1}(\tilde{P}_{1})\}$. $\lambda \in \Lambda$, and each $\tilde{S}_{\lambda}(\tilde{P})$ is a completely simple *-semigroup $\tilde{S}(\tilde{P}_{\lambda}; \sharp)$. Since $\tilde{S}(\tilde{P}) = \bigcup \{\tilde{G}_{\lambda}: \xi \in \Lambda\}$ $\gamma \in \Gamma$ }, $\tilde{S}(\tilde{P})$ is also a band of groups. Hence, $\tilde{S}(\tilde{P}; \#)$ is a *-cryptogroup (that is, a regular *-semigroup which is a cryptogroup). Next, define ρ on S(P) as follows: $x \rho y$ if and only if $x, y \in G_{\gamma}$ for some $\gamma \in \Gamma$. Let e_{γ} be the identity of G_{γ} . Let $x \rho = \bar{x}$ and $\bar{X} = \{\bar{x} : x \in X\}$ for X $\subset S(P)$. Then, it is easy to see that $\overline{S}(\overline{P}) = S(P)/(\rho)_{\mathscr{P}}$ is a \mathscr{P} -band, and $\overline{e}_{\gamma}\overline{e}_{\delta} = \overline{e}_{\gamma\delta}$. Hence, $\overline{S}(\overline{P}) = \{\overline{e}_{\gamma}: \gamma \in \Gamma\}$ is isomorphic to Γ . Now, let $x, y \in S_{\lambda}(P_{\lambda})$ and assume that $x(\rho \cap v)y$. Then, $x, y \in G_{\delta}$ for some $\delta \in \Gamma$. Since $xy^{-1}v yy^{-1}$, we have $xy^{-1} = e_{\delta v}$ and hence x = y. Therefore, $f: S(P) \to \overline{S}(\overline{P}) \stackrel{\mathscr{P}}{\to} \widetilde{S}(\widetilde{P}; \sharp)$ defined by $xf = (\overline{x}, \ \widetilde{x})$ is a \mathscr{P} isomorphism of S(P) to $S(P)f = \{(\bar{x}, \tilde{x}): x \in S(P)\} \subset \overline{S}(\overline{P}) \stackrel{\mathscr{P}}{\hookrightarrow} \widetilde{S}(\widetilde{P}; \sharp)$. Let S(P)f = T(Q), where $Q = \{(\bar{p}, \tilde{p}): p \in P\}$. Then, it is easy to see that T(Q) is a \mathcal{P} -regular subsemigroup of $\overline{S}(\overline{P}) \stackrel{\mathscr{A}}{\to} \widetilde{S}(\widetilde{P}; \sharp)$ and is a \mathscr{P} -subspined product of $\overline{S}(\overline{P})$ and $\widetilde{S}(\widetilde{P}; \sharp)$. Conversely, let E(P) be a \mathscr{P} -band, and T(Q; #) a *-cryptogroup. Then, T(Q; #) is a band Γ of groups $\{T_{y}:$ $\gamma \in \Gamma$. Assume that E(P) and T(Q; #) have the same structure semilattice Λ , and E~ $\Sigma \{E_{\lambda}: \lambda \in \Lambda\}$ and $T \sim \sum \{T_{\lambda}: \lambda \in \Lambda\}$ the structure decompositions of E and T respectively, and put $P_{\lambda} = E_{\lambda} \cap P$ and $Q_{\lambda} = Q \cap T_{\lambda}$ for each $\lambda \in A$. Let S(U) be a \mathscr{P} -subspined product of E(P) and T(Q; #); that is, $S(U) = E(P) \not \cong T(Q; \#)$. Then, S(U) is of course a \mathcal{P} -regular semigroup. For any $e \in E(P)$, there exists $a \in S(U)$ such that (e, x) = a for some $x \in T_{y}$. Now, let $S_{e,y} = \{(e, x) \in E \times T_y : (e, x) \in S(U)\}$. Let $(e, x), (e, y) \in S_{e,y}$. Then, $(e, x), (e, y) \in S_{e,y}$. $=(e, xy) \in S(U)$. Hence, $(e, x) (e, y) \in S_{e,y}$. Further, e, x have group inverses $e^{-1} = e$ and x^{-1} in E and T_{γ} respectively. Therefore, $(e, x^{-1}) \in S(U) \cap S_{e,\gamma}$. Thus, $S_{e,\gamma}$ is a group. Hence, $S(U) = \Sigma \{ S_{e,\gamma} : e \in E \text{ and } \gamma \in \Gamma \}$ such that $S_{e,\gamma} \neq \Box$. Further, for $(e, \gamma) \in \Gamma \}$ $a \in S_{e,\gamma}$ and $(f, b) \in S_{f,\delta}$, (e, a) $(f, b) = (ef, ab) \in S_{ef,\gamma\delta}$, that is, $S_{e,\gamma}S_{f,\delta} \subset S_{ef,\gamma\delta}$. Therefore, S(U) is a band of the groups $\{S_{e,\gamma}: e \in E \text{ and } \gamma \in \Gamma \text{ such that } S_{e,\gamma} \neq \Box\}$. Thus, S(U) is a \mathcal{P} cryptogroup.

By the result above, we have:

THEOREM 5.1. Every \mathcal{P} -cryptogroup is \mathcal{P} -isomorphic to a \mathcal{P} -subspined product S(U)

of a \mathcal{P} -band E(P) and a *-cryptogroup $T(Q; \sharp)$. Conversely, any \mathcal{P} -subspined product S(U) of a \mathcal{P} -band E(P) and a *-cryptogroup $T(Q; \sharp)$ is a \mathcal{P} -cryptogroup.

The structure of *-cryptogroups has been clarified in [9]. The theorem above is a generalization of the structure theorem (Theorem 4, [6]) for strictly inversive semigroups (that is, orthodox cryptogroups) to the class of \mathcal{P} -regular cryptogroups. In fact: Let S be an orthodox cryptogroup, and $S \sim \Sigma \{S_{\lambda} : \lambda \in A\}$ the structure decomposition of S. Then, E_s has the structure decomposition $E_s \sim \Sigma \{E_{\lambda}: \lambda \in A\}$, where $E_{\lambda} = S_{\lambda} \cap E_s$. Further, $S(E_S)$ and $S_{\lambda}(E_{\lambda})$ are \mathscr{P} -regular. Now let $x\rho = \bar{x}$ and $xv = \tilde{x}$ for $x \in S$, and $\bar{X} = \{\bar{x} : x \in X\}$ and $\tilde{X} = \{\tilde{x}: x \in X\}$ for $X \subset S$. Then, $\overline{S}(\overline{E}_S) = S(E_S)/(\rho)_{\mathscr{P}}$ is isomorphic to the band E_{s} . On the other hand, the least strong \mathcal{P} -congruence v on $S(E_{s})$ is the least inverse semigroup congruence on S (see [2], [7]), and hence $\tilde{S}(\tilde{E}_S) = S(E_S)/(v)$ is a Clifford semigroup. Further, each $\tilde{S}_{\lambda}(\tilde{E}_{\lambda})$ is a group. Let $T = \{(\bar{x}, \bar{x}): x \in S\}$. Then, it follows from the result above that S is isomorphic to $T = \overline{S}(\overline{E}_S) \not\cong \widetilde{S}(\widetilde{E}_S)$. Now, let $T_{\lambda} = \{(\overline{x}, \widetilde{x}):$ $x \in S_{\lambda}$ for $\lambda \in A$. Let $(\bar{x}, \tilde{y}) \in \bar{S}_{\lambda} \times \tilde{S}_{\lambda}$. Then, $(\bar{x}, \tilde{y}) = (\overline{xx^{-1}yxx^{-1}}, \overline{xx^{-1}yxx^{-1}}) \in T_{\lambda}$. Therefore, $T_{\lambda} = \overline{S}_{\lambda} \times \widetilde{S}_{\lambda}$. Hence, T is the spined product $\overline{S} \not \to \widetilde{S}$ of \overline{S} and \widetilde{S} . Now, $\overline{S} \cong E_s$. Therefore, S is isomorphic to the spined product of E_s and the Clifford semigroup \tilde{S} . This is just the structure theorem for strictly inversive semigroups given by [6].

As a special case of the theorem above, if S(P) is a completely simple \mathcal{P} -regular semigroup, then the structure semilattice of S consists of a single element. Therefore, we have the following as a corollary to Theorem 5.1:

COROLLARY. A completely simple \mathcal{P} -regular semigroup S(P) is \mathcal{P} -isomorphic to a \mathcal{P} -subdirect product of a rectangular \mathcal{P} -band E(Q) and a completely simple *-semigroup T(K; #). Conversely, a \mathcal{P} -subdirect product S(P) of a rectangular \mathcal{P} -band E(Q) and a completely simple *-semigroup T(K; #) is a completely simple \mathcal{P} -regular semigroup.

§6. Strongly *P*-regular cryptogroups

Let *B* be a band, and *P* a *C*-set in *B*. Then, B(P) is \mathscr{P} -regular. Let *v* be the least strong \mathscr{P} -congruence on B(P). Then, $\tilde{B}(\tilde{P}) = B(P)/(v)_{\mathscr{P}}$ is the regular *-semigroup having \tilde{P} as the projections, where $\tilde{x} = xv$ and $\tilde{X} = \{\tilde{x} : x \in X\}$ for $X \subset B$. Let $Q_p = \{e \in B : \tilde{e} = \tilde{q} \text{ for some } q \in P\}$.

Then,

LEMMA 6.1. $B(Q_n)$ is strongly \mathcal{P} -regular.

PROOF. Let $e \in Q_p$. Then, there exists $q \in P$ such that $\tilde{q} = \tilde{e}$. Hence, $q \lor e$, and $q \in P$. Let $f \in V_{\mathscr{P}}(e)$ in $B(Q_p)$. Then, $\tilde{e}\tilde{P}\tilde{f} \subset \tilde{Q}_p = \tilde{P}$ and similary $\tilde{f}\tilde{P}\tilde{e} \subset \tilde{P}$. Further, $\tilde{f} \in V(\tilde{e})$. Hence, $\tilde{f} \in V_{\mathscr{P}}(\tilde{e})$ in $\tilde{B}(\tilde{P})$. Since $\tilde{B}(\tilde{P})$ is a regular *-semigroup, a \mathscr{P} -inverse of $\tilde{e}(=\tilde{q})$ is unique, and hence $\tilde{f} = \tilde{q} = \tilde{e}$. Therefore, $f \in Q_p$. Further, $e\widetilde{Q_p e} = \tilde{e}\tilde{P}\tilde{e} = \widetilde{qPq} \subset \tilde{P}$, and accordingly $eQ_p e \subset Q_p$. Thus, Q_p is a C-set. Therefore, $B(Q_p)$ is strongly \mathscr{P} -regular. Conversely,

29 tuct

Miyuki Yamada

LEMMA 6.2. Let B(U) be a strongly \mathcal{P} -regular semigroup, and v the least strong \mathcal{P} congruence on B(U). Let $\tilde{B}(\tilde{U}) = B(U)/(v)_{\mathcal{P}}$ where $xv = \tilde{x}$ and $\tilde{X} = \{\tilde{x} : x \in X\}$ for $X \subset B$. Then, $U = \{x \in B : \tilde{x} = \tilde{u} \text{ for some } u \in U\}$.

PROOF. This follows from [11].

Thus, we have:

THEOREM 6.3. Let B be a band, and P a C-set in B. Let v be the least strong \mathcal{P} congruence on the \mathcal{P} -band B(P). Let $xv = \tilde{x}$ and $\tilde{X} = \{\tilde{x} : x \in X\}$ for $X \subset B$. Let $Q_p = \{x \in B: \tilde{x} = \tilde{q} \text{ for some } q \in P\}$.

Then, $B(Q_p)$ is strongly \mathcal{P} -regular. Every C-set U such that B(U) is strongly \mathcal{P} -regular is obtained in this fashion.

Next, let S be a cryptogroup. Assume that S(P) is strongly \mathscr{P} -regular. In this case, each \mathscr{H} -class is a group. Of course, S is a band Γ of groups $\{G_{\gamma}: \gamma \in \Gamma\}$. Let e_{γ} be the identity of G_{γ} for each $\gamma \in \Gamma$. Then, $S(P)/(\mathscr{H})_{\mathscr{P}} = \overline{S}(\overline{P})$, where $\mathscr{K} = \overline{x}$ and $\overline{X} = \{\overline{x}: x \in X\}$ for $X \subset S$, is isomorphic to Γ ; an isomorphism g is given by $\overline{x}g = \gamma$ if $x \in G_{\gamma}$. Let $A = \{\overline{p}g: p \in P\}$. Then, clearly $\Gamma(A)$ is \mathscr{P} -isomorphic to $\overline{S}(\overline{P})$. Now, let $\overline{p} \mathscr{L} \overline{u} \mathscr{R} \overline{q}$, where p, u, $q \in P$. Since S(P) is strongly \mathscr{P} -regular, $\overline{p}\overline{u} = \overline{p}$ and $\overline{u}\overline{p} = \overline{u}$. Hence, pu \mathscr{H} p and up \mathscr{H} u, and accordingly $p\mathscr{L} u$. Similarly, $u \mathscr{R} q$. Hence, there exists $v \in P$ such that $p \mathscr{R} v \mathscr{L}$ q. Therefore, $\overline{p} \ \Re v \ \mathscr{L} q$. Similarly, $\overline{p} \ \mathscr{R} \ \overline{u} \ \mathscr{L} q$ implies that $\overline{p} \ \mathscr{L} v \ \Re q$ for some $v \in P$. Thus, $\overline{S}(\overline{P})$ is strongly \mathscr{P} -regular, and hence $\Gamma(A)$ is strongly \mathscr{P} -regular.

From the results above, we easily obtain the following:

THEOREM 6.4. Let S(P) be a strongly \mathcal{P} -regular semigroup. Then, S(P) is \mathcal{P} isomorphic to a \mathcal{P} -subspined product of a strongly \mathcal{P} -regular band T(Q) and a *cryptogroup W(U; *).

References

- [1] Clifford, A. H. and Preston, G. B.: The algebraic theory of semigroups, Vol 1, Amer. Math. Soc., Providence, R. I., 1961.
- [2] Hall, T. E.: On regular semigroups whose idempotents form a subsemigroup, Bull. Australian Math. Soc. 1 (1969), 195-208.
- [3] Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.
- [4] Pastijn, F. J. and Petrich, M.: Regular semigroups as extensions, Research Notes in Mathematics 136, Pitman Advanced Publishing Program, Boston, 1985.
- [5] Reilly, N. R.: A class of regular *-semigroups, Semigroup Forum 18 (1979), 385-386.
- [6] Yamada, M.: Strictly inversive semigroups, Bull. Shimane Univ. 13 (1964), 128-138.
- [7] —: On a regular semigroup in which the idempotents form a band, Pacific J. Math. 33 (1970), 261–272.
- [8] ----: P-systems in regular semigroups, Semigroup Forum 24 (1982), 173-187.
- [9] —: Construction of a certain class of regular semigroups with special involution, The 1984 Marquette Conference on Semigroups, Marquette Univ., Wisconsin, 1985, 229–240.

P-Cryptogroups

- [10] Yamada, M. and Kimura, N.: Note on idempotent semigroups, II, Proc. Japan Acad. 34 (1958), 110– 112.
- [11] Yamada, M. and Sen, M. K.: On P-regular semigroups, Proc. of the 11th Symposium on Semigroups, Ritsumeikan Univ., 1988, 3-11.
- [12] ——: P-regularity in semigroups, Mem. Fac. Sci., Shimane Univ. 21 (1987), 47–54.